mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-08 14:23:19 +00:00
1375b9803e
Merge KASAN updates from Andrew Morton. This adds a new hardware tag-based mode to KASAN. The new mode is similar to the existing software tag-based KASAN, but relies on arm64 Memory Tagging Extension (MTE) to perform memory and pointer tagging (instead of shadow memory and compiler instrumentation). By Andrey Konovalov and Vincenzo Frascino. * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (60 commits) kasan: update documentation kasan, mm: allow cache merging with no metadata kasan: sanitize objects when metadata doesn't fit kasan: clarify comment in __kasan_kfree_large kasan: simplify assign_tag and set_tag calls kasan: don't round_up too much kasan, mm: rename kasan_poison_kfree kasan, mm: check kasan_enabled in annotations kasan: add and integrate kasan boot parameters kasan: inline (un)poison_range and check_invalid_free kasan: open-code kasan_unpoison_slab kasan: inline random_tag for HW_TAGS kasan: inline kasan_reset_tag for tag-based modes kasan: remove __kasan_unpoison_stack kasan: allow VMAP_STACK for HW_TAGS mode kasan, arm64: unpoison stack only with CONFIG_KASAN_STACK kasan: introduce set_alloc_info kasan: rename get_alloc/free_info kasan: simplify quarantine_put call site kselftest/arm64: check GCR_EL1 after context switch ...
441 lines
18 KiB
ReStructuredText
441 lines
18 KiB
ReStructuredText
The Kernel Address Sanitizer (KASAN)
|
|
====================================
|
|
|
|
Overview
|
|
--------
|
|
|
|
KernelAddressSANitizer (KASAN) is a dynamic memory safety error detector
|
|
designed to find out-of-bound and use-after-free bugs. KASAN has three modes:
|
|
|
|
1. generic KASAN (similar to userspace ASan),
|
|
2. software tag-based KASAN (similar to userspace HWASan),
|
|
3. hardware tag-based KASAN (based on hardware memory tagging).
|
|
|
|
Software KASAN modes (1 and 2) use compile-time instrumentation to insert
|
|
validity checks before every memory access, and therefore require a compiler
|
|
version that supports that.
|
|
|
|
Generic KASAN is supported in both GCC and Clang. With GCC it requires version
|
|
8.3.0 or later. Any supported Clang version is compatible, but detection of
|
|
out-of-bounds accesses for global variables is only supported since Clang 11.
|
|
|
|
Tag-based KASAN is only supported in Clang.
|
|
|
|
Currently generic KASAN is supported for the x86_64, arm, arm64, xtensa, s390
|
|
and riscv architectures, and tag-based KASAN modes are supported only for arm64.
|
|
|
|
Usage
|
|
-----
|
|
|
|
To enable KASAN configure kernel with::
|
|
|
|
CONFIG_KASAN = y
|
|
|
|
and choose between CONFIG_KASAN_GENERIC (to enable generic KASAN),
|
|
CONFIG_KASAN_SW_TAGS (to enable software tag-based KASAN), and
|
|
CONFIG_KASAN_HW_TAGS (to enable hardware tag-based KASAN).
|
|
|
|
For software modes, you also need to choose between CONFIG_KASAN_OUTLINE and
|
|
CONFIG_KASAN_INLINE. Outline and inline are compiler instrumentation types.
|
|
The former produces smaller binary while the latter is 1.1 - 2 times faster.
|
|
|
|
Both software KASAN modes work with both SLUB and SLAB memory allocators,
|
|
while the hardware tag-based KASAN currently only support SLUB.
|
|
|
|
For better error reports that include stack traces, enable CONFIG_STACKTRACE.
|
|
|
|
To augment reports with last allocation and freeing stack of the physical page,
|
|
it is recommended to enable also CONFIG_PAGE_OWNER and boot with page_owner=on.
