mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-07 22:03:14 +00:00
c460f0f1a2
Don't report FITRIMming more bytes than possibly exist in the
filesystem.
Fixes: 410e8a18f8
("xfs: don't bother reporting blocks trimmed via FITRIM")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
715 lines
19 KiB
C
715 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2010, 2023 Red Hat, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_alloc_btree.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_discard.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_extent_busy.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_health.h"
|
|
#include "xfs_rtbitmap.h"
|
|
|
|
/*
|
|
* Notes on an efficient, low latency fstrim algorithm
|
|
*
|
|
* We need to walk the filesystem free space and issue discards on the free
|
|
* space that meet the search criteria (size and location). We cannot issue
|
|
* discards on extents that might be in use, or are so recently in use they are
|
|
* still marked as busy. To serialise against extent state changes whilst we are
|
|
* gathering extents to trim, we must hold the AGF lock to lock out other
|
|
* allocations and extent free operations that might change extent state.
|
|
*
|
|
* However, we cannot just hold the AGF for the entire AG free space walk whilst
|
|
* we issue discards on each free space that is found. Storage devices can have
|
|
* extremely slow discard implementations (e.g. ceph RBD) and so walking a
|
|
* couple of million free extents and issuing synchronous discards on each
|
|
* extent can take a *long* time. Whilst we are doing this walk, nothing else
|
|
* can access the AGF, and we can stall transactions and hence the log whilst
|
|
* modifications wait for the AGF lock to be released. This can lead hung tasks
|
|
* kicking the hung task timer and rebooting the system. This is bad.
|
|
*
|
|
* Hence we need to take a leaf from the bulkstat playbook. It takes the AGI
|
|
* lock, gathers a range of inode cluster buffers that are allocated, drops the
|
|
* AGI lock and then reads all the inode cluster buffers and processes them. It
|
|
* loops doing this, using a cursor to keep track of where it is up to in the AG
|
|
* for each iteration to restart the INOBT lookup from.
|
|
*
|
|
* We can't do this exactly with free space - once we drop the AGF lock, the
|
|
* state of the free extent is out of our control and we cannot run a discard
|
|
* safely on it in this situation. Unless, of course, we've marked the free
|
|
* extent as busy and undergoing a discard operation whilst we held the AGF
|
|
* locked.
|
|
*
|
|
* This is exactly how online discard works - free extents are marked busy when
|
|
* they are freed, and once the extent free has been committed to the journal,
|
|
* the busy extent record is marked as "undergoing discard" and the discard is
|
|
* then issued on the free extent. Once the discard completes, the busy extent
|
|
* record is removed and the extent is able to be allocated again.
|
|
*
|
|
* In the context of fstrim, if we find a free extent we need to discard, we
|
|
* don't have to discard it immediately. All we need to do it record that free
|
|
* extent as being busy and under discard, and all the allocation routines will
|
|
* now avoid trying to allocate it. Hence if we mark the extent as busy under
|
|
* the AGF lock, we can safely discard it without holding the AGF lock because
|
|
* nothing will attempt to allocate that free space until the discard completes.
|
|
*
|
|
* This also allows us to issue discards asynchronously like we do with online
|
|
* discard, and so for fast devices fstrim will run much faster as we can have
|
|
* multiple discard operations in flight at once, as well as pipeline the free
|
|
* extent search so that it overlaps in flight discard IO.
|
|
*/
|
|
|
|
struct workqueue_struct *xfs_discard_wq;
|
|
|
|
static void
|
|
xfs_discard_endio_work(
|
|
struct work_struct *work)
|
|
{
|
|
struct xfs_busy_extents *extents =
|
|
container_of(work, struct xfs_busy_extents, endio_work);
|
|
|
|
xfs_extent_busy_clear(extents->mount, &extents->extent_list, false);
|
|
kfree(extents->owner);
|
|
}
|
|
|
|
/*
|
|
* Queue up the actual completion to a thread to avoid IRQ-safe locking for
|
|
* pagb_lock.
|
|
*/
|
|
static void
|
|
xfs_discard_endio(
|
|
struct bio *bio)
|
|
{
|
|
struct xfs_busy_extents *extents = bio->bi_private;
|
|
|
|
INIT_WORK(&extents->endio_work, xfs_discard_endio_work);
|
|
queue_work(xfs_discard_wq, &extents->endio_work);
|
|
bio_put(bio);
|
|
}
|
|
|
|
/*
|
|
* Walk the discard list and issue discards on all the busy extents in the
|
|
* list. We plug and chain the bios so that we only need a single completion
|
|
* call to clear all the busy extents once the discards are complete.
