linux/drivers/soundwire/intel_auxdevice.c
Pierre-Louis Bossart 9b5fd115e7 soundwire: intel_ace2.x: add AC timing extensions for PantherLake
The ACE3 IP used in PantherLake exposes new bitfields in the ACTMCTL
register to better control clocks/delays. These bitfields were
reserved/zero in the ACE2.x IP, to simplify the integration the new
bifields are added unconditionally. The behavior will only be impacted
when the firmware exposes DSD properties to set non-zero values.

Signed-off-by: Pierre-Louis Bossart <pierre-louis.bossart@linux.intel.com>
Reviewed-by: Péter Ujfalusi <peter.ujfalusi@linux.intel.com>
Reviewed-by: Ranjani Sridharan <ranjani.sridharan@linux.intel.com>
Signed-off-by: Bard Liao <yung-chuan.liao@linux.intel.com>
Link: https://lore.kernel.org/r/20240603070240.5165-1-yung-chuan.liao@linux.intel.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2024-06-03 17:41:11 +05:30

829 lines
22 KiB
C

// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
// Copyright(c) 2015-22 Intel Corporation.
/*
* Soundwire Intel Manager Driver
*/
#include <linux/acpi.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/auxiliary_bus.h>
#include <sound/pcm_params.h>
#include <linux/pm_runtime.h>
#include <sound/soc.h>
#include <linux/soundwire/sdw_registers.h>
#include <linux/soundwire/sdw.h>
#include <linux/soundwire/sdw_intel.h>
#include "cadence_master.h"
#include "bus.h"
#include "intel.h"
#include "intel_auxdevice.h"
#define INTEL_MASTER_SUSPEND_DELAY_MS 3000
/*
* debug/config flags for the Intel SoundWire Master.
*
* Since we may have multiple masters active, we can have up to 8
* flags reused in each byte, with master0 using the ls-byte, etc.
*/
#define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME BIT(0)
#define SDW_INTEL_MASTER_DISABLE_CLOCK_STOP BIT(1)
#define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE BIT(2)
#define SDW_INTEL_MASTER_DISABLE_MULTI_LINK BIT(3)
static int md_flags;
module_param_named(sdw_md_flags, md_flags, int, 0444);
MODULE_PARM_DESC(sdw_md_flags, "SoundWire Intel Master device flags (0x0 all off)");
struct wake_capable_part {
const u16 mfg_id;
const u16 part_id;
};
static struct wake_capable_part wake_capable_list[] = {
{0x025d, 0x5682},
{0x025d, 0x700},
{0x025d, 0x711},
{0x025d, 0x1712},
{0x025d, 0x1713},
{0x025d, 0x1716},
{0x025d, 0x1717},
{0x025d, 0x712},
{0x025d, 0x713},
{0x025d, 0x714},
{0x025d, 0x715},
{0x025d, 0x716},
{0x025d, 0x717},
{0x025d, 0x722},
};
static bool is_wake_capable(struct sdw_slave *slave)
{
int i;
for (i = 0; i < ARRAY_SIZE(wake_capable_list); i++)
if (slave->id.part_id == wake_capable_list[i].part_id &&
slave->id.mfg_id == wake_capable_list[i].mfg_id)
return true;
return false;
}
static int generic_pre_bank_switch(struct sdw_bus *bus)
{
struct sdw_cdns *cdns = bus_to_cdns(bus);
struct sdw_intel *sdw = cdns_to_intel(cdns);
return sdw->link_res->hw_ops->pre_bank_switch(sdw);
}
static int generic_post_bank_switch(struct sdw_bus *bus)
{
struct sdw_cdns *cdns = bus_to_cdns(bus);
struct sdw_intel *sdw = cdns_to_intel(cdns);
return sdw->link_res->hw_ops->post_bank_switch(sdw);
}
static void generic_new_peripheral_assigned(struct sdw_bus *bus,
struct sdw_slave *slave,
int dev_num)
{
struct sdw_cdns *cdns = bus_to_cdns(bus);