|
|
|
|
Error reports
|
|
~~~~~~~~~~~~~
|
|
|
|
A typical out-of-bounds access generic KASAN report looks like this::
|
|
|
|
==================================================================
|
|
BUG: KASAN: slab-out-of-bounds in kmalloc_oob_right+0xa8/0xbc [test_kasan]
|
|
Write of size 1 at addr ffff8801f44ec37b by task insmod/2760
|
|
|
|
CPU: 1 PID: 2760 Comm: insmod Not tainted 4.19.0-rc3+ #698
|
|
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014
|
|
Call Trace:
|
|
dump_stack+0x94/0xd8
|
|
print_address_description+0x73/0x280
|
|
kasan_report+0x144/0x187
|
|
__asan_report_store1_noabort+0x17/0x20
|
|
kmalloc_oob_right+0xa8/0xbc [test_kasan]
|
|
kmalloc_tests_init+0x16/0x700 [test_kasan]
|
|
do_one_initcall+0xa5/0x3ae
|
|
do_init_module+0x1b6/0x547
|
|
load_module+0x75df/0x8070
|
|
__do_sys_init_module+0x1c6/0x200
|
|
__x64_sys_init_module+0x6e/0xb0
|
|
do_syscall_64+0x9f/0x2c0
|
|
entry_SYSCALL_64_after_hwframe+0x44/0xa9
|
|
RIP: 0033:0x7f96443109da
|
|
RSP: 002b:00007ffcf0b51b08 EFLAGS: 00000202 ORIG_RAX: 00000000000000af
|
|
RAX: ffffffffffffffda RBX: 000055dc3ee521a0 RCX: 00007f96443109da
|
|
RDX: 00007f96445cff88 RSI: 0000000000057a50 RDI: 00007f9644992000
|
|
RBP: 000055dc3ee510b0 R08: 0000000000000003 R09: 0000000000000000
|
|
R10: 00007f964430cd0a R11: 0000000000000202 R12: 00007f96445cff88
|
|
R13: 000055dc3ee51090 R14: 0000000000000000 R15: 0000000000000000
|
|
|
|
Allocated by task 2760:
|
|
save_stack+0x43/0xd0
|
|
kasan_kmalloc+0xa7/0xd0
|
|
kmem_cache_alloc_trace+0xe1/0x1b0
|
|
kmalloc_oob_right+0x56/0xbc [test_kasan]
|
|
kmalloc_tests_init+0x16/0x700 [test_kasan]
|
|
do_one_initcall+0xa5/0x3ae
|
|
do_init_module+0x1b6/0x547
|
|
load_module+0x75df/0x8070
|
|
__do_sys_init_module+0x1c6/0x200
|
|
__x64_sys_init_module+0x6e/0xb0
|
|
do_syscall_64+0x9f/0x2c0
|
|
entry_SYSCALL_64_after_hwframe+0x44/0xa9
|
|
|
|
Freed by task 815:
|
|
save_stack+0x43/0xd0
|
|
__kasan_slab_free+0x135/0x190
|
|
kasan_slab_free+0xe/0x10
|
|
kfree+0x93/0x1a0
|
|
umh_complete+0x6a/0xa0
|
|
call_usermodehelper_exec_async+0x4c3/0x640
|
|
ret_from_fork+0x35/0x40
|
|
|
|
The buggy address belongs to the object at ffff8801f44ec300
|
|
which belongs to the cache kmalloc-128 of size 128
|
|
The buggy address is located 123 bytes inside of
|
|
128-byte region [ffff8801f44ec300, ffff8801f44ec380)
|
|
The buggy address belongs to the page:
|
|
page:ffffea0007d13b00 count:1 mapcount:0 mapping:ffff8801f7001640 index:0x0
|
|
flags: 0x200000000000100(slab)
|
|
raw: 0200000000000100 ffffea0007d11dc0 0000001a0000001a ffff8801f7001640
|
|
raw: 0000000000000000 0000000080150015 00000001ffffffff 0000000000000000
|
|
page dumped because: kasan: bad access detected
|
|
|
|
Memory state around the buggy address:
|
|
ffff8801f44ec200: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb
|
|
ffff8801f44ec280: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
|
|
>ffff8801f44ec300: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 03
|
|
^
|
|
ffff8801f44ec380: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb
|
|
ffff8801f44ec400: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
|
|
==================================================================
|
|
|
|
The header of the report provides a short summary of what kind of bug happened
|
|
and what kind of access caused it. It's followed by a stack trace of the bad
|
|
access, a stack trace of where the accessed memory was allocated (in case bad
|
|
access happens on a slab object), and a stack trace of where the object was
|
|
freed (in case of a use-after-free bug report). Next comes a description of
|
|
the accessed slab object and information about the accessed memory page.