|
|
*/
|
|
int
|
|
xfs_discard_extents(
|
|
struct xfs_mount *mp,
|
|
struct xfs_busy_extents *extents)
|
|
{
|
|
struct xfs_extent_busy *busyp;
|
|
struct bio *bio = NULL;
|
|
struct blk_plug plug;
|
|
int error = 0;
|
|
|
|
blk_start_plug(&plug);
|
|
list_for_each_entry(busyp, &extents->extent_list, list) {
|
|
trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
|
|
busyp->length);
|
|
|
|
error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
|
|
XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
|
|
XFS_FSB_TO_BB(mp, busyp->length),
|
|
GFP_KERNEL, &bio);
|
|
if (error && error != -EOPNOTSUPP) {
|
|
xfs_info(mp,
|
|
"discard failed for extent [0x%llx,%u], error %d",
|
|
(unsigned long long)busyp->bno,
|
|
busyp->length,
|
|
error);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (bio) {
|
|
bio->bi_private = extents;
|
|
bio->bi_end_io = xfs_discard_endio;
|
|
submit_bio(bio);
|
|
} else {
|
|
xfs_discard_endio_work(&extents->endio_work);
|
|
}
|
|
blk_finish_plug(&plug);
|
|
|
|
return error;
|
|
}
|
|
|
|
struct xfs_trim_cur {
|
|
xfs_agblock_t start;
|
|
xfs_extlen_t count;
|
|
xfs_agblock_t end;
|
|
xfs_extlen_t minlen;
|
|
bool by_bno;
|
|
};
|
|
|
|
static int
|
|
xfs_trim_gather_extents(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trim_cur *tcur,
|
|
struct xfs_busy_extents *extents)
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
struct xfs_trans *tp;
|
|
struct xfs_btree_cur *cur;
|
|
struct xfs_buf *agbp;
|
|
int error;
|
|
int i;
|
|
int batch = 100;
|
|
|
|
/*
|
|
* Force out the log. This means any transactions that might have freed
|
|
* space before we take the AGF buffer lock are now on disk, and the
|
|
* volatile disk cache is flushed.
|
|
*/
|
|
xfs_log_force(mp, XFS_LOG_SYNC);
|
|
|
|
error = xfs_trans_alloc_empty(mp, &tp);
|
|
if (error)
|
|
return error;
|
|
|
|
error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
if (tcur->by_bno) {
|
|
/* sub-AG discard request always starts at tcur->start */
|
|
cur = xfs_bnobt_init_cursor(mp, tp, agbp, pag);
|
|
error = xfs_alloc_lookup_le(cur, tcur->start, 0, &i);
|
|
if (!error && !i)
|
|
error = xfs_alloc_lookup_ge(cur, tcur->start, 0, &i);
|
|
} else if (tcur->start == 0) {
|
|
/* first time through a by-len starts with max length */
|
|
cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
|
|
error = xfs_alloc_lookup_ge(cur, 0, tcur->count, &i);
|
|
} else {
|
|
/* nth time through a by-len starts where we left off */
|
|
cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
|
|
error = xfs_alloc_lookup_le(cur, tcur->start, tcur->count, &i);
|
|
}
|
|
if (error)
|
|
goto out_del_cursor;
|
|
if (i == 0) {
|
|
/* nothing of that length left in the AG, we are done */
|
|
tcur->count = 0;
|
|
goto out_del_cursor;
|
|
}
|
|
|
|
/*
|
|
* Loop until we are done with all extents that are large
|
|
* enough to be worth discarding or we hit batch limits.
|
|
*/
|
|
while (i) {
|
|
xfs_agblock_t fbno;
|
|
xfs_extlen_t flen;
|
|
|
|
error = xfs_alloc_get_rec(cur, &fbno, &flen, &i);
|
|
if (error)
|
|
break;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
xfs_btree_mark_sick(cur);
|
|
error = -EFSCORRUPTED;
|
|
break;
|
|
}
|
|
|
|
if (--batch <= 0) {
|
|
/*
|
|
* Update the cursor to point at this extent so we
|
|
* restart the next batch from this extent.
|
|
*/
|
|
tcur->start = fbno;
|
|
tcur->count = flen;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If the extent is entirely outside of the range we are
|
|
* supposed to skip it. Do not bother to trim down partially
|
|
* overlapping ranges for now.