struct sdw_intel *sdw = cdns_to_intel(cdns);
int dev_num_min;
int dev_num_max;
bool wake_capable = slave->prop.wake_capable || is_wake_capable(slave);
if (wake_capable) {
dev_num_min = SDW_INTEL_DEV_NUM_IDA_MIN;
dev_num_max = SDW_MAX_DEVICES;
} else {
dev_num_min = 1;
dev_num_max = SDW_INTEL_DEV_NUM_IDA_MIN - 1;
}
/* paranoia check, this should never happen */
if (dev_num < dev_num_min || dev_num > dev_num_max) {
dev_err(bus->dev, "%s: invalid dev_num %d, wake supported %d\n",
__func__, dev_num, slave->prop.wake_capable);
return;
}
if (sdw->link_res->hw_ops->program_sdi && wake_capable)
sdw->link_res->hw_ops->program_sdi(sdw, dev_num);
}
static int sdw_master_read_intel_prop(struct sdw_bus *bus)
{
struct sdw_master_prop *prop = &bus->prop;
struct sdw_intel_prop *intel_prop;
struct fwnode_handle *link;
char name[32];
u32 quirk_mask;
/* Find master handle */
snprintf(name, sizeof(name),
"mipi-sdw-link-%d-subproperties", bus->link_id);
link = device_get_named_child_node(bus->dev, name);
if (!link) {
dev_err(bus->dev, "Master node %s not found\n", name);
return -EIO;
}
fwnode_property_read_u32(link,
"intel-sdw-ip-clock",
&prop->mclk_freq);
/* the values reported by BIOS are the 2x clock, not the bus clock */
prop->mclk_freq /= 2;
fwnode_property_read_u32(link,
"intel-quirk-mask",
&quirk_mask);
if (quirk_mask & SDW_INTEL_QUIRK_MASK_BUS_DISABLE)
prop->hw_disabled = true;
prop->quirks = SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH |
SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY;
intel_prop = devm_kzalloc(bus->dev, sizeof(*intel_prop), GFP_KERNEL);
if (!intel_prop)
return -ENOMEM;
/* initialize with hardware defaults, in case the properties are not found */
intel_prop->clde = 0x0;
intel_prop->doaise2 = 0x0;
intel_prop->dodse2 = 0x0;
intel_prop->clds = 0x0;
intel_prop->clss = 0x0;
intel_prop->doaise = 0x1;
intel_prop->doais = 0x3;
intel_prop->dodse = 0x0;
intel_prop->dods = 0x1;
fwnode_property_read_u16(link,
"intel-sdw-clde",
&intel_prop->clde);
fwnode_property_read_u16(link,
"intel-sdw-doaise2",
&intel_prop->doaise2);
fwnode_property_read_u16(link,
"intel-sdw-dodse2",
&intel_prop->dodse2);
fwnode_property_read_u16(link,
"intel-sdw-clds",
&intel_prop->clds);
fwnode_property_read_u16(link,
"intel-sdw-clss",
&intel_prop->clss);
fwnode_property_read_u16(link,
"intel-sdw-doaise",
&intel_prop->doaise);
fwnode_property_read_u16(link,
"intel-sdw-doais",
&intel_prop->doais);
fwnode_property_read_u16(link,
"intel-sdw-dodse",
&intel_prop->dodse);
fwnode_property_read_u16(link,
"intel-sdw-dods",
&intel_prop->dods);
bus->vendor_specific_prop = intel_prop;
dev_dbg(bus->dev, "doaise %#x doais %#x dodse %#x dods %#x\n",
intel_prop->doaise,
intel_prop->doais,
intel_prop->dodse,
intel_prop->dods);
return 0;
}
static int intel_prop_read(struct sdw_bus *bus)
{
/* Initialize with default handler to read all DisCo properties */
sdw_master_read_prop(bus);
/* read Intel-specific properties */
sdw_master_read_intel_prop(bus);
return 0;
}
static DEFINE_IDA(intel_peripheral_ida);
static int intel_get_device_num_ida(struct sdw_bus *bus, struct sdw_slave *slave)
{
int bit;
if (slave->prop.wake_capable || is_wake_capable(slave))
return ida_alloc_range(&intel_peripheral_ida,
