mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-17 02:15:57 +00:00
b8c8ba73c6
Currently, KASAN is unable to catch use-after-free in SLAB_TYPESAFE_BY_RCU slabs because use-after-free is allowed within the RCU grace period by design. Add a SLUB debugging feature which RCU-delays every individual kmem_cache_free() before either actually freeing the object or handing it off to KASAN, and change KASAN to poison freed objects as normal when this option is enabled. For now I've configured Kconfig.debug to default-enable this feature in the KASAN GENERIC and SW_TAGS modes; I'm not enabling it by default in HW_TAGS mode because I'm not sure if it might have unwanted performance degradation effects there. Note that this is mostly useful with KASAN in the quarantine-based GENERIC mode; SLAB_TYPESAFE_BY_RCU slabs are basically always also slabs with a ->ctor, and KASAN's assign_tag() currently has to assign fixed tags for those, reducing the effectiveness of SW_TAGS/HW_TAGS mode. (A possible future extension of this work would be to also let SLUB call the ->ctor() on every allocation instead of only when the slab page is allocated; then tag-based modes would be able to assign new tags on every reallocation.) Tested-by: syzbot+263726e59eab6b442723@syzkaller.appspotmail.com Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Acked-by: Marco Elver <elver@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> #slab Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
562 lines
15 KiB
C
562 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* This file contains common KASAN code.
|
|
*
|
|
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
|
|
* Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
|
|
*
|
|
* Some code borrowed from https://github.com/xairy/kasan-prototype by
|
|
* Andrey Konovalov <andreyknvl@gmail.com>
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kasan.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/linkage.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/clock.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/stackdepot.h>
|
|
#include <linux/stacktrace.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/bug.h>
|
|
|
|
#include "kasan.h"
|
|
#include "../slab.h"
|
|
|
|
struct slab *kasan_addr_to_slab(const void *addr)
|
|
{
|
|
if (virt_addr_valid(addr))
|
|
return virt_to_slab(addr);
|
|
return NULL;
|
|
}
|
|
|
|
depot_stack_handle_t kasan_save_stack(gfp_t flags, depot_flags_t depot_flags)
|
|
{
|
|
unsigned long entries[KASAN_STACK_DEPTH];
|
|
unsigned int nr_entries;
|
|
|
|
nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
|
|
return stack_depot_save_flags(entries, nr_entries, flags, depot_flags);
|
|
}
|
|
|
|
void kasan_set_track(struct kasan_track *track, depot_stack_handle_t stack)
|
|
{
|
|
#ifdef CONFIG_KASAN_EXTRA_INFO
|
|
u32 cpu = raw_smp_processor_id();
|
|
u64 ts_nsec = local_clock();
|
|
|
|
track->cpu = cpu;
|
|
track->timestamp = ts_nsec >> 9;
|
|
#endif /* CONFIG_KASAN_EXTRA_INFO */
|
|
track->pid = current->pid;
|
|
track->stack = stack;
|
|
}
|
|
|
|
void kasan_save_track(struct kasan_track *track, gfp_t flags)
|
|
{
|
|
depot_stack_handle_t stack;
|
|
|
|
stack = kasan_save_stack(flags, STACK_DEPOT_FLAG_CAN_ALLOC);
|
|
kasan_set_track(track, stack);
|
|
}
|
|
|
|
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
|
|
void kasan_enable_current(void)
|
|
{
|
|
current->kasan_depth++;
|
|
}
|
|
EXPORT_SYMBOL(kasan_enable_current);
|
|
|
|
void kasan_disable_current(void)
|
|
{
|
|
current->kasan_depth--;
|
|
}
|
|
EXPORT_SYMBOL(kasan_disable_current);
|
|
|
|
#endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
|
|
|
|
void __kasan_unpoison_range(const void *address, size_t size)
|
|
{
|
|
if (is_kfence_address(address))
|
|
return;
|
|
|
|
kasan_unpoison(address, size, false);
|
|
}
|
|
|
|
#ifdef CONFIG_KASAN_STACK
|
|
/* Unpoison the entire stack for a task. */
|
|
void kasan_unpoison_task_stack(struct task_struct *task)
|
|
{
|
|
void *base = task_stack_page(task);
|
|
|
|
kasan_unpoison(base, THREAD_SIZE, false);
|
|
}
|
|
|
|
/* Unpoison the stack for the current task beyond a watermark sp value. */
|
|
asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
|
|
{
|
|
/*
|
|
* Calculate the task stack base address. Avoid using 'current'
|
|
* because this function is called by early resume code which hasn't
|
|
* yet set up the percpu register (%gs).