|
|
*/
|
|
if (fbno + flen < tcur->start) {
|
|
trace_xfs_discard_exclude(mp, pag->pag_agno, fbno, flen);
|
|
goto next_extent;
|
|
}
|
|
if (fbno > tcur->end) {
|
|
trace_xfs_discard_exclude(mp, pag->pag_agno, fbno, flen);
|
|
if (tcur->by_bno) {
|
|
tcur->count = 0;
|
|
break;
|
|
}
|
|
goto next_extent;
|
|
}
|
|
|
|
/* Trim the extent returned to the range we want. */
|
|
if (fbno < tcur->start) {
|
|
flen -= tcur->start - fbno;
|
|
fbno = tcur->start;
|
|
}
|
|
if (fbno + flen > tcur->end + 1)
|
|
flen = tcur->end - fbno + 1;
|
|
|
|
/* Too small? Give up. */
|
|
if (flen < tcur->minlen) {
|
|
trace_xfs_discard_toosmall(mp, pag->pag_agno, fbno, flen);
|
|
if (tcur->by_bno)
|
|
goto next_extent;
|
|
tcur->count = 0;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If any blocks in the range are still busy, skip the
|
|
* discard and try again the next time.
|
|
*/
|
|
if (xfs_extent_busy_search(mp, pag, fbno, flen)) {
|
|
trace_xfs_discard_busy(mp, pag->pag_agno, fbno, flen);
|
|
goto next_extent;
|
|
}
|
|
|
|
xfs_extent_busy_insert_discard(pag, fbno, flen,
|
|
&extents->extent_list);
|
|
next_extent:
|
|
if (tcur->by_bno)
|
|
error = xfs_btree_increment(cur, 0, &i);
|
|
else
|
|
error = xfs_btree_decrement(cur, 0, &i);
|
|
if (error)
|
|
break;
|
|
|
|
/*
|
|
* If there's no more records in the tree, we are done. Set the
|
|
* cursor block count to 0 to indicate to the caller that there
|
|
* is no more extents to search.
|
|
*/
|
|
if (i == 0)
|
|
tcur->count = 0;
|
|
}
|
|
|
|
/*
|
|
* If there was an error, release all the gathered busy extents because
|
|
* we aren't going to issue a discard on them any more.
|
|
*/
|
|
if (error)
|
|
xfs_extent_busy_clear(mp, &extents->extent_list, false);
|
|
out_del_cursor:
|
|
xfs_btree_del_cursor(cur, error);
|
|
out_trans_cancel:
|
|
xfs_trans_cancel(tp);
|
|
return error;
|
|
}
|
|
|
|
static bool
|
|
xfs_trim_should_stop(void)
|
|
{
|
|
return fatal_signal_pending(current) || freezing(current);
|
|
}
|
|
|
|
/*
|
|
* Iterate the free list gathering extents and discarding them. We need a cursor
|
|
* for the repeated iteration of gather/discard loop, so use the longest extent
|
|
* we found in the last batch as the key to start the next.
|
|
*/
|
|
static int
|
|
xfs_trim_perag_extents(
|
|
struct xfs_perag *pag,
|
|
xfs_agblock_t start,
|
|
xfs_agblock_t end,
|
|
xfs_extlen_t minlen)
|
|
{
|
|
struct xfs_trim_cur tcur = {
|
|
.start = start,
|
|
.count = pag->pagf_longest,
|
|
.end = end,
|
|
.minlen = minlen,
|
|
};
|
|
int error = 0;
|
|
|
|
if (start != 0 || end != pag->block_count)
|
|
tcur.by_bno = true;
|
|
|
|
do {
|
|
struct xfs_busy_extents *extents;
|
|
|
|
extents = kzalloc(sizeof(*extents), GFP_KERNEL);
|
|
if (!extents) {
|
|
error = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
extents->mount = pag->pag_mount;
|
|
extents->owner = extents;
|
|
INIT_LIST_HEAD(&extents->extent_list);
|
|
|
|
error = xfs_trim_gather_extents(pag, &tcur, extents);
|
|
if (error) {
|
|
kfree(extents);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We hand the extent list to the discard function here so the
|
|
* discarded extents can be removed from the busy extent list.
|
|
* This allows the discards to run asynchronously with gathering
|
|
* the next round of extents to discard.
|
|
*
|
|
* However, we must ensure that we do not reference the extent
|
|
* list after this function call, as it may have been freed by
|
|
* the time control returns to us.