|
|
|
|
In the last section the report shows memory state around the accessed address.
|
|
Internally KASAN tracks memory state separately for each memory granule, which
|
|
is either 8 or 16 aligned bytes depending on KASAN mode. Each number in the
|
|
memory state section of the report shows the state of one of the memory
|
|
granules that surround the accessed address.
|
|
|
|
For generic KASAN the size of each memory granule is 8. The state of each
|
|
granule is encoded in one shadow byte. Those 8 bytes can be accessible,
|
|
partially accessible, freed or be a part of a redzone. KASAN uses the following
|
|
encoding for each shadow byte: 0 means that all 8 bytes of the corresponding
|
|
memory region are accessible; number N (1 <= N <= 7) means that the first N
|
|
bytes are accessible, and other (8 - N) bytes are not; any negative value
|
|
indicates that the entire 8-byte word is inaccessible. KASAN uses different
|
|
negative values to distinguish between different kinds of inaccessible memory
|
|
like redzones or freed memory (see mm/kasan/kasan.h).
|
|
|
|
In the report above the arrows point to the shadow byte 03, which means that
|
|
the accessed address is partially accessible.
|
|
|
|
For tag-based KASAN this last report section shows the memory tags around the
|
|
accessed address (see `Implementation details`_ section).
|
|
|
|
Boot parameters
|
|
~~~~~~~~~~~~~~~
|
|
|
|
Hardware tag-based KASAN mode (see the section about different mode below) is
|
|
intended for use in production as a security mitigation. Therefore it supports
|
|
boot parameters that allow to disable KASAN competely or otherwise control
|
|
particular KASAN features.
|
|
|
|
The things that can be controlled are:
|
|
|
|
1. Whether KASAN is enabled at all.
|
|
2. Whether KASAN collects and saves alloc/free stacks.
|
|
3. Whether KASAN panics on a detected bug or not.
|
|
|
|
The ``kasan.mode`` boot parameter allows to choose one of three main modes:
|
|
|
|
- ``kasan.mode=off`` - KASAN is disabled, no tag checks are performed
|
|
- ``kasan.mode=prod`` - only essential production features are enabled
|
|
- ``kasan.mode=full`` - all KASAN features are enabled
|
|
|
|
The chosen mode provides default control values for the features mentioned
|
|
above. However it's also possible to override the default values by providing:
|
|
|
|
- ``kasan.stacktrace=off`` or ``=on`` - enable alloc/free stack collection
|
|
(default: ``on`` for ``mode=full``,
|
|
otherwise ``off``)
|
|
- ``kasan.fault=report`` or ``=panic`` - only print KASAN report or also panic
|
|
(default: ``report``)
|
|
|
|
If ``kasan.mode`` parameter is not provided, it defaults to ``full`` when
|
|
``CONFIG_DEBUG_KERNEL`` is enabled, and to ``prod`` otherwise.
|
|
|
|
For developers
|
|
~~~~~~~~~~~~~~
|
|
|
|
Software KASAN modes use compiler instrumentation to insert validity checks.
