mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-09 14:50:19 +00:00
a5f6c2ace9
A control-protection fault is triggered when a control-flow transfer attempt violates Shadow Stack or Indirect Branch Tracking constraints. For example, the return address for a RET instruction differs from the copy on the shadow stack. There already exists a control-protection fault handler for handling kernel IBT faults. Refactor this fault handler into separate user and kernel handlers, like the page fault handler. Add a control-protection handler for usermode. To avoid ifdeffery, put them both in a new file cet.c, which is compiled in the case of either of the two CET features supported in the kernel: kernel IBT or user mode shadow stack. Move some static inline functions from traps.c into a header so they can be used in cet.c. Opportunistically fix a comment in the kernel IBT part of the fault handler that is on the end of the line instead of preceding it. Keep the same behavior for the kernel side of the fault handler, except for converting a BUG to a WARN in the case of a #CP happening when the feature is missing. This unifies the behavior with the new shadow stack code, and also prevents the kernel from crashing under this situation which is potentially recoverable. The control-protection fault handler works in a similar way as the general protection fault handler. It provides the si_code SEGV_CPERR to the signal handler. Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-28-rick.p.edgecombe%40intel.com
718 lines
18 KiB
C
718 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* linux/arch/arm/kernel/signal.c
|
|
*
|
|
* Copyright (C) 1995-2009 Russell King
|
|
*/
|
|
#include <linux/errno.h>
|
|
#include <linux/random.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/resume_user_mode.h>
|
|
#include <linux/uprobes.h>
|
|
#include <linux/syscalls.h>
|
|
|
|
#include <asm/elf.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/vfp.h>
|
|
#include <asm/syscalls.h>
|
|
|
|
#include "signal.h"
|
|
|
|
extern const unsigned long sigreturn_codes[17];
|
|
|
|
static unsigned long signal_return_offset;
|
|
|
|
#ifdef CONFIG_IWMMXT
|
|
|
|
static int preserve_iwmmxt_context(struct iwmmxt_sigframe __user *frame)
|
|
{
|
|
char kbuf[sizeof(*frame) + 8];
|
|
struct iwmmxt_sigframe *kframe;
|
|
int err = 0;
|
|
|
|
/* the iWMMXt context must be 64 bit aligned */
|
|
kframe = (struct iwmmxt_sigframe *)((unsigned long)(kbuf + 8) & ~7);
|
|
|
|
if (test_thread_flag(TIF_USING_IWMMXT)) {
|
|
kframe->magic = IWMMXT_MAGIC;
|
|
kframe->size = IWMMXT_STORAGE_SIZE;
|
|
iwmmxt_task_copy(current_thread_info(), &kframe->storage);
|
|
} else {
|
|
/*
|
|
* For bug-compatibility with older kernels, some space
|
|
* has to be reserved for iWMMXt even if it's not used.
|
|
* Set the magic and size appropriately so that properly
|
|
* written userspace can skip it reliably:
|
|
*/
|
|
*kframe = (struct iwmmxt_sigframe) {
|
|
.magic = DUMMY_MAGIC,
|
|
.size = IWMMXT_STORAGE_SIZE,
|
|
};
|
|
}
|
|
|
|
err = __copy_to_user(frame, kframe, sizeof(*kframe));
|
|
|
|
return err;
|
|
}
|
|
|
|
static int restore_iwmmxt_context(char __user **auxp)
|
|
{
|
|
struct iwmmxt_sigframe __user *frame =
|
|
(struct iwmmxt_sigframe __user *)*auxp;
|
|
char kbuf[sizeof(*frame) + 8];
|
|
struct iwmmxt_sigframe *kframe;
|
|
|
|
/* the iWMMXt context must be 64 bit aligned */
|
|
kframe = (struct iwmmxt_sigframe *)((unsigned long)(kbuf + 8) & ~7);