|
|
*/
|
|
void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
|
|
|
|
kasan_unpoison(base, watermark - base, false);
|
|
}
|
|
#endif /* CONFIG_KASAN_STACK */
|
|
|
|
bool __kasan_unpoison_pages(struct page *page, unsigned int order, bool init)
|
|
{
|
|
u8 tag;
|
|
unsigned long i;
|
|
|
|
if (unlikely(PageHighMem(page)))
|
|
return false;
|
|
|
|
if (!kasan_sample_page_alloc(order))
|
|
return false;
|
|
|
|
tag = kasan_random_tag();
|
|
kasan_unpoison(set_tag(page_address(page), tag),
|
|
PAGE_SIZE << order, init);
|
|
for (i = 0; i < (1 << order); i++)
|
|
page_kasan_tag_set(page + i, tag);
|
|
|
|
return true;
|
|
}
|
|
|
|
void __kasan_poison_pages(struct page *page, unsigned int order, bool init)
|
|
{
|
|
if (likely(!PageHighMem(page)))
|
|
kasan_poison(page_address(page), PAGE_SIZE << order,
|
|
KASAN_PAGE_FREE, init);
|
|
}
|
|
|
|
void __kasan_poison_slab(struct slab *slab)
|
|
{
|
|
struct page *page = slab_page(slab);
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < compound_nr(page); i++)
|
|
page_kasan_tag_reset(page + i);
|
|
kasan_poison(page_address(page), page_size(page),
|
|
KASAN_SLAB_REDZONE, false);
|
|
}
|
|
|
|
void __kasan_unpoison_new_object(struct kmem_cache *cache, void *object)
|
|
{
|
|
kasan_unpoison(object, cache->object_size, false);
|
|
}
|
|
|
|
void __kasan_poison_new_object(struct kmem_cache *cache, void *object)
|
|
{
|
|
kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
|
|
KASAN_SLAB_REDZONE, false);
|
|
}
|
|
|
|
/*
|
|
* This function assigns a tag to an object considering the following:
|
|
* 1. A cache might have a constructor, which might save a pointer to a slab
|
|
* object somewhere (e.g. in the object itself). We preassign a tag for
|
|
* each object in caches with constructors during slab creation and reuse
|
|
* the same tag each time a particular object is allocated.
|
|
* 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
|
|
* accessed after being freed. We preassign tags for objects in these
|
|
* caches as well.
|
|
*/
|
|
static inline u8 assign_tag(struct kmem_cache *cache,
|
|
const void *object, bool init)
|
|
{
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
|
|
return 0xff;
|
|
|
|
/*
|
|
* If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
|
|
* set, assign a tag when the object is being allocated (init == false).
|
|
*/
|
|
if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
|
|
return init ? KASAN_TAG_KERNEL : kasan_random_tag();
|
|
|
|
/*
|
|
* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU,
|
|
* assign a random tag during slab creation, otherwise reuse
|
|
* the already assigned tag.