SDW_INTEL_DEV_NUM_IDA_MIN, SDW_MAX_DEVICES,
GFP_KERNEL);
bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES);
if (bit == SDW_MAX_DEVICES)
return -ENODEV;
return bit;
}
static void intel_put_device_num_ida(struct sdw_bus *bus, struct sdw_slave *slave)
{
if (slave->prop.wake_capable || is_wake_capable(slave))
ida_free(&intel_peripheral_ida, slave->dev_num);
}
static struct sdw_master_ops sdw_intel_ops = {
.read_prop = intel_prop_read,
.override_adr = sdw_dmi_override_adr,
.xfer_msg = cdns_xfer_msg,
.xfer_msg_defer = cdns_xfer_msg_defer,
.set_bus_conf = cdns_bus_conf,
.pre_bank_switch = generic_pre_bank_switch,
.post_bank_switch = generic_post_bank_switch,
.read_ping_status = cdns_read_ping_status,
.get_device_num = intel_get_device_num_ida,
.put_device_num = intel_put_device_num_ida,
.new_peripheral_assigned = generic_new_peripheral_assigned,
};
/*
* probe and init (aux_dev_id argument is required by function prototype but not used)
*/
static int intel_link_probe(struct auxiliary_device *auxdev,
const struct auxiliary_device_id *aux_dev_id)
{
struct device *dev = &auxdev->dev;
struct sdw_intel_link_dev *ldev = auxiliary_dev_to_sdw_intel_link_dev(auxdev);
struct sdw_intel *sdw;
struct sdw_cdns *cdns;
struct sdw_bus *bus;
int ret;
sdw = devm_kzalloc(dev, sizeof(*sdw), GFP_KERNEL);
if (!sdw)
return -ENOMEM;
cdns = &sdw->cdns;
bus = &cdns->bus;
sdw->instance = auxdev->id;
sdw->link_res = &ldev->link_res;
cdns->dev = dev;
cdns->registers = sdw->link_res->registers;
cdns->ip_offset = sdw->link_res->ip_offset;
cdns->instance = sdw->instance;
cdns->msg_count = 0;
/* single controller for all SoundWire links */
bus->controller_id = 0;
bus->link_id = auxdev->id;
bus->clk_stop_timeout = 1;
sdw_cdns_probe(cdns);
/* Set ops */
bus->ops = &sdw_intel_ops;
/* set driver data, accessed by snd_soc_dai_get_drvdata() */
auxiliary_set_drvdata(auxdev, cdns);
/* use generic bandwidth allocation algorithm */
sdw->cdns.bus.compute_params = sdw_compute_params;
/* avoid resuming from pm_runtime suspend if it's not required */
dev_pm_set_driver_flags(dev, DPM_FLAG_SMART_SUSPEND);
ret = sdw_bus_master_add(bus, dev, dev->fwnode);
if (ret) {
dev_err(dev, "sdw_bus_master_add fail: %d\n", ret);
return ret;
}
if (bus->prop.hw_disabled)
dev_info(dev,
"SoundWire master %d is disabled, will be ignored\n",
bus->link_id);
/*
* Ignore BIOS err_threshold, it's a really bad idea when dealing
* with multiple hardware synchronized links
*/
bus->prop.err_threshold = 0;
return 0;
}
int intel_link_startup(struct auxiliary_device *auxdev)
{
struct device *dev = &auxdev->dev;
struct sdw_cdns *cdns = auxiliary_get_drvdata(auxdev);
struct sdw_intel *sdw = cdns_to_intel(cdns);
struct sdw_bus *bus = &cdns->bus;
int link_flags;
bool multi_link;
u32 clock_stop_quirks;
int ret;
if (bus->prop.hw_disabled) {
dev_info(dev,
"SoundWire master %d is disabled, ignoring\n",
sdw->instance);
return 0;
}
link_flags = md_flags >> (bus->link_id * 8);
multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK);
if (!multi_link) {
dev_dbg(dev, "Multi-link is disabled\n");
} else {
/*
* hardware-based synchronization is required regardless
* of the number of segments used by a stream: SSP-based
* synchronization is gated by gsync when the multi-master
* mode is set.