|
|
if (__copy_from_user(kframe, frame, sizeof(*frame)))
|
|
return -1;
|
|
|
|
/*
|
|
* For non-iWMMXt threads: a single iwmmxt_sigframe-sized dummy
|
|
* block is discarded for compatibility with setup_sigframe() if
|
|
* present, but we don't mandate its presence. If some other
|
|
* magic is here, it's not for us:
|
|
*/
|
|
if (!test_thread_flag(TIF_USING_IWMMXT) &&
|
|
kframe->magic != DUMMY_MAGIC)
|
|
return 0;
|
|
|
|
if (kframe->size != IWMMXT_STORAGE_SIZE)
|
|
return -1;
|
|
|
|
if (test_thread_flag(TIF_USING_IWMMXT)) {
|
|
if (kframe->magic != IWMMXT_MAGIC)
|
|
return -1;
|
|
|
|
iwmmxt_task_restore(current_thread_info(), &kframe->storage);
|
|
}
|
|
|
|
*auxp += IWMMXT_STORAGE_SIZE;
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_VFP
|
|
|
|
static int preserve_vfp_context(struct vfp_sigframe __user *frame)
|
|
{
|
|
struct vfp_sigframe kframe;
|
|
int err = 0;
|
|
|
|
memset(&kframe, 0, sizeof(kframe));
|
|
kframe.magic = VFP_MAGIC;
|
|
kframe.size = VFP_STORAGE_SIZE;
|
|
|
|
err = vfp_preserve_user_clear_hwstate(&kframe.ufp, &kframe.ufp_exc);
|
|
if (err)
|
|
return err;
|
|
|
|
return __copy_to_user(frame, &kframe, sizeof(kframe));
|
|
}
|
|
|
|
static int restore_vfp_context(char __user **auxp)
|
|
{
|
|
struct vfp_sigframe frame;
|
|
int err;
|
|
|
|
err = __copy_from_user(&frame, *auxp, sizeof(frame));
|
|
if (err)
|
|
return err;
|
|
|
|
if (frame.magic != VFP_MAGIC || frame.size != VFP_STORAGE_SIZE)
|
|
return -EINVAL;
|
|
|
|
*auxp += sizeof(frame);
|
|
return vfp_restore_user_hwstate(&frame.ufp, &frame.ufp_exc);
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Do a signal return; undo the signal stack. These are aligned to 64-bit.
|
|
*/
|
|
|
|
static int restore_sigframe(struct pt_regs *regs, struct sigframe __user *sf)
|
|
{
|
|
struct sigcontext context;
|
|
char __user *aux;
|
|
sigset_t set;
|
|
int err;
|
|
|
|
err = __copy_from_user(&set, &sf->uc.uc_sigmask, sizeof(set));
|
|
if (err == 0)
|
|
set_current_blocked(&set);
|
|
|
|
err |= __copy_from_user(&context, &sf->uc.uc_mcontext, sizeof(context));
|
|
if (err == 0) {
|
|
regs->ARM_r0 = context.arm_r0;
|
|
regs->ARM_r1 = context.arm_r1;
|
|
regs->ARM_r2 = context.arm_r2;
|
|
regs->ARM_r3 = context.arm_r3;
|
|
regs->ARM_r4 = context.arm_r4;
|
|
regs->ARM_r5 = context.arm_r5;
|
|
regs->ARM_r6 = context.arm_r6;
|
|
regs->ARM_r7 = context.arm_r7;
|
|
regs->ARM_r8 = context.arm_r8;
|
|
regs->ARM_r9 = context.arm_r9;
|
|
regs->ARM_r10 = context.arm_r10;
|
|
regs->ARM_fp = context.arm_fp;
|
|
regs->ARM_ip = context.arm_ip;
|
|
regs->ARM_sp = context.arm_sp;
|
|
regs->ARM_lr = context.arm_lr;
|
|
regs->ARM_pc = context.arm_pc;
|
|
regs->ARM_cpsr = context.arm_cpsr;
|
|
}
|
|
|
|
err |= !valid_user_regs(regs);
|
|
|
|
aux = (char __user *) sf->uc.uc_regspace;
|
|
#ifdef CONFIG_IWMMXT
|
|
if (err == 0)
|
|
err |= restore_iwmmxt_context(&aux);
|
|
#endif
|
|
#ifdef CONFIG_VFP
|
|
if (err == 0)
|
|
err |= restore_vfp_context(&aux);
|
|
#endif
|
|
|
|
return err;
|
|
}
|
|
|
|
asmlinkage int sys_sigreturn(struct pt_regs *regs)
|
|
{
|
|
struct sigframe __user *frame;
|
|
|
|
/* Always make any pending restarted system calls return -EINTR */
|
|
current->restart_block.fn = do_no_restart_syscall;
|
|
|
|
/*
|
|
* Since we stacked the signal on a 64-bit boundary,
|
|
* then 'sp' should be word aligned here. If it's
|
|
* not, then the user is trying to mess with us.