|
|
*/
|
|
error = xfs_discard_extents(pag->pag_mount, extents);
|
|
if (error)
|
|
break;
|
|
|
|
if (xfs_trim_should_stop())
|
|
break;
|
|
|
|
} while (tcur.count != 0);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
static int
|
|
xfs_trim_datadev_extents(
|
|
struct xfs_mount *mp,
|
|
xfs_daddr_t start,
|
|
xfs_daddr_t end,
|
|
xfs_extlen_t minlen)
|
|
{
|
|
xfs_agnumber_t start_agno, end_agno;
|
|
xfs_agblock_t start_agbno, end_agbno;
|
|
xfs_daddr_t ddev_end;
|
|
struct xfs_perag *pag;
|
|
int last_error = 0, error;
|
|
|
|
ddev_end = min_t(xfs_daddr_t, end,
|
|
XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) - 1);
|
|
|
|
start_agno = xfs_daddr_to_agno(mp, start);
|
|
start_agbno = xfs_daddr_to_agbno(mp, start);
|
|
end_agno = xfs_daddr_to_agno(mp, ddev_end);
|
|
end_agbno = xfs_daddr_to_agbno(mp, ddev_end);
|
|
|
|
for_each_perag_range(mp, start_agno, end_agno, pag) {
|
|
xfs_agblock_t agend = pag->block_count;
|
|
|
|
if (start_agno == end_agno)
|
|
agend = end_agbno;
|
|
error = xfs_trim_perag_extents(pag, start_agbno, agend, minlen);
|
|
if (error)
|
|
last_error = error;
|
|
|
|
if (xfs_trim_should_stop()) {
|
|
xfs_perag_rele(pag);
|
|
break;
|
|
}
|
|
start_agbno = 0;
|
|
}
|
|
|
|
return last_error;
|
|
}
|
|
|
|
#ifdef CONFIG_XFS_RT
|
|
struct xfs_trim_rtdev {
|
|
/* list of rt extents to free */
|
|
struct list_head extent_list;
|
|
|
|
/* minimum length that caller allows us to trim */
|
|
xfs_rtblock_t minlen_fsb;
|
|
|
|
/* restart point for the rtbitmap walk */
|
|
xfs_rtxnum_t restart_rtx;
|
|
|
|
/* stopping point for the current rtbitmap walk */
|
|
xfs_rtxnum_t stop_rtx;
|
|
};
|
|
|
|
struct xfs_rtx_busy {
|
|
struct list_head list;
|
|
xfs_rtblock_t bno;
|
|
xfs_rtblock_t length;
|
|
};
|
|
|
|
static void
|
|
xfs_discard_free_rtdev_extents(
|
|
struct xfs_trim_rtdev *tr)
|
|
{
|
|
struct xfs_rtx_busy *busyp, *n;
|
|
|
|
list_for_each_entry_safe(busyp, n, &tr->extent_list, list) {
|
|
list_del_init(&busyp->list);
|
|
kfree(busyp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Walk the discard list and issue discards on all the busy extents in the
|
|
* list. We plug and chain the bios so that we only need a single completion
|
|
* call to clear all the busy extents once the discards are complete.
|
|
*/
|
|
static int
|
|
xfs_discard_rtdev_extents(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trim_rtdev *tr)
|
|
{
|
|
struct block_device *bdev = mp->m_rtdev_targp->bt_bdev;
|
|
struct xfs_rtx_busy *busyp;
|
|
struct bio *bio = NULL;
|
|
struct blk_plug plug;
|
|
xfs_rtblock_t start = NULLRTBLOCK, length = 0;
|
|
int error = 0;
|
|
|
|
blk_start_plug(&plug);
|
|
list_for_each_entry(busyp, &tr->extent_list, list) {
|
|
if (start == NULLRTBLOCK)
|
|
start = busyp->bno;
|
|
length += busyp->length;
|
|
|
|
trace_xfs_discard_rtextent(mp, busyp->bno, busyp->length);
|
|
|
|
error = __blkdev_issue_discard(bdev,
|
|
XFS_FSB_TO_BB(mp, busyp->bno),
|
|
XFS_FSB_TO_BB(mp, busyp->length),
|
|
GFP_NOFS, &bio);
|
|
if (error)
|
|
break;
|
|
}
|
|
xfs_discard_free_rtdev_extents(tr);
|
|
|
|
if (bio) {
|
|
error = submit_bio_wait(bio);
|
|
if (error == -EOPNOTSUPP)
|
|
error = 0;
|
|
if (error)
|
|
xfs_info(mp,
|
|
"discard failed for rtextent [0x%llx,%llu], error %d",
|
|
(unsigned long long)start,
|
|
(unsigned long long)length,
|
|
error);
|
|
bio_put(bio);
|
|
}
|
|
blk_finish_plug(&plug);
|
|
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
xfs_trim_gather_rtextent(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trans *tp,
|
|
const struct xfs_rtalloc_rec *rec,
|
|
void *priv)
|
|
{
|
|
struct xfs_trim_rtdev *tr = priv;
|
|
struct xfs_rtx_busy *busyp;
|
|
xfs_rtblock_t rbno, rlen;
|
|
|
|
if (rec->ar_startext > tr->stop_rtx) {
|
|
/*
|
|
* If we've scanned a large number of rtbitmap blocks, update
|
|
* the cursor to point at this extent so we restart the next
|
|
* batch from this extent.