|
|
Such instrumentation might be incompatible with some part of the kernel, and
|
|
therefore needs to be disabled. To disable instrumentation for specific files
|
|
or directories, add a line similar to the following to the respective kernel
|
|
Makefile:
|
|
|
|
- For a single file (e.g. main.o)::
|
|
|
|
KASAN_SANITIZE_main.o := n
|
|
|
|
- For all files in one directory::
|
|
|
|
KASAN_SANITIZE := n
|
|
|
|
|
|
Implementation details
|
|
----------------------
|
|
|
|
Generic KASAN
|
|
~~~~~~~~~~~~~
|
|
|
|
From a high level perspective, KASAN's approach to memory error detection is
|
|
similar to that of kmemcheck: use shadow memory to record whether each byte of
|
|
memory is safe to access, and use compile-time instrumentation to insert checks
|
|
of shadow memory on each memory access.
|
|
|
|
Generic KASAN dedicates 1/8th of kernel memory to its shadow memory (e.g. 16TB
|
|
to cover 128TB on x86_64) and uses direct mapping with a scale and offset to
|
|
translate a memory address to its corresponding shadow address.
|
|
|
|
Here is the function which translates an address to its corresponding shadow
|
|
address::
|
|
|
|
static inline void *kasan_mem_to_shadow(const void *addr)
|
|
{
|
|
return ((unsigned long)addr >> KASAN_SHADOW_SCALE_SHIFT)
|
|
+ KASAN_SHADOW_OFFSET;
|
|
}
|
|
|
|
where ``KASAN_SHADOW_SCALE_SHIFT = 3``.
|
|
|
|
Compile-time instrumentation is used to insert memory access checks. Compiler
|
|
inserts function calls (__asan_load*(addr), __asan_store*(addr)) before each
|
|
memory access of size 1, 2, 4, 8 or 16. These functions check whether memory
|
|
access is valid or not by checking corresponding shadow memory.
|
|
|
|
GCC 5.0 has possibility to perform inline instrumentation. Instead of making
|
|
function calls GCC directly inserts the code to check the shadow memory.
|
|
This option significantly enlarges kernel but it gives x1.1-x2 performance
|
|
boost over outline instrumented kernel.
|
|
|
|
Generic KASAN also reports the last 2 call stacks to creation of work that
|
|
potentially has access to an object. Call stacks for the following are shown:
|
|
call_rcu() and workqueue queuing.
|
|
|
|
Generic KASAN is the only mode that delays the reuse of freed object via
|
|
quarantine (see mm/kasan/quarantine.c for implementation).
|
|
|
|
Software tag-based KASAN
|
|
~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
Software tag-based KASAN requires software memory tagging support in the form
|
|
of HWASan-like compiler instrumentation (see HWASan documentation for details).
|
|
|
|
Software tag-based KASAN is currently only implemented for arm64 architecture.
|
|
|
|
Software tag-based KASAN uses the Top Byte Ignore (TBI) feature of arm64 CPUs
|
|
to store a pointer tag in the top byte of kernel pointers. Like generic KASAN
|
|
it uses shadow memory to store memory tags associated with each 16-byte memory
|
|
cell (therefore it dedicates 1/16th of the kernel memory for shadow memory).
|
|
|
|
On each memory allocation software tag-based KASAN generates a random tag, tags
|
|
the allocated memory with this tag, and embeds this tag into the returned
|
|
pointer.
|
|
|
|
Software tag-based KASAN uses compile-time instrumentation to insert checks
|
|
before each memory access. These checks make sure that tag of the memory that
|
|
is being accessed is equal to tag of the pointer that is used to access this
|
|
memory. In case of a tag mismatch software tag-based KASAN prints a bug report.
|
|
|
|
Software tag-based KASAN also has two instrumentation modes (outline, that
|
|
emits callbacks to check memory accesses; and inline, that performs the shadow
|
|
memory checks inline). With outline instrumentation mode, a bug report is
|
|
simply printed from the function that performs the access check. With inline
|
|
instrumentation a brk instruction is emitted by the compiler, and a dedicated
|
|
brk handler is used to print bug reports.
|
|
|
|
Software tag-based KASAN uses 0xFF as a match-all pointer tag (accesses through
|
|
pointers with 0xFF pointer tag aren't checked). The value 0xFE is currently
|
|
reserved to tag freed memory regions.