|
|
*/
|
|
if (regs->ARM_sp & 7)
|
|
goto badframe;
|
|
|
|
frame = (struct sigframe __user *)regs->ARM_sp;
|
|
|
|
if (!access_ok(frame, sizeof (*frame)))
|
|
goto badframe;
|
|
|
|
if (restore_sigframe(regs, frame))
|
|
goto badframe;
|
|
|
|
return regs->ARM_r0;
|
|
|
|
badframe:
|
|
force_sig(SIGSEGV);
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage int sys_rt_sigreturn(struct pt_regs *regs)
|
|
{
|
|
struct rt_sigframe __user *frame;
|
|
|
|
/* Always make any pending restarted system calls return -EINTR */
|
|
current->restart_block.fn = do_no_restart_syscall;
|
|
|
|
/*
|
|
* Since we stacked the signal on a 64-bit boundary,
|
|
* then 'sp' should be word aligned here. If it's
|
|
* not, then the user is trying to mess with us.
|
|
*/
|
|
if (regs->ARM_sp & 7)
|
|
goto badframe;
|
|
|
|
frame = (struct rt_sigframe __user *)regs->ARM_sp;
|
|
|
|
if (!access_ok(frame, sizeof (*frame)))
|
|
goto badframe;
|
|
|
|
if (restore_sigframe(regs, &frame->sig))
|
|
goto badframe;
|
|
|
|
if (restore_altstack(&frame->sig.uc.uc_stack))
|
|
goto badframe;
|
|
|
|
return regs->ARM_r0;
|
|
|
|
badframe:
|
|
force_sig(SIGSEGV);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
setup_sigframe(struct sigframe __user *sf, struct pt_regs *regs, sigset_t *set)
|
|
{
|
|
struct aux_sigframe __user *aux;
|
|
struct sigcontext context;
|
|
int err = 0;
|
|
|
|
context = (struct sigcontext) {
|
|
.arm_r0 = regs->ARM_r0,
|
|
.arm_r1 = regs->ARM_r1,
|
|
.arm_r2 = regs->ARM_r2,
|
|
.arm_r3 = regs->ARM_r3,
|
|
.arm_r4 = regs->ARM_r4,
|
|
.arm_r5 = regs->ARM_r5,
|
|
.arm_r6 = regs->ARM_r6,
|
|
.arm_r7 = regs->ARM_r7,
|
|
.arm_r8 = regs->ARM_r8,
|
|
.arm_r9 = regs->ARM_r9,
|
|
.arm_r10 = regs->ARM_r10,
|
|
.arm_fp = regs->ARM_fp,
|
|
.arm_ip = regs->ARM_ip,
|
|
.arm_sp = regs->ARM_sp,
|
|
.arm_lr = regs->ARM_lr,
|
|
.arm_pc = regs->ARM_pc,
|
|
.arm_cpsr = regs->ARM_cpsr,
|
|
|
|
.trap_no = current->thread.trap_no,
|
|
.error_code = current->thread.error_code,
|
|
.fault_address = current->thread.address,
|
|
.oldmask = set->sig[0],
|
|
};
|
|
|
|
err |= __copy_to_user(&sf->uc.uc_mcontext, &context, sizeof(context));
|
|
|
|
err |= __copy_to_user(&sf->uc.uc_sigmask, set, sizeof(*set));
|
|
|
|
aux = (struct aux_sigframe __user *) sf->uc.uc_regspace;
|
|
#ifdef CONFIG_IWMMXT
|
|
if (err == 0)
|
|
err |= preserve_iwmmxt_context(&aux->iwmmxt);
|
|
#endif
|
|
#ifdef CONFIG_VFP
|
|
if (err == 0)
|
|
err |= preserve_vfp_context(&aux->vfp);
|
|
#endif
|
|
err |= __put_user(0, &aux->end_magic);
|
|
|
|
return err;
|
|
}
|
|
|
|
static inline void __user *
|
|
get_sigframe(struct ksignal *ksig, struct pt_regs *regs, int framesize)
|
|
{
|
|
unsigned long sp = sigsp(regs->ARM_sp, ksig);
|
|
void __user *frame;
|
|
|
|
/*
|
|
* ATPCS B01 mandates 8-byte alignment
|
|
*/
|
|
frame = (void __user *)((sp - framesize) & ~7);
|
|
|
|
/*
|
|
* Check that we can actually write to the signal frame.
