mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-18 02:46:06 +00:00
c1e3397917
In accordance with [1, 2] the DW eDMA controller has been created to be part of the DW PCIe Root Port and DW PCIe End-point controllers and to offload the transferring of large blocks of data between application and remote PCIe domains leaving the system CPU free for other tasks. In the first case (eDMA being part of DW PCIe Root Port) the eDMA controller is always accessible via the CPU DBI interface and never over the PCIe wire. The latter case is more complex. Depending on the DW PCIe End-Point IP-core synthesize parameters it's possible to have the eDMA registers accessible not only from the application CPU side, but also via mapping the eDMA CSRs over a dedicated endpoint BAR. So based on the specifics denoted above the eDMA driver is supposed to support two types of the DMA controller setups: 1) eDMA embedded into the DW PCIe Root Port/End-point and accessible over the local CPU from the application side. 2) eDMA embedded into the DW PCIe End-point and accessible via the PCIe wire with MWr/MRd TLPs generated by the CPU PCIe host controller. Since the CPU memory resides different sides in these cases the semantics of the MEM_TO_DEV and DEV_TO_MEM operations is flipped with respect to the Tx and Rx DMA channels. So MEM_TO_DEV/DEV_TO_MEM corresponds to the Tx/Rx channels in setup 1) and to the Rx/Tx channels in case of setup 2). The DW eDMA driver has supported the case 2) since e63d79d1ffcd ("dmaengine: Add Synopsys eDMA IP core driver") in the framework of the drivers/dma/dw-edma/dw-edma-pcie.c driver. The case 1) support was added later by bd96f1b2f43a ("dmaengine: dw-edma: support local dma device transfer semantics"). Afterwards the driver was supposed to cover the both possible eDMA setups, but the latter commit turned out to be not fully correct. The problem was that the commit together with the new functionality support also changed the channel direction semantics so the eDMA Read-channel (corresponding to the DMA_DEV_TO_MEM direction for case 1) now uses the sgl/cyclic base addresses as the Source addresses of the DMA transfers and dma_slave_config.dst_addr as the Destination address of the DMA transfers. Similarly the eDMA Write-channel (corresponding to the DMA_MEM_TO_DEV direction for case 1) now uses dma_slave_config.src_addr as a source address of the DMA transfers and sgl/cyclic base address as the Destination address of the DMA transfers. This contradicts the logic of the DMA-interface, which implies that DEV side is supposed to belong to the PCIe device memory and MEM - to the CPU/Application memory. Indeed it seems irrational to have the SG-list defined in the PCIe bus space, while expecting a contiguous buffer allocated in the CPU memory. Moreover the passed SG-list and cyclic DMA buffers are supposed to be mapped in a way so to be seen by the DW eDMA Application (CPU) interface. So in order to have the correct DW eDMA interface we need to invert the eDMA Rd/Wr-channels and DMA-slave directions semantics by selecting the src/dst addresses based on the DMA transfer direction instead of using the channel direction capability. [1] DesignWare Cores PCI Express Controller Databook - DWC PCIe Root Port, v.5.40a, March 2019, p.1092 [2] DesignWare Cores PCI Express Controller Databook - DWC PCIe Endpoint, v.5.40a, March 2019, p.1189 Co-developed-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org> Fixes: bd96f1b2f43a ("dmaengine: dw-edma: support local dma device transfer semantics") Link: https://lore.kernel.org/r/20220524152159.2370739-7-Frank.Li@nxp.com Tested-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org> Signed-off-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org> Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru> Signed-off-by: Frank Li <Frank.Li@nxp.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Acked-By: Vinod Koul <vkoul@kernel.org>
1040 lines
25 KiB
C
1040 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2018-2019 Synopsys, Inc. and/or its affiliates.