|
|
*/
|
|
return init ? kasan_random_tag() : get_tag(object);
|
|
}
|
|
|
|
void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
|
|
const void *object)
|
|
{
|
|
/* Initialize per-object metadata if it is present. */
|
|
if (kasan_requires_meta())
|
|
kasan_init_object_meta(cache, object);
|
|
|
|
/* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */
|
|
object = set_tag(object, assign_tag(cache, object, true));
|
|
|
|
return (void *)object;
|
|
}
|
|
|
|
/* Returns true when freeing the object is not safe. */
|
|
static bool check_slab_allocation(struct kmem_cache *cache, void *object,
|
|
unsigned long ip)
|
|
{
|
|
void *tagged_object = object;
|
|
|
|
object = kasan_reset_tag(object);
|
|
|
|
if (unlikely(nearest_obj(cache, virt_to_slab(object), object) != object)) {
|
|
kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_INVALID_FREE);
|
|
return true;
|
|
}
|
|
|
|
if (!kasan_byte_accessible(tagged_object)) {
|
|
kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_DOUBLE_FREE);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline void poison_slab_object(struct kmem_cache *cache, void *object,
|
|
bool init, bool still_accessible)
|
|
{
|
|
void *tagged_object = object;
|
|
|
|
object = kasan_reset_tag(object);
|
|
|
|
/* RCU slabs could be legally used after free within the RCU period. */
|
|
if (unlikely(still_accessible))
|
|
return;
|
|
|
|
kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
|
|
KASAN_SLAB_FREE, init);
|
|
|
|
if (kasan_stack_collection_enabled())
|
|
kasan_save_free_info(cache, tagged_object);
|
|
}
|
|
|
|
bool __kasan_slab_pre_free(struct kmem_cache *cache, void *object,
|
|
unsigned long ip)
|
|
{
|
|
if (!kasan_arch_is_ready() || is_kfence_address(object))
|
|
return false;
|
|
return check_slab_allocation(cache, object, ip);
|
|
}
|
|
|
|
bool __kasan_slab_free(struct kmem_cache *cache, void *object, bool init,
|
|
bool still_accessible)
|
|
{
|
|
if (!kasan_arch_is_ready() || is_kfence_address(object))
|
|
return false;
|
|
|
|
poison_slab_object(cache, object, init, still_accessible);
|
|
|
|
/*
|
|
* If the object is put into quarantine, do not let slab put the object
|
|
* onto the freelist for now. The object's metadata is kept until the
|
|
* object gets evicted from quarantine.
|
|
*/
|
|
if (kasan_quarantine_put(cache, object))
|
|
return true;
|
|
|
|
/*
|
|
* Note: Keep per-object metadata to allow KASAN print stack traces for
|
|
* use-after-free-before-realloc bugs.
|
|
*/
|
|
|
|
/* Let slab put the object onto the freelist. */
|
|
return false;
|
|
}
|
|
|
|
static inline bool check_page_allocation(void *ptr, unsigned long ip)
|
|
{
|
|
if (!kasan_arch_is_ready())
|
|
return false;
|
|
|
|
if (ptr != page_address(virt_to_head_page(ptr))) {
|
|
kasan_report_invalid_free(ptr, ip, KASAN_REPORT_INVALID_FREE);
|
|
return true;
|
|
}
|
|
|
|
if (!kasan_byte_accessible(ptr)) {
|
|
kasan_report_invalid_free(ptr, ip, KASAN_REPORT_DOUBLE_FREE);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void __kasan_kfree_large(void *ptr, unsigned long ip)
|
|
{
|
|
check_page_allocation(ptr, ip);
|
|
|
|
/* The object will be poisoned by kasan_poison_pages(). */
|
|
}
|
|
|
|
static inline void unpoison_slab_object(struct kmem_cache *cache, void *object,
|
|
gfp_t flags, bool init)
|
|
{
|
|
/*
|
|
* Unpoison the whole object. For kmalloc() allocations,
|
|
* poison_kmalloc_redzone() will do precise poisoning.
|
|
*/
|
|
kasan_unpoison(object, cache->object_size, init);
|
|
|
|
/* Save alloc info (if possible) for non-kmalloc() allocations. */
|
|
if (kasan_stack_collection_enabled() && !is_kmalloc_cache(cache))
|
|
kasan_save_alloc_info(cache, object, flags);
|
|
}
|
|
|
|
void * __must_check __kasan_slab_alloc(struct kmem_cache *cache,
|
|
void *object, gfp_t flags, bool init)
|
|
{
|
|
u8 tag;
|
|
void *tagged_object;
|
|
|
|
if (gfpflags_allow_blocking(flags))
|
|
kasan_quarantine_reduce();
|
|
|
|
if (unlikely(object == NULL))
|
|
return NULL;
|
|
|
|
if (is_kfence_address(object))
|
|
return (void *)object;
|
|
|
|
/*
|
|
* Generate and assign random tag for tag-based modes.