|
|
*/
|
|
if (!access_ok(frame, framesize))
|
|
frame = NULL;
|
|
|
|
return frame;
|
|
}
|
|
|
|
static int
|
|
setup_return(struct pt_regs *regs, struct ksignal *ksig,
|
|
unsigned long __user *rc, void __user *frame)
|
|
{
|
|
unsigned long handler = (unsigned long)ksig->ka.sa.sa_handler;
|
|
unsigned long handler_fdpic_GOT = 0;
|
|
unsigned long retcode;
|
|
unsigned int idx, thumb = 0;
|
|
unsigned long cpsr = regs->ARM_cpsr & ~(PSR_f | PSR_E_BIT);
|
|
bool fdpic = IS_ENABLED(CONFIG_BINFMT_ELF_FDPIC) &&
|
|
(current->personality & FDPIC_FUNCPTRS);
|
|
|
|
if (fdpic) {
|
|
unsigned long __user *fdpic_func_desc =
|
|
(unsigned long __user *)handler;
|
|
if (__get_user(handler, &fdpic_func_desc[0]) ||
|
|
__get_user(handler_fdpic_GOT, &fdpic_func_desc[1]))
|
|
return 1;
|
|
}
|
|
|
|
cpsr |= PSR_ENDSTATE;
|
|
|
|
/*
|
|
* Maybe we need to deliver a 32-bit signal to a 26-bit task.
|
|
*/
|
|
if (ksig->ka.sa.sa_flags & SA_THIRTYTWO)
|
|
cpsr = (cpsr & ~MODE_MASK) | USR_MODE;
|
|
|
|
#ifdef CONFIG_ARM_THUMB
|
|
if (elf_hwcap & HWCAP_THUMB) {
|
|
/*
|
|
* The LSB of the handler determines if we're going to
|
|
* be using THUMB or ARM mode for this signal handler.
|
|
*/
|
|
thumb = handler & 1;
|
|
|
|
/*
|
|
* Clear the If-Then Thumb-2 execution state. ARM spec
|
|
* requires this to be all 000s in ARM mode. Snapdragon
|
|
* S4/Krait misbehaves on a Thumb=>ARM signal transition
|
|
* without this.
|
|
*
|
|
* We must do this whenever we are running on a Thumb-2
|
|
* capable CPU, which includes ARMv6T2. However, we elect
|
|
* to always do this to simplify the code; this field is
|
|
* marked UNK/SBZP for older architectures.
|
|
*/
|
|
cpsr &= ~PSR_IT_MASK;
|
|
|
|
if (thumb) {
|
|
cpsr |= PSR_T_BIT;
|
|
} else
|
|
cpsr &= ~PSR_T_BIT;
|
|
}
|
|
#endif
|
|
|
|
if (ksig->ka.sa.sa_flags & SA_RESTORER) {
|
|
retcode = (unsigned long)ksig->ka.sa.sa_restorer;
|
|
if (fdpic) {
|
|
/*
|
|
* We need code to load the function descriptor.
|
|
* That code follows the standard sigreturn code
|
|
* (6 words), and is made of 3 + 2 words for each
|
|
* variant. The 4th copied word is the actual FD
|
|
* address that the assembly code expects.