|
|
* Synopsys DesignWare eDMA core driver
|
|
*
|
|
* Author: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/err.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/dma/edma.h>
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include "dw-edma-core.h"
|
|
#include "dw-edma-v0-core.h"
|
|
#include "../dmaengine.h"
|
|
#include "../virt-dma.h"
|
|
|
|
static inline
|
|
struct device *dchan2dev(struct dma_chan *dchan)
|
|
{
|
|
return &dchan->dev->device;
|
|
}
|
|
|
|
static inline
|
|
struct device *chan2dev(struct dw_edma_chan *chan)
|
|
{
|
|
return &chan->vc.chan.dev->device;
|
|
}
|
|
|
|
static inline
|
|
struct dw_edma_desc *vd2dw_edma_desc(struct virt_dma_desc *vd)
|
|
{
|
|
return container_of(vd, struct dw_edma_desc, vd);
|
|
}
|
|
|
|
static struct dw_edma_burst *dw_edma_alloc_burst(struct dw_edma_chunk *chunk)
|
|
{
|
|
struct dw_edma_burst *burst;
|
|
|
|
burst = kzalloc(sizeof(*burst), GFP_NOWAIT);
|
|
if (unlikely(!burst))
|
|
return NULL;
|
|
|
|
INIT_LIST_HEAD(&burst->list);
|
|
if (chunk->burst) {
|
|
/* Create and add new element into the linked list */
|
|
chunk->bursts_alloc++;
|
|
list_add_tail(&burst->list, &chunk->burst->list);
|
|
} else {
|
|
/* List head */
|
|
chunk->bursts_alloc = 0;
|
|
chunk->burst = burst;
|
|
}
|
|
|
|
return burst;
|
|
}
|
|
|
|
static struct dw_edma_chunk *dw_edma_alloc_chunk(struct dw_edma_desc *desc)
|
|
{
|
|
struct dw_edma_chip *chip = desc->chan->dw->chip;
|
|
struct dw_edma_chan *chan = desc->chan;
|
|
struct dw_edma_chunk *chunk;
|
|
|
|
chunk = kzalloc(sizeof(*chunk), GFP_NOWAIT);
|
|
if (unlikely(!chunk))
|
|
return NULL;
|
|
|
|
INIT_LIST_HEAD(&chunk->list);
|
|
chunk->chan = chan;
|
|
/* Toggling change bit (CB) in each chunk, this is a mechanism to
|
|
* inform the eDMA HW block that this is a new linked list ready
|
|
* to be consumed.
|
|
* - Odd chunks originate CB equal to 0
|
|
* - Even chunks originate CB equal to 1
|
|
*/
|
|
chunk->cb = !(desc->chunks_alloc % 2);
|
|
if (chan->dir == EDMA_DIR_WRITE) {
|
|
chunk->ll_region.paddr = chip->ll_region_wr[chan->id].paddr;
|
|
chunk->ll_region.vaddr = chip->ll_region_wr[chan->id].vaddr;
|
|
} else {
|
|
chunk->ll_region.paddr = chip->ll_region_rd[chan->id].paddr;
|
|
chunk->ll_region.vaddr = chip->ll_region_rd[chan->id].vaddr;
|
|
}
|
|
|
|
if (desc->chunk) {
|
|
/* Create and add new element into the linked list */
|
|
if (!dw_edma_alloc_burst(chunk)) {
|
|
kfree(chunk);
|
|
return NULL;
|
|
}
|
|
desc->chunks_alloc++;
|
|
list_add_tail(&chunk->list, &desc->chunk->list);
|
|
} else {
|
|
/* List head */
|
|
chunk->burst = NULL;
|
|
desc->chunks_alloc = 0;
|
|
desc->chunk = chunk;
|
|
}
|
|
|
|
return chunk;
|
|
}
|
|
|
|
static struct dw_edma_desc *dw_edma_alloc_desc(struct dw_edma_chan *chan)
|
|
{
|
|
struct dw_edma_desc *desc;
|
|
|
|
desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
|
|
if (unlikely(!desc))
|
|
return NULL;
|
|
|
|
desc->chan = chan;
|
|
if (!dw_edma_alloc_chunk(desc)) {
|
|
kfree(desc);
|
|
return NULL;
|
|
}
|
|
|
|
return desc;
|
|
}
|
|
|
|
static void dw_edma_free_burst(struct dw_edma_chunk *chunk)
|
|
{
|
|
struct dw_edma_burst *child, *_next;
|
|
|
|