|
|
* Tag is ignored in set_tag() for the generic mode.
|
|
*/
|
|
tag = assign_tag(cache, object, false);
|
|
tagged_object = set_tag(object, tag);
|
|
|
|
/* Unpoison the object and save alloc info for non-kmalloc() allocations. */
|
|
unpoison_slab_object(cache, tagged_object, flags, init);
|
|
|
|
return tagged_object;
|
|
}
|
|
|
|
static inline void poison_kmalloc_redzone(struct kmem_cache *cache,
|
|
const void *object, size_t size, gfp_t flags)
|
|
{
|
|
unsigned long redzone_start;
|
|
unsigned long redzone_end;
|
|
|
|
/*
|
|
* The redzone has byte-level precision for the generic mode.
|
|
* Partially poison the last object granule to cover the unaligned
|
|
* part of the redzone.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
|
|
kasan_poison_last_granule((void *)object, size);
|
|
|
|
/* Poison the aligned part of the redzone. */
|
|
redzone_start = round_up((unsigned long)(object + size),
|
|
KASAN_GRANULE_SIZE);
|
|
redzone_end = round_up((unsigned long)(object + cache->object_size),
|
|
KASAN_GRANULE_SIZE);
|
|
kasan_poison((void *)redzone_start, redzone_end - redzone_start,
|
|
KASAN_SLAB_REDZONE, false);
|
|
|
|
/*
|
|
* Save alloc info (if possible) for kmalloc() allocations.
|
|
* This also rewrites the alloc info when called from kasan_krealloc().
|
|
*/
|
|
if (kasan_stack_collection_enabled() && is_kmalloc_cache(cache))
|
|
kasan_save_alloc_info(cache, (void *)object, flags);
|
|
|
|
}
|
|
|
|
void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object,
|
|
size_t size, gfp_t flags)
|
|
{
|
|
if (gfpflags_allow_blocking(flags))
|
|
kasan_quarantine_reduce();
|
|
|
|
if (unlikely(object == NULL))
|
|
return NULL;
|
|
|
|
if (is_kfence_address(object))
|
|
return (void *)object;
|
|
|
|
/* The object has already been unpoisoned by kasan_slab_alloc(). */
|
|
poison_kmalloc_redzone(cache, object, size, flags);
|
|
|
|
/* Keep the tag that was set by kasan_slab_alloc(). */
|
|
return (void *)object;
|
|
}
|
|
EXPORT_SYMBOL(__kasan_kmalloc);
|
|
|
|
static inline void poison_kmalloc_large_redzone(const void *ptr, size_t size,
|
|
gfp_t flags)
|
|
{
|
|
unsigned long redzone_start;
|
|
unsigned long redzone_end;
|
|
|
|
/*
|
|
* The redzone has byte-level precision for the generic mode.
|
|
* Partially poison the last object granule to cover the unaligned
|
|
* part of the redzone.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
|
|
kasan_poison_last_granule(ptr, size);
|
|
|
|
/* Poison the aligned part of the redzone. */
|
|
redzone_start = round_up((unsigned long)(ptr + size), KASAN_GRANULE_SIZE);
|
|
redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr));
|
|
kasan_poison((void *)redzone_start, redzone_end - redzone_start,
|
|
KASAN_PAGE_REDZONE, false);
|
|
}
|
|
|
|
void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
|
|
gfp_t flags)
|
|
{
|
|
if (gfpflags_allow_blocking(flags))
|
|
kasan_quarantine_reduce();
|
|
|
|
if (unlikely(ptr == NULL))
|
|
return NULL;
|
|
|
|
/* The object has already been unpoisoned by kasan_unpoison_pages(). */
|
|
poison_kmalloc_large_redzone(ptr, size, flags);
|
|
|
|
/* Keep the tag that was set by alloc_pages(). */
|
|
return (void *)ptr;
|
|
}
|
|
|
|
void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
|
|
{
|
|
struct slab *slab;
|
|
|
|
if (gfpflags_allow_blocking(flags))
|
|
kasan_quarantine_reduce();
|
|
|
|
if (unlikely(object == ZERO_SIZE_PTR))
|
|
return (void *)object;
|
|
|
|
if (is_kfence_address(object))
|
|
return (void *)object;
|
|
|
|
/*
|
|
* Unpoison the object's data.