|
|
*/
|
|
idx = 6 + thumb * 3;
|
|
if (ksig->ka.sa.sa_flags & SA_SIGINFO)
|
|
idx += 5;
|
|
if (__put_user(sigreturn_codes[idx], rc ) ||
|
|
__put_user(sigreturn_codes[idx+1], rc+1) ||
|
|
__put_user(sigreturn_codes[idx+2], rc+2) ||
|
|
__put_user(retcode, rc+3))
|
|
return 1;
|
|
goto rc_finish;
|
|
}
|
|
} else {
|
|
idx = thumb << 1;
|
|
if (ksig->ka.sa.sa_flags & SA_SIGINFO)
|
|
idx += 3;
|
|
|
|
/*
|
|
* Put the sigreturn code on the stack no matter which return
|
|
* mechanism we use in order to remain ABI compliant
|
|
*/
|
|
if (__put_user(sigreturn_codes[idx], rc) ||
|
|
__put_user(sigreturn_codes[idx+1], rc+1))
|
|
return 1;
|
|
|
|
rc_finish:
|
|
#ifdef CONFIG_MMU
|
|
if (cpsr & MODE32_BIT) {
|
|
struct mm_struct *mm = current->mm;
|
|
|
|
/*
|
|
* 32-bit code can use the signal return page
|
|
* except when the MPU has protected the vectors
|
|
* page from PL0
|
|
*/
|
|
retcode = mm->context.sigpage + signal_return_offset +
|
|
(idx << 2) + thumb;
|
|
} else
|
|
#endif
|
|
{
|
|
/*
|
|
* Ensure that the instruction cache sees
|
|
* the return code written onto the stack.
|
|
*/
|
|
flush_icache_range((unsigned long)rc,
|
|
(unsigned long)(rc + 3));
|
|
|
|
retcode = ((unsigned long)rc) + thumb;
|
|
}
|
|
}
|
|
|
|
regs->ARM_r0 = ksig->sig;
|
|
regs->ARM_sp = (unsigned long)frame;
|
|
regs->ARM_lr = retcode;
|
|
regs->ARM_pc = handler;
|
|
if (fdpic)
|
|
regs->ARM_r9 = handler_fdpic_GOT;
|
|
regs->ARM_cpsr = cpsr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
setup_frame(struct ksignal *ksig, sigset_t *set, struct pt_regs *regs)
|
|
{
|
|
struct sigframe __user *frame = get_sigframe(ksig, regs, sizeof(*frame));
|
|
int err = 0;
|
|
|
|
if (!frame)
|
|
return 1;
|
|
|
|
/*
|
|
* Set uc.uc_flags to a value which sc.trap_no would never have.
|
|
*/
|
|
err = __put_user(0x5ac3c35a, &frame->uc.uc_flags);
|
|
|
|
err |= setup_sigframe(frame, regs, set);
|
|
if (err == 0)
|
|
err = setup_return(regs, ksig, frame->retcode, frame);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
setup_rt_frame(struct ksignal *ksig, sigset_t *set, struct pt_regs *regs)
|
|
{
|
|
struct rt_sigframe __user *frame = get_sigframe(ksig, regs, sizeof(*frame));
|
|
int err = 0;
|
|
|
|
if (!frame)
|
|
return 1;
|
|
|
|
err |= copy_siginfo_to_user(&frame->info, &ksig->info);
|
|
|
|
err |= __put_user(0, &frame->sig.uc.uc_flags);
|
|
err |= __put_user(NULL, &frame->sig.uc.uc_link);
|
|
|
|
err |= __save_altstack(&frame->sig.uc.uc_stack, regs->ARM_sp);
|
|
err |= setup_sigframe(&frame->sig, regs, set);
|
|
if (err == 0)
|
|
err = setup_return(regs, ksig, frame->sig.retcode, frame);
|
|
|
|
if (err == 0) {
|
|
/*
|
|
* For realtime signals we must also set the second and third
|
|
* arguments for the signal handler.
|
|
* -- Peter Maydell <pmaydell@chiark.greenend.org.uk> 2000-12-06
|
|
*/
|
|
regs->ARM_r1 = (unsigned long)&frame->info;
|
|
regs->ARM_r2 = (unsigned long)&frame->sig.uc;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* OK, we're invoking a handler
|
|
*/
|
|
static void handle_signal(struct ksignal *ksig, struct pt_regs *regs)
|
|
{
|
|
sigset_t *oldset = sigmask_to_save();
|
|
int ret;
|
|
|
|
/*
|
|
* Perform fixup for the pre-signal frame.
|
|
*/
|
|
rseq_signal_deliver(ksig, regs);
|
|
|
|
/*
|
|
* Set up the stack frame
|
|
*/
|
|
if (ksig->ka.sa.sa_flags & SA_SIGINFO)
|
|
ret = setup_rt_frame(ksig, oldset, regs);
|
|
else
|
|
ret = setup_frame(ksig, oldset, regs);
|
|
|
|
/*
|
|
* Check that the resulting registers are actually sane.