/* Remove all the list elements */
|
|
list_for_each_entry_safe(child, _next, &chunk->burst->list, list) {
|
|
list_del(&child->list);
|
|
kfree(child);
|
|
chunk->bursts_alloc--;
|
|
}
|
|
|
|
/* Remove the list head */
|
|
kfree(child);
|
|
chunk->burst = NULL;
|
|
}
|
|
|
|
static void dw_edma_free_chunk(struct dw_edma_desc *desc)
|
|
{
|
|
struct dw_edma_chunk *child, *_next;
|
|
|
|
if (!desc->chunk)
|
|
return;
|
|
|
|
/* Remove all the list elements */
|
|
list_for_each_entry_safe(child, _next, &desc->chunk->list, list) {
|
|
dw_edma_free_burst(child);
|
|
list_del(&child->list);
|
|
kfree(child);
|
|
desc->chunks_alloc--;
|
|
}
|
|
|
|
/* Remove the list head */
|
|
kfree(child);
|
|
desc->chunk = NULL;
|
|
}
|
|
|
|
static void dw_edma_free_desc(struct dw_edma_desc *desc)
|
|
{
|
|
dw_edma_free_chunk(desc);
|
|
kfree(desc);
|
|
}
|
|
|
|
static void vchan_free_desc(struct virt_dma_desc *vdesc)
|
|
{
|
|
dw_edma_free_desc(vd2dw_edma_desc(vdesc));
|
|
}
|
|
|
|
static void dw_edma_start_transfer(struct dw_edma_chan *chan)
|
|
{
|
|
struct dw_edma_chunk *child;
|
|
struct dw_edma_desc *desc;
|
|
struct virt_dma_desc *vd;
|
|
|
|
vd = vchan_next_desc(&chan->vc);
|
|
if (!vd)
|
|
return;
|
|
|
|
desc = vd2dw_edma_desc(vd);
|
|
if (!desc)
|
|
return;
|
|
|
|
child = list_first_entry_or_null(&desc->chunk->list,
|
|
struct dw_edma_chunk, list);
|
|
if (!child)
|
|
return;
|
|
|
|
dw_edma_v0_core_start(child, !desc->xfer_sz);
|
|
desc->xfer_sz += child->ll_region.sz;
|
|
dw_edma_free_burst(child);
|
|
list_del(&child->list);
|
|
kfree(child);
|
|
desc->chunks_alloc--;
|
|
}
|
|
|
|
static int dw_edma_device_config(struct dma_chan *dchan,
|
|
struct dma_slave_config *config)
|
|
{
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
|
|
memcpy(&chan->config, config, sizeof(*config));
|
|
chan->configured = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dw_edma_device_pause(struct dma_chan *dchan)
|
|
{
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
int err = 0;
|
|
|
|
if (!chan->configured)
|
|
err = -EPERM;
|
|
else if (chan->status != EDMA_ST_BUSY)
|
|
err = -EPERM;
|
|
else if (chan->request != EDMA_REQ_NONE)
|
|
err = -EPERM;
|
|
else
|
|
chan->request = EDMA_REQ_PAUSE;
|
|
|
|
return err;
|
|
}
|
|
|
|
static int dw_edma_device_resume(struct dma_chan *dchan)
|
|
{
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
int err = 0;
|
|
|
|
if (!chan->configured) {
|
|
err = -EPERM;
|
|
} else if (chan->status != EDMA_ST_PAUSE) {
|
|
err = -EPERM;
|
|
} else if (chan->request != EDMA_REQ_NONE) {
|
|
err = -EPERM;
|
|
} else {
|
|
chan->status = EDMA_ST_BUSY;
|
|
dw_edma_start_transfer(chan);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int dw_edma_device_terminate_all(struct dma_chan *dchan)
|
|
{
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
int err = 0;
|
|
|
|
if (!chan->configured) {
|
|
/* Do nothing */
|
|
} else if (chan->status == EDMA_ST_PAUSE) {
|
|
chan->status = EDMA_ST_IDLE;
|
|
chan->configured = false;
|
|
} else if (chan->status == EDMA_ST_IDLE) {
|
|
chan->configured = false;
|
|
} else if (dw_edma_v0_core_ch_status(chan) == DMA_COMPLETE) {
|
|
/*
|
|
* The channel is in a false BUSY state, probably didn't