|
|
*/
|
|
tr->restart_rtx = rec->ar_startext;
|
|
return -ECANCELED;
|
|
}
|
|
|
|
rbno = xfs_rtx_to_rtb(mp, rec->ar_startext);
|
|
rlen = xfs_rtx_to_rtb(mp, rec->ar_extcount);
|
|
|
|
/* Ignore too small. */
|
|
if (rlen < tr->minlen_fsb) {
|
|
trace_xfs_discard_rttoosmall(mp, rbno, rlen);
|
|
return 0;
|
|
}
|
|
|
|
busyp = kzalloc(sizeof(struct xfs_rtx_busy), GFP_KERNEL);
|
|
if (!busyp)
|
|
return -ENOMEM;
|
|
|
|
busyp->bno = rbno;
|
|
busyp->length = rlen;
|
|
INIT_LIST_HEAD(&busyp->list);
|
|
list_add_tail(&busyp->list, &tr->extent_list);
|
|
|
|
tr->restart_rtx = rec->ar_startext + rec->ar_extcount;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
xfs_trim_rtdev_extents(
|
|
struct xfs_mount *mp,
|
|
xfs_daddr_t start,
|
|
xfs_daddr_t end,
|
|
xfs_daddr_t minlen)
|
|
{
|
|
struct xfs_trim_rtdev tr = {
|
|
.minlen_fsb = XFS_BB_TO_FSB(mp, minlen),
|
|
};
|
|
xfs_rtxnum_t low, high;
|
|
struct xfs_trans *tp;
|
|
xfs_daddr_t rtdev_daddr;
|
|
int error;
|
|
|
|
INIT_LIST_HEAD(&tr.extent_list);
|
|
|
|
/* Shift the start and end downwards to match the rt device. */
|
|
rtdev_daddr = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
|
|
if (start > rtdev_daddr)
|
|
start -= rtdev_daddr;
|
|
else
|
|
start = 0;
|
|
|
|
if (end <= rtdev_daddr)
|
|
return 0;
|
|
end -= rtdev_daddr;
|
|
|
|
error = xfs_trans_alloc_empty(mp, &tp);
|
|
if (error)
|
|
return error;
|
|
|
|
end = min_t(xfs_daddr_t, end,
|
|
XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks) - 1);
|
|
|
|
/* Convert the rt blocks to rt extents */
|
|
low = xfs_rtb_to_rtxup(mp, XFS_BB_TO_FSB(mp, start));
|
|
high = xfs_rtb_to_rtx(mp, XFS_BB_TO_FSBT(mp, end));
|
|
|
|
/*
|
|
* Walk the free ranges between low and high. The query_range function
|
|
* trims the extents returned.
|
|
*/
|
|
do {
|
|
tr.stop_rtx = low + (mp->m_sb.sb_blocksize * NBBY);
|
|
xfs_rtbitmap_lock_shared(mp, XFS_RBMLOCK_BITMAP);
|
|
error = xfs_rtalloc_query_range(mp, tp, low, high,
|
|
xfs_trim_gather_rtextent, &tr);
|
|
|
|
if (error == -ECANCELED)
|
|
error = 0;
|
|
if (error) {
|
|
xfs_rtbitmap_unlock_shared(mp, XFS_RBMLOCK_BITMAP);
|
|
xfs_discard_free_rtdev_extents(&tr);
|
|
break;
|
|
}
|
|
|
|
if (list_empty(&tr.extent_list)) {
|
|
xfs_rtbitmap_unlock_shared(mp, XFS_RBMLOCK_BITMAP);
|
|
break;
|
|
}
|
|
|
|
error = xfs_discard_rtdev_extents(mp, &tr);
|
|
xfs_rtbitmap_unlock_shared(mp, XFS_RBMLOCK_BITMAP);
|
|
if (error)
|
|
break;
|
|
|
|
low = tr.restart_rtx;
|
|
} while (!xfs_trim_should_stop() && low <= high);
|
|
|
|
xfs_trans_cancel(tp);
|
|
return error;
|
|
}
|
|
#else
|
|
# define xfs_trim_rtdev_extents(...) (-EOPNOTSUPP)
|
|
#endif /* CONFIG_XFS_RT */
|
|
|
|
/*
|
|
* trim a range of the filesystem.