|
|
|
|
Software tag-based KASAN currently only supports tagging of
|
|
kmem_cache_alloc/kmalloc and page_alloc memory.
|
|
|
|
Hardware tag-based KASAN
|
|
~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
Hardware tag-based KASAN is similar to the software mode in concept, but uses
|
|
hardware memory tagging support instead of compiler instrumentation and
|
|
shadow memory.
|
|
|
|
Hardware tag-based KASAN is currently only implemented for arm64 architecture
|
|
and based on both arm64 Memory Tagging Extension (MTE) introduced in ARMv8.5
|
|
Instruction Set Architecture, and Top Byte Ignore (TBI).
|
|
|
|
Special arm64 instructions are used to assign memory tags for each allocation.
|
|
Same tags are assigned to pointers to those allocations. On every memory
|
|
access, hardware makes sure that tag of the memory that is being accessed is
|
|
equal to tag of the pointer that is used to access this memory. In case of a
|
|
tag mismatch a fault is generated and a report is printed.
|
|
|
|
Hardware tag-based KASAN uses 0xFF as a match-all pointer tag (accesses through
|
|
pointers with 0xFF pointer tag aren't checked). The value 0xFE is currently
|
|
reserved to tag freed memory regions.
|
|
|
|
Hardware tag-based KASAN currently only supports tagging of
|
|
kmem_cache_alloc/kmalloc and page_alloc memory.
|
|
|
|
What memory accesses are sanitised by KASAN?
|
|
--------------------------------------------
|
|
|
|
The kernel maps memory in a number of different parts of the address
|
|
space. This poses something of a problem for KASAN, which requires
|
|
that all addresses accessed by instrumented code have a valid shadow
|
|
region.
|
|
|
|
The range of kernel virtual addresses is large: there is not enough
|
|
real memory to support a real shadow region for every address that
|
|
could be accessed by the kernel.
|
|
|
|
By default
|
|
~~~~~~~~~~
|
|
|
|
By default, architectures only map real memory over the shadow region
|
|
for the linear mapping (and potentially other small areas). For all
|
|
other areas - such as vmalloc and vmemmap space - a single read-only
|
|
page is mapped over the shadow area. This read-only shadow page
|
|
declares all memory accesses as permitted.
|
|
|
|
This presents a problem for modules: they do not live in the linear
|
|
mapping, but in a dedicated module space. By hooking in to the module
|
|
allocator, KASAN can temporarily map real shadow memory to cover
|
|
them. This allows detection of invalid accesses to module globals, for
|
|
example.
|
|
|
|
This also creates an incompatibility with ``VMAP_STACK``: if the stack
|
|
lives in vmalloc space, it will be shadowed by the read-only page, and
|
|
the kernel will fault when trying to set up the shadow data for stack
|
|
variables.
|
|
|
|
CONFIG_KASAN_VMALLOC
|
|
~~~~~~~~~~~~~~~~~~~~
|
|
|
|
With ``CONFIG_KASAN_VMALLOC``, KASAN can cover vmalloc space at the
|
|
cost of greater memory usage. Currently this is only supported on x86.
|
|
|
|
This works by hooking into vmalloc and vmap, and dynamically
|
|
allocating real shadow memory to back the mappings.
|
|
|
|
Most mappings in vmalloc space are small, requiring less than a full
|
|
page of shadow space. Allocating a full shadow page per mapping would
|
|
therefore be wasteful. Furthermore, to ensure that different mappings
|
|
use different shadow pages, mappings would have to be aligned to
|
|
``KASAN_GRANULE_SIZE * PAGE_SIZE``.
|
|
|
|
Instead, KASAN shares backing space across multiple mappings. It allocates
|
|
a backing page when a mapping in vmalloc space uses a particular page
|
|
of the shadow region. This page can be shared by other vmalloc
|
|
mappings later on.