|
|
* Part of it might already have been unpoisoned, but it's unknown
|
|
* how big that part is.
|
|
*/
|
|
kasan_unpoison(object, size, false);
|
|
|
|
slab = virt_to_slab(object);
|
|
|
|
/* Piggy-back on kmalloc() instrumentation to poison the redzone. */
|
|
if (unlikely(!slab))
|
|
poison_kmalloc_large_redzone(object, size, flags);
|
|
else
|
|
poison_kmalloc_redzone(slab->slab_cache, object, size, flags);
|
|
|
|
return (void *)object;
|
|
}
|
|
|
|
bool __kasan_mempool_poison_pages(struct page *page, unsigned int order,
|
|
unsigned long ip)
|
|
{
|
|
unsigned long *ptr;
|
|
|
|
if (unlikely(PageHighMem(page)))
|
|
return true;
|
|
|
|
/* Bail out if allocation was excluded due to sampling. */
|
|
if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
|
|
page_kasan_tag(page) == KASAN_TAG_KERNEL)
|
|
return true;
|
|
|
|
ptr = page_address(page);
|
|
|
|
if (check_page_allocation(ptr, ip))
|
|
return false;
|
|
|
|
kasan_poison(ptr, PAGE_SIZE << order, KASAN_PAGE_FREE, false);
|
|
|
|
return true;
|
|
}
|
|
|
|
void __kasan_mempool_unpoison_pages(struct page *page, unsigned int order,
|
|
unsigned long ip)
|
|
{
|
|
__kasan_unpoison_pages(page, order, false);
|
|
}
|
|
|
|
bool __kasan_mempool_poison_object(void *ptr, unsigned long ip)
|
|
{
|
|
struct folio *folio = virt_to_folio(ptr);
|
|
struct slab *slab;
|
|
|
|
/*
|
|
* This function can be called for large kmalloc allocation that get
|
|
* their memory from page_alloc. Thus, the folio might not be a slab.
|
|
*/
|
|
if (unlikely(!folio_test_slab(folio))) {
|
|
if (check_page_allocation(ptr, ip))
|
|
return false;
|
|
kasan_poison(ptr, folio_size(folio), KASAN_PAGE_FREE, false);
|
|
return true;
|
|
}
|
|
|
|
if (is_kfence_address(ptr) || !kasan_arch_is_ready())
|
|
return true;
|
|
|
|
slab = folio_slab(folio);
|
|
|
|
if (check_slab_allocation(slab->slab_cache, ptr, ip))
|
|
return false;
|
|
|
|
poison_slab_object(slab->slab_cache, ptr, false, false);
|
|
return true;
|
|
}
|
|
|
|
void __kasan_mempool_unpoison_object(void *ptr, size_t size, unsigned long ip)
|
|
{
|
|
struct slab *slab;
|
|
gfp_t flags = 0; /* Might be executing under a lock. */
|
|
|
|
slab = virt_to_slab(ptr);
|
|
|
|
/*
|
|
* This function can be called for large kmalloc allocation that get
|
|
* their memory from page_alloc.
|
|
*/
|
|
if (unlikely(!slab)) {
|
|
kasan_unpoison(ptr, size, false);
|
|
poison_kmalloc_large_redzone(ptr, size, flags);
|
|
return;
|
|
}
|
|
|
|
if (is_kfence_address(ptr))
|
|
return;
|
|
|
|
/* Unpoison the object and save alloc info for non-kmalloc() allocations. */
|
|
unpoison_slab_object(slab->slab_cache, ptr, flags, false);
|
|
|
|
/* Poison the redzone and save alloc info for kmalloc() allocations. */
|
|
if (is_kmalloc_cache(slab->slab_cache))
|
|
poison_kmalloc_redzone(slab->slab_cache, ptr, size, flags);
|
|
}
|
|
|
|
bool __kasan_check_byte(const void *address, unsigned long ip)
|
|
{
|
|
if (!kasan_byte_accessible(address)) {
|
|
kasan_report(address, 1, false, ip);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|