*/
bus->hw_sync_min_links = 1;
}
bus->multi_link = multi_link;
/* Initialize shim, controller */
ret = sdw_intel_link_power_up(sdw);
if (ret)
goto err_init;
/* Register DAIs */
ret = sdw_intel_register_dai(sdw);
if (ret) {
dev_err(dev, "DAI registration failed: %d\n", ret);
goto err_power_up;
}
sdw_intel_debugfs_init(sdw);
/* Enable runtime PM */
if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME)) {
pm_runtime_set_autosuspend_delay(dev,
INTEL_MASTER_SUSPEND_DELAY_MS);
pm_runtime_use_autosuspend(dev);
pm_runtime_mark_last_busy(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
pm_runtime_resume(bus->dev);
}
/* start bus */
ret = sdw_intel_start_bus(sdw);
if (ret) {
dev_err(dev, "bus start failed: %d\n", ret);
goto err_pm_runtime;
}
clock_stop_quirks = sdw->link_res->clock_stop_quirks;
if (clock_stop_quirks & SDW_INTEL_CLK_STOP_NOT_ALLOWED) {
/*
* To keep the clock running we need to prevent
* pm_runtime suspend from happening by increasing the
* reference count.
* This quirk is specified by the parent PCI device in
* case of specific latency requirements. It will have
* no effect if pm_runtime is disabled by the user via
* a module parameter for testing purposes.
*/
pm_runtime_get_noresume(dev);
}
/*
* The runtime PM status of Slave devices is "Unsupported"
* until they report as ATTACHED. If they don't, e.g. because
* there are no Slave devices populated or if the power-on is
* delayed or dependent on a power switch, the Master will
* remain active and prevent its parent from suspending.
*
* Conditionally force the pm_runtime core to re-evaluate the
* Master status in the absence of any Slave activity. A quirk
* is provided to e.g. deal with Slaves that may be powered on
* with a delay. A more complete solution would require the
* definition of Master properties.
*/
if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE)) {
pm_runtime_mark_last_busy(bus->dev);
pm_runtime_mark_last_busy(dev);
pm_runtime_idle(dev);
}
sdw->startup_done = true;
return 0;
err_pm_runtime:
if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME))
pm_runtime_disable(dev);
err_power_up:
sdw_intel_link_power_down(sdw);
err_init:
return ret;
}
static void intel_link_remove(struct auxiliary_device *auxdev)
{
struct sdw_cdns *cdns = auxiliary_get_drvdata(auxdev);
struct sdw_intel *sdw = cdns_to_intel(cdns);
struct sdw_bus *bus = &cdns->bus;
/*
* Since pm_runtime is already disabled, we don't decrease
* the refcount when the clock_stop_quirk is
* SDW_INTEL_CLK_STOP_NOT_ALLOWED
*/
if (!bus->prop.hw_disabled) {
sdw_intel_debugfs_exit(sdw);
sdw_cdns_enable_interrupt(cdns, false);
}
sdw_bus_master_delete(bus);
}
int intel_link_process_wakeen_event(struct auxiliary_device *auxdev)
{
struct device *dev = &auxdev->dev;
struct sdw_intel *sdw;
struct sdw_bus *bus;
sdw = auxiliary_get_drvdata(auxdev);
bus = &sdw->cdns.bus;
if (bus->prop.hw_disabled || !sdw->startup_done) {
dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
bus->link_id);
return 0;
}
if (!sdw_intel_shim_check_wake(sdw))
return 0;
/* disable WAKEEN interrupt ASAP to prevent interrupt flood */
sdw_intel_shim_wake(sdw, false);
/*
* resume the Master, which will generate a bus reset and result in
* Slaves re-attaching and be re-enumerated. The SoundWire physical
* device which generated the wake will trigger an interrupt, which
* will in turn cause the corresponding Linux Slave device to be
* resumed and the Slave codec driver to check the status.
*/
pm_request_resume(dev);
return 0;
}
/*
* PM calls
*/
int intel_resume_child_device(struct device *dev, void *data)
{
int ret;
struct sdw_slave *slave = dev_to_sdw_dev(dev);
if (!slave->probed) {
dev_dbg(dev, "skipping device, no probed driver\n");
return 0;
}
if (!slave->dev_num_sticky) {
dev_dbg(dev, "skipping device, never detected on bus\n");
return 0;
}
ret = pm_runtime_resume(dev);
if (ret < 0) {
dev_err(dev, "%s: pm_runtime_resume failed: %d\n", __func__, ret);
return ret;
}
return 0;
}
static int __maybe_unused intel_pm_prepare(struct device *dev)
{
struct sdw_cdns *cdns = dev_get_drvdata(dev);
struct sdw_intel *sdw = cdns_to_intel(cdns);
struct sdw_bus *bus = &cdns->bus;
u32 clock_stop_quirks;
int ret;
if (bus->prop.hw_disabled || !sdw->startup_done) {
dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
bus->link_id);
return 0;
}
clock_stop_quirks = sdw->link_res->clock_stop_quirks;
if (pm_runtime_suspended(dev) &&
pm_runtime_suspended(dev->parent) &&
((clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) ||
!clock_stop_quirks)) {
/*
* if we've enabled clock stop, and the parent is suspended, the SHIM registers
* are not accessible and the shim wake cannot be disabled.