|
|
*
|
|
* Note: the parameters passed from userspace are byte ranges into the
|
|
* filesystem which does not match to the format we use for filesystem block
|
|
* addressing. FSB addressing is sparse (AGNO|AGBNO), while the incoming format
|
|
* is a linear address range. Hence we need to use DADDR based conversions and
|
|
* comparisons for determining the correct offset and regions to trim.
|
|
*
|
|
* The realtime device is mapped into the FITRIM "address space" immediately
|
|
* after the data device.
|
|
*/
|
|
int
|
|
xfs_ioc_trim(
|
|
struct xfs_mount *mp,
|
|
struct fstrim_range __user *urange)
|
|
{
|
|
unsigned int granularity =
|
|
bdev_discard_granularity(mp->m_ddev_targp->bt_bdev);
|
|
struct block_device *rt_bdev = NULL;
|
|
struct fstrim_range range;
|
|
xfs_daddr_t start, end;
|
|
xfs_extlen_t minlen;
|
|
xfs_rfsblock_t max_blocks;
|
|
int error, last_error = 0;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (mp->m_rtdev_targp &&
|
|
bdev_max_discard_sectors(mp->m_rtdev_targp->bt_bdev))
|
|
rt_bdev = mp->m_rtdev_targp->bt_bdev;
|
|
if (!bdev_max_discard_sectors(mp->m_ddev_targp->bt_bdev) && !rt_bdev)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (rt_bdev)
|
|
granularity = max(granularity,
|
|
bdev_discard_granularity(rt_bdev));
|
|
|
|
/*
|
|
* We haven't recovered the log, so we cannot use our bnobt-guided
|
|
* storage zapping commands.
|
|
*/
|
|
if (xfs_has_norecovery(mp))
|
|
return -EROFS;
|
|
|
|
if (copy_from_user(&range, urange, sizeof(range)))
|
|
return -EFAULT;
|
|
|
|
range.minlen = max_t(u64, granularity, range.minlen);
|
|
minlen = XFS_B_TO_FSB(mp, range.minlen);
|
|
|
|
/*
|
|
* Truncating down the len isn't actually quite correct, but using
|
|
* BBTOB would mean we trivially get overflows for values
|
|
* of ULLONG_MAX or slightly lower. And ULLONG_MAX is the default
|
|
* used by the fstrim application. In the end it really doesn't
|
|
* matter as trimming blocks is an advisory interface.
|
|
*/
|
|
max_blocks = mp->m_sb.sb_dblocks + mp->m_sb.sb_rblocks;
|
|
if (range.start >= XFS_FSB_TO_B(mp, max_blocks) ||
|
|
range.minlen > XFS_FSB_TO_B(mp, mp->m_ag_max_usable) ||
|
|
range.len < mp->m_sb.sb_blocksize)
|
|
return -EINVAL;
|
|
|
|
start = BTOBB(range.start);
|
|
end = start + BTOBBT(range.len) - 1;
|
|
|
|
if (bdev_max_discard_sectors(mp->m_ddev_targp->bt_bdev)) {
|
|
error = xfs_trim_datadev_extents(mp, start, end, minlen);
|
|
if (error)
|
|
last_error = error;
|
|
}
|
|
|
|
if (rt_bdev && !xfs_trim_should_stop()) {
|
|
error = xfs_trim_rtdev_extents(mp, start, end, minlen);
|
|
if (error)
|
|
last_error = error;
|
|
}
|
|
|
|
if (last_error)
|
|
return last_error;
|
|
|
|
range.len = min_t(unsigned long long, range.len,
|
|
XFS_FSB_TO_B(mp, max_blocks) - range.start);
|
|
if (copy_to_user(urange, &range, sizeof(range)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|