|
|
* receive or lost an interrupt
|
|
*/
|
|
chan->status = EDMA_ST_IDLE;
|
|
chan->configured = false;
|
|
} else if (chan->request > EDMA_REQ_PAUSE) {
|
|
err = -EPERM;
|
|
} else {
|
|
chan->request = EDMA_REQ_STOP;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void dw_edma_device_issue_pending(struct dma_chan *dchan)
|
|
{
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&chan->vc.lock, flags);
|
|
if (chan->configured && chan->request == EDMA_REQ_NONE &&
|
|
chan->status == EDMA_ST_IDLE && vchan_issue_pending(&chan->vc)) {
|
|
chan->status = EDMA_ST_BUSY;
|
|
dw_edma_start_transfer(chan);
|
|
}
|
|
spin_unlock_irqrestore(&chan->vc.lock, flags);
|
|
}
|
|
|
|
static enum dma_status
|
|
dw_edma_device_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
|
|
struct dma_tx_state *txstate)
|
|
{
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
struct dw_edma_desc *desc;
|
|
struct virt_dma_desc *vd;
|
|
unsigned long flags;
|
|
enum dma_status ret;
|
|
u32 residue = 0;
|
|
|
|
ret = dma_cookie_status(dchan, cookie, txstate);
|
|
if (ret == DMA_COMPLETE)
|
|
return ret;
|
|
|
|
if (ret == DMA_IN_PROGRESS && chan->status == EDMA_ST_PAUSE)
|
|
ret = DMA_PAUSED;
|
|
|
|
if (!txstate)
|
|
goto ret_residue;
|
|
|
|
spin_lock_irqsave(&chan->vc.lock, flags);
|
|
vd = vchan_find_desc(&chan->vc, cookie);
|
|
if (vd) {
|
|
desc = vd2dw_edma_desc(vd);
|
|
if (desc)
|
|
residue = desc->alloc_sz - desc->xfer_sz;
|
|
}
|
|
spin_unlock_irqrestore(&chan->vc.lock, flags);
|
|
|
|
ret_residue:
|
|
dma_set_residue(txstate, residue);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
dw_edma_device_transfer(struct dw_edma_transfer *xfer)
|
|
{
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(xfer->dchan);
|
|
enum dma_transfer_direction dir = xfer->direction;
|
|
phys_addr_t src_addr, dst_addr;
|
|
struct scatterlist *sg = NULL;
|
|
struct dw_edma_chunk *chunk;
|
|
struct dw_edma_burst *burst;
|
|
struct dw_edma_desc *desc;
|
|
u32 cnt = 0;
|
|
int i;
|
|
|
|
if (!chan->configured)
|
|
return NULL;
|
|
|
|
/*
|
|
* Local Root Port/End-point Remote End-point
|
|
* +-----------------------+ PCIe bus +----------------------+
|
|
* | | +-+ | |
|
|
* | DEV_TO_MEM Rx Ch <----+ +---+ Tx Ch DEV_TO_MEM |
|
|
* | | | | | |
|
|
* | MEM_TO_DEV Tx Ch +----+ +---> Rx Ch MEM_TO_DEV |
|
|
* | | +-+ | |
|
|
* +-----------------------+ +----------------------+
|
|
*
|
|
* 1. Normal logic:
|
|
* If eDMA is embedded into the DW PCIe RP/EP and controlled from the
|
|
* CPU/Application side, the Rx channel (EDMA_DIR_READ) will be used
|
|
* for the device read operations (DEV_TO_MEM) and the Tx channel
|
|
* (EDMA_DIR_WRITE) - for the write operations (MEM_TO_DEV).
|
|
*
|
|
* 2. Inverted logic:
|
|
* If eDMA is embedded into a Remote PCIe EP and is controlled by the
|
|
* MWr/MRd TLPs sent from the CPU's PCIe host controller, the Tx
|
|
* channel (EDMA_DIR_WRITE) will be used for the device read operations
|
|
* (DEV_TO_MEM) and the Rx channel (EDMA_DIR_READ) - for the write
|
|
* operations (MEM_TO_DEV).
|
|
*
|
|
* It is the client driver responsibility to choose a proper channel
|
|
* for the DMA transfers.