* The only solution is to resume the entire bus to full power
*/
/*
* If any operation in this block fails, we keep going since we don't want
* to prevent system suspend from happening and errors should be recoverable
* on resume.
*/
/*
* first resume the device for this link. This will also by construction
* resume the PCI parent device.
*/
ret = pm_runtime_resume(dev);
if (ret < 0) {
dev_err(dev, "%s: pm_runtime_resume failed: %d\n", __func__, ret);
return 0;
}
/*
* Continue resuming the entire bus (parent + child devices) to exit
* the clock stop mode. If there are no devices connected on this link
* this is a no-op.
* The resume to full power could have been implemented with a .prepare
* step in SoundWire codec drivers. This would however require a lot
* of code to handle an Intel-specific corner case. It is simpler in
* practice to add a loop at the link level.
*/
ret = device_for_each_child(bus->dev, NULL, intel_resume_child_device);
if (ret < 0)
dev_err(dev, "%s: intel_resume_child_device failed: %d\n", __func__, ret);
}
return 0;
}
static int __maybe_unused intel_suspend(struct device *dev)
{
struct sdw_cdns *cdns = dev_get_drvdata(dev);
struct sdw_intel *sdw = cdns_to_intel(cdns);
struct sdw_bus *bus = &cdns->bus;
u32 clock_stop_quirks;
int ret;
if (bus->prop.hw_disabled || !sdw->startup_done) {
dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
bus->link_id);
return 0;
}
if (pm_runtime_suspended(dev)) {
dev_dbg(dev, "pm_runtime status: suspended\n");
clock_stop_quirks = sdw->link_res->clock_stop_quirks;
if ((clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) ||
!clock_stop_quirks) {
if (pm_runtime_suspended(dev->parent)) {
/*
* paranoia check: this should not happen with the .prepare
* resume to full power
*/
dev_err(dev, "%s: invalid config: parent is suspended\n", __func__);
} else {
sdw_intel_shim_wake(sdw, false);
}
}
return 0;
}
ret = sdw_intel_stop_bus(sdw, false);
if (ret < 0) {
dev_err(dev, "%s: cannot stop bus: %d\n", __func__, ret);
return ret;
}
return 0;
}
static int __maybe_unused intel_suspend_runtime(struct device *dev)
{
struct sdw_cdns *cdns = dev_get_drvdata(dev);
struct sdw_intel *sdw = cdns_to_intel(cdns);
struct sdw_bus *bus = &cdns->bus;
u32 clock_stop_quirks;
int ret;
if (bus->prop.hw_disabled || !sdw->startup_done) {
dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
bus->link_id);
return 0;
}
clock_stop_quirks = sdw->link_res->clock_stop_quirks;
if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) {
ret = sdw_intel_stop_bus(sdw, false);
if (ret < 0) {
dev_err(dev, "%s: cannot stop bus during teardown: %d\n",
__func__, ret);
return ret;
}
} else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET || !clock_stop_quirks) {
ret = sdw_intel_stop_bus(sdw, true);
if (ret < 0) {
dev_err(dev, "%s: cannot stop bus during clock_stop: %d\n",
__func__, ret);
return ret;
}
} else {
dev_err(dev, "%s clock_stop_quirks %x unsupported\n",
__func__, clock_stop_quirks);
ret = -EINVAL;
}
return ret;
}
static int __maybe_unused intel_resume(struct device *dev)
{
struct sdw_cdns *cdns = dev_get_drvdata(dev);
struct sdw_intel *sdw = cdns_to_intel(cdns);
struct sdw_bus *bus = &cdns->bus;
int link_flags;
int ret;
if (bus->prop.hw_disabled || !sdw->startup_done) {
dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
bus->link_id);
return 0;
}
if (pm_runtime_suspended(dev)) {
dev_dbg(dev, "pm_runtime status was suspended, forcing active\n");
/* follow required sequence from runtime_pm.rst */
pm_runtime_disable(dev);
pm_runtime_set_active(dev);
pm_runtime_mark_last_busy(dev);
pm_runtime_enable(dev);
pm_runtime_resume(bus->dev);
link_flags = md_flags >> (bus->link_id * 8);
if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE))
pm_runtime_idle(dev);
}
ret = sdw_intel_link_power_up(sdw);
if (ret) {
dev_err(dev, "%s failed: %d\n", __func__, ret);
return ret;
}
/*
* make sure all Slaves are tagged as UNATTACHED and provide
* reason for reinitialization
*/
sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET);
ret = sdw_intel_start_bus(sdw);
if (ret < 0) {
dev_err(dev, "cannot start bus during resume\n");
sdw_intel_link_power_down(sdw);
return ret;
}
/*
* after system resume, the pm_runtime suspend() may kick in
* during the enumeration, before any children device force the
* master device to remain active. Using pm_runtime_get()
* routines is not really possible, since it'd prevent the
* master from suspending.