|
|
*/
|
|
ret |= !valid_user_regs(regs);
|
|
|
|
signal_setup_done(ret, ksig, 0);
|
|
}
|
|
|
|
/*
|
|
* Note that 'init' is a special process: it doesn't get signals it doesn't
|
|
* want to handle. Thus you cannot kill init even with a SIGKILL even by
|
|
* mistake.
|
|
*
|
|
* Note that we go through the signals twice: once to check the signals that
|
|
* the kernel can handle, and then we build all the user-level signal handling
|
|
* stack-frames in one go after that.
|
|
*/
|
|
static int do_signal(struct pt_regs *regs, int syscall)
|
|
{
|
|
unsigned int retval = 0, continue_addr = 0, restart_addr = 0;
|
|
struct ksignal ksig;
|
|
int restart = 0;
|
|
|
|
/*
|
|
* If we were from a system call, check for system call restarting...
|
|
*/
|
|
if (syscall) {
|
|
continue_addr = regs->ARM_pc;
|
|
restart_addr = continue_addr - (thumb_mode(regs) ? 2 : 4);
|
|
retval = regs->ARM_r0;
|
|
|
|
/*
|
|
* Prepare for system call restart. We do this here so that a
|
|
* debugger will see the already changed PSW.
|
|
*/
|
|
switch (retval) {
|
|
case -ERESTART_RESTARTBLOCK:
|
|
restart -= 2;
|
|
fallthrough;
|
|
case -ERESTARTNOHAND:
|
|
case -ERESTARTSYS:
|
|
case -ERESTARTNOINTR:
|
|
restart++;
|
|
regs->ARM_r0 = regs->ARM_ORIG_r0;
|
|
regs->ARM_pc = restart_addr;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get the signal to deliver. When running under ptrace, at this
|
|
* point the debugger may change all our registers ...
|
|
*/
|
|
/*
|
|
* Depending on the signal settings we may need to revert the
|
|
* decision to restart the system call. But skip this if a
|
|
* debugger has chosen to restart at a different PC.
|
|
*/
|
|
if (get_signal(&ksig)) {
|
|
/* handler */
|
|
if (unlikely(restart) && regs->ARM_pc == restart_addr) {
|
|
if (retval == -ERESTARTNOHAND ||
|
|
retval == -ERESTART_RESTARTBLOCK
|
|
|| (retval == -ERESTARTSYS
|
|
&& !(ksig.ka.sa.sa_flags & SA_RESTART))) {
|
|
regs->ARM_r0 = -EINTR;
|
|
regs->ARM_pc = continue_addr;
|
|
}
|
|
}
|
|
handle_signal(&ksig, regs);
|
|
} else {
|
|
/* no handler */
|
|
restore_saved_sigmask();
|
|
if (unlikely(restart) && regs->ARM_pc == restart_addr) {
|
|
regs->ARM_pc = continue_addr;
|
|
return restart;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage int
|
|
do_work_pending(struct pt_regs *regs, unsigned int thread_flags, int syscall)
|
|
{
|
|
/*
|
|
* The assembly code enters us with IRQs off, but it hasn't
|
|
* informed the tracing code of that for efficiency reasons.
|
|
* Update the trace code with the current status.
|
|
*/
|
|
trace_hardirqs_off();
|
|
do {
|
|
if (likely(thread_flags & _TIF_NEED_RESCHED)) {
|
|
schedule();
|
|
} else {
|
|
if (unlikely(!user_mode(regs)))
|
|
return 0;
|
|
local_irq_enable();
|
|
if (thread_flags & (_TIF_SIGPENDING | _TIF_NOTIFY_SIGNAL)) {
|
|
int restart = do_signal(regs, syscall);
|
|
if (unlikely(restart)) {
|
|
/*
|
|
* Restart without handlers.
|
|
* Deal with it without leaving
|
|
* the kernel space.