|
|
|
|
KASAN hooks into the vmap infrastructure to lazily clean up unused shadow
|
|
memory.
|
|
|
|
To avoid the difficulties around swapping mappings around, KASAN expects
|
|
that the part of the shadow region that covers the vmalloc space will
|
|
not be covered by the early shadow page, but will be left
|
|
unmapped. This will require changes in arch-specific code.
|
|
|
|
This allows ``VMAP_STACK`` support on x86, and can simplify support of
|
|
architectures that do not have a fixed module region.
|
|
|
|
CONFIG_KASAN_KUNIT_TEST & CONFIG_TEST_KASAN_MODULE
|
|
--------------------------------------------------
|
|
|
|
KASAN tests consist on two parts:
|
|
|
|
1. Tests that are integrated with the KUnit Test Framework. Enabled with
|
|
``CONFIG_KASAN_KUNIT_TEST``. These tests can be run and partially verified
|
|
automatically in a few different ways, see the instructions below.
|
|
|
|
2. Tests that are currently incompatible with KUnit. Enabled with
|
|
``CONFIG_TEST_KASAN_MODULE`` and can only be run as a module. These tests can
|
|
only be verified manually, by loading the kernel module and inspecting the
|
|
kernel log for KASAN reports.
|
|
|
|
Each KUnit-compatible KASAN test prints a KASAN report if an error is detected.
|
|
Then the test prints its number and status.
|
|
|
|
When a test passes::
|
|
|
|
ok 28 - kmalloc_double_kzfree
|
|
|
|
When a test fails due to a failed ``kmalloc``::
|
|
|
|
# kmalloc_large_oob_right: ASSERTION FAILED at lib/test_kasan.c:163
|
|
Expected ptr is not null, but is
|
|
not ok 4 - kmalloc_large_oob_right
|
|
|
|
When a test fails due to a missing KASAN report::
|
|
|
|
# kmalloc_double_kzfree: EXPECTATION FAILED at lib/test_kasan.c:629
|
|
Expected kasan_data->report_expected == kasan_data->report_found, but
|
|
kasan_data->report_expected == 1
|
|
kasan_data->report_found == 0
|
|
not ok 28 - kmalloc_double_kzfree
|
|
|
|
At the end the cumulative status of all KASAN tests is printed. On success::
|
|
|
|
ok 1 - kasan
|
|
|
|
Or, if one of the tests failed::
|
|
|
|
not ok 1 - kasan
|
|
|
|
|
|
There are a few ways to run KUnit-compatible KASAN tests.
|
|
|
|
1. Loadable module
|
|
~~~~~~~~~~~~~~~~~~
|
|
|
|
With ``CONFIG_KUNIT`` enabled, ``CONFIG_KASAN_KUNIT_TEST`` can be built as
|
|
a loadable module and run on any architecture that supports KASAN by loading
|
|
the module with insmod or modprobe. The module is called ``test_kasan``.
|
|
|
|
2. Built-In
|
|
~~~~~~~~~~~
|
|
|
|
With ``CONFIG_KUNIT`` built-in, ``CONFIG_KASAN_KUNIT_TEST`` can be built-in
|
|
on any architecure that supports KASAN. These and any other KUnit tests enabled
|
|
will run and print the results at boot as a late-init call.
|
|
|
|
3. Using kunit_tool
|
|
~~~~~~~~~~~~~~~~~~~
|
|
|
|
With ``CONFIG_KUNIT`` and ``CONFIG_KASAN_KUNIT_TEST`` built-in, it's also
|
|
possible use ``kunit_tool`` to see the results of these and other KUnit tests
|
|
in a more readable way. This will not print the KASAN reports of the tests that
|
|
passed. Use `KUnit documentation <https://www.kernel.org/doc/html/latest/dev-tools/kunit/index.html>`_
|
|
for more up-to-date information on ``kunit_tool``.
|
|
|
|
.. _KUnit: https://www.kernel.org/doc/html/latest/dev-tools/kunit/index.html
|