* A reasonable compromise is to update the pm_runtime
* counters and delay the pm_runtime suspend by several
* seconds, by when all enumeration should be complete.
*/
pm_runtime_mark_last_busy(bus->dev);
pm_runtime_mark_last_busy(dev);
return 0;
}
static int __maybe_unused intel_resume_runtime(struct device *dev)
{
struct sdw_cdns *cdns = dev_get_drvdata(dev);
struct sdw_intel *sdw = cdns_to_intel(cdns);
struct sdw_bus *bus = &cdns->bus;
u32 clock_stop_quirks;
int ret;
if (bus->prop.hw_disabled || !sdw->startup_done) {
dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
bus->link_id);
return 0;
}
/* unconditionally disable WAKEEN interrupt */
sdw_intel_shim_wake(sdw, false);
clock_stop_quirks = sdw->link_res->clock_stop_quirks;
if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) {
ret = sdw_intel_link_power_up(sdw);
if (ret) {
dev_err(dev, "%s: power_up failed after teardown: %d\n", __func__, ret);
return ret;
}
/*
* make sure all Slaves are tagged as UNATTACHED and provide
* reason for reinitialization
*/
sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET);
ret = sdw_intel_start_bus(sdw);
if (ret < 0) {
dev_err(dev, "%s: cannot start bus after teardown: %d\n", __func__, ret);
sdw_intel_link_power_down(sdw);
return ret;
}
} else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) {
ret = sdw_intel_link_power_up(sdw);
if (ret) {
dev_err(dev, "%s: power_up failed after bus reset: %d\n", __func__, ret);
return ret;
}
ret = sdw_intel_start_bus_after_reset(sdw);
if (ret < 0) {
dev_err(dev, "%s: cannot start bus after reset: %d\n", __func__, ret);
sdw_intel_link_power_down(sdw);
return ret;
}
} else if (!clock_stop_quirks) {
sdw_intel_check_clock_stop(sdw);
ret = sdw_intel_link_power_up(sdw);
if (ret) {
dev_err(dev, "%s: power_up failed: %d\n", __func__, ret);
return ret;
}
ret = sdw_intel_start_bus_after_clock_stop(sdw);
if (ret < 0) {
dev_err(dev, "%s: cannot start bus after clock stop: %d\n", __func__, ret);
sdw_intel_link_power_down(sdw);
return ret;
}
} else {
dev_err(dev, "%s: clock_stop_quirks %x unsupported\n",
__func__, clock_stop_quirks);
ret = -EINVAL;
}
return ret;
}
static const struct dev_pm_ops intel_pm = {
.prepare = intel_pm_prepare,
SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
SET_RUNTIME_PM_OPS(intel_suspend_runtime, intel_resume_runtime, NULL)
};
static const struct auxiliary_device_id intel_link_id_table[] = {
{ .name = "soundwire_intel.link" },
{},
};
MODULE_DEVICE_TABLE(auxiliary, intel_link_id_table);
static struct auxiliary_driver sdw_intel_drv = {
.probe = intel_link_probe,
.remove = intel_link_remove,
.driver = {
/* auxiliary_driver_register() sets .name to be the modname */
.pm = &intel_pm,
},
.id_table = intel_link_id_table
};
module_auxiliary_driver(sdw_intel_drv);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("Intel Soundwire Link Driver");