|
|
*/
|
|
return restart;
|
|
}
|
|
syscall = 0;
|
|
} else if (thread_flags & _TIF_UPROBE) {
|
|
uprobe_notify_resume(regs);
|
|
} else {
|
|
resume_user_mode_work(regs);
|
|
}
|
|
}
|
|
local_irq_disable();
|
|
thread_flags = read_thread_flags();
|
|
} while (thread_flags & _TIF_WORK_MASK);
|
|
return 0;
|
|
}
|
|
|
|
struct page *get_signal_page(void)
|
|
{
|
|
unsigned long ptr;
|
|
unsigned offset;
|
|
struct page *page;
|
|
void *addr;
|
|
|
|
page = alloc_pages(GFP_KERNEL, 0);
|
|
|
|
if (!page)
|
|
return NULL;
|
|
|
|
addr = page_address(page);
|
|
|
|
/* Poison the entire page */
|
|
memset32(addr, __opcode_to_mem_arm(0xe7fddef1),
|
|
PAGE_SIZE / sizeof(u32));
|
|
|
|
/* Give the signal return code some randomness */
|
|
offset = 0x200 + (get_random_u16() & 0x7fc);
|
|
signal_return_offset = offset;
|
|
|
|
/* Copy signal return handlers into the page */
|
|
memcpy(addr + offset, sigreturn_codes, sizeof(sigreturn_codes));
|
|
|
|
/* Flush out all instructions in this page */
|
|
ptr = (unsigned long)addr;
|
|
flush_icache_range(ptr, ptr + PAGE_SIZE);
|
|
|
|
return page;
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_RSEQ
|
|
asmlinkage void do_rseq_syscall(struct pt_regs *regs)
|
|
{
|
|
rseq_syscall(regs);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Compile-time assertions for siginfo_t offsets. Check NSIG* as well, as
|
|
* changes likely come with new fields that should be added below.
|
|
*/
|
|
static_assert(NSIGILL == 11);
|
|
static_assert(NSIGFPE == 15);
|
|
static_assert(NSIGSEGV == 10);
|
|
static_assert(NSIGBUS == 5);
|
|
static_assert(NSIGTRAP == 6);
|
|
static_assert(NSIGCHLD == 6);
|
|
static_assert(NSIGSYS == 2);
|
|
static_assert(sizeof(siginfo_t) == 128);
|
|
static_assert(__alignof__(siginfo_t) == 4);
|
|
static_assert(offsetof(siginfo_t, si_signo) == 0x00);
|
|
static_assert(offsetof(siginfo_t, si_errno) == 0x04);
|
|
static_assert(offsetof(siginfo_t, si_code) == 0x08);
|
|
static_assert(offsetof(siginfo_t, si_pid) == 0x0c);
|
|
static_assert(offsetof(siginfo_t, si_uid) == 0x10);
|
|
static_assert(offsetof(siginfo_t, si_tid) == 0x0c);
|
|
static_assert(offsetof(siginfo_t, si_overrun) == 0x10);
|
|
static_assert(offsetof(siginfo_t, si_status) == 0x14);
|
|
static_assert(offsetof(siginfo_t, si_utime) == 0x18);
|
|
static_assert(offsetof(siginfo_t, si_stime) == 0x1c);
|
|
static_assert(offsetof(siginfo_t, si_value) == 0x14);
|
|
static_assert(offsetof(siginfo_t, si_int) == 0x14);
|
|
static_assert(offsetof(siginfo_t, si_ptr) == 0x14);
|
|
static_assert(offsetof(siginfo_t, si_addr) == 0x0c);
|
|
static_assert(offsetof(siginfo_t, si_addr_lsb) == 0x10);
|
|
static_assert(offsetof(siginfo_t, si_lower) == 0x14);
|
|
static_assert(offsetof(siginfo_t, si_upper) == 0x18);
|
|
static_assert(offsetof(siginfo_t, si_pkey) == 0x14);
|
|
static_assert(offsetof(siginfo_t, si_perf_data) == 0x10);
|
|
static_assert(offsetof(siginfo_t, si_perf_type) == 0x14);
|
|
static_assert(offsetof(siginfo_t, si_perf_flags) == 0x18);
|
|
static_assert(offsetof(siginfo_t, si_band) == 0x0c);
|
|
static_assert(offsetof(siginfo_t, si_fd) == 0x10);
|
|
static_assert(offsetof(siginfo_t, si_call_addr) == 0x0c);
|
|
static_assert(offsetof(siginfo_t, si_syscall) == 0x10);
|
|
static_assert(offsetof(siginfo_t, si_arch) == 0x14);
|