|
|
*/
|
|
if (chan->dw->chip->flags & DW_EDMA_CHIP_LOCAL) {
|
|
if ((chan->dir == EDMA_DIR_READ && dir != DMA_DEV_TO_MEM) ||
|
|
(chan->dir == EDMA_DIR_WRITE && dir != DMA_MEM_TO_DEV))
|
|
return NULL;
|
|
} else {
|
|
if ((chan->dir == EDMA_DIR_WRITE && dir != DMA_DEV_TO_MEM) ||
|
|
(chan->dir == EDMA_DIR_READ && dir != DMA_MEM_TO_DEV))
|
|
return NULL;
|
|
}
|
|
|
|
if (xfer->type == EDMA_XFER_CYCLIC) {
|
|
if (!xfer->xfer.cyclic.len || !xfer->xfer.cyclic.cnt)
|
|
return NULL;
|
|
} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
|
|
if (xfer->xfer.sg.len < 1)
|
|
return NULL;
|
|
} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
|
|
if (!xfer->xfer.il->numf)
|
|
return NULL;
|
|
if (xfer->xfer.il->numf > 0 && xfer->xfer.il->frame_size > 0)
|
|
return NULL;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
|
|
desc = dw_edma_alloc_desc(chan);
|
|
if (unlikely(!desc))
|
|
goto err_alloc;
|
|
|
|
chunk = dw_edma_alloc_chunk(desc);
|
|
if (unlikely(!chunk))
|
|
goto err_alloc;
|
|
|
|
if (xfer->type == EDMA_XFER_INTERLEAVED) {
|
|
src_addr = xfer->xfer.il->src_start;
|
|
dst_addr = xfer->xfer.il->dst_start;
|
|
} else {
|
|
src_addr = chan->config.src_addr;
|
|
dst_addr = chan->config.dst_addr;
|
|
}
|
|
|
|
if (xfer->type == EDMA_XFER_CYCLIC) {
|
|
cnt = xfer->xfer.cyclic.cnt;
|
|
} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
|
|
cnt = xfer->xfer.sg.len;
|
|
sg = xfer->xfer.sg.sgl;
|
|
} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
|
|
if (xfer->xfer.il->numf > 0)
|
|
cnt = xfer->xfer.il->numf;
|
|
else
|
|
cnt = xfer->xfer.il->frame_size;
|
|
}
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
if (xfer->type == EDMA_XFER_SCATTER_GATHER && !sg)
|
|
break;
|
|
|
|
if (chunk->bursts_alloc == chan->ll_max) {
|
|
chunk = dw_edma_alloc_chunk(desc);
|
|
if (unlikely(!chunk))
|
|
goto err_alloc;
|
|
}
|
|
|
|
burst = dw_edma_alloc_burst(chunk);
|
|
if (unlikely(!burst))
|
|
goto err_alloc;
|
|
|
|
if (xfer->type == EDMA_XFER_CYCLIC)
|
|
burst->sz = xfer->xfer.cyclic.len;
|
|
else if (xfer->type == EDMA_XFER_SCATTER_GATHER)
|
|
burst->sz = sg_dma_len(sg);
|
|
else if (xfer->type == EDMA_XFER_INTERLEAVED)
|
|
burst->sz = xfer->xfer.il->sgl[i].size;
|
|
|
|
chunk->ll_region.sz += burst->sz;
|
|
desc->alloc_sz += burst->sz;
|
|
|
|
if (dir == DMA_DEV_TO_MEM) {
|
|
burst->sar = src_addr;
|
|
if (xfer->type == EDMA_XFER_CYCLIC) {
|
|
burst->dar = xfer->xfer.cyclic.paddr;
|
|
} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
|
|
src_addr += sg_dma_len(sg);
|
|
burst->dar = sg_dma_address(sg);
|
|
/* Unlike the typical assumption by other
|
|
* drivers/IPs the peripheral memory isn't
|
|
* a FIFO memory, in this case, it's a
|
|
* linear memory and that why the source
|
|
* and destination addresses are increased
|
|
* by the same portion (data length)
|
|
*/
|
|
}
|
|
} else {
|
|
burst->dar = dst_addr;
|
|
if (xfer->type == EDMA_XFER_CYCLIC) {
|
|
burst->sar = xfer->xfer.cyclic.paddr;
|
|
} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
|
|
dst_addr += sg_dma_len(sg);
|
|
burst->sar = sg_dma_address(sg);
|
|
/* Unlike the typical assumption by other
|
|
* drivers/IPs the peripheral memory isn't
|
|
* a FIFO memory, in this case, it's a
|
|
* linear memory and that why the source
|
|
* and destination addresses are increased
|
|
* by the same portion (data length)
|
|
*/
|
|
}
|
|
}
|
|
|
|
if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
|
|
sg = sg_next(sg);
|
|
} else if (xfer->type == EDMA_XFER_INTERLEAVED &&
|
|
xfer->xfer.il->frame_size > 0) {
|
|
struct dma_interleaved_template *il = xfer->xfer.il;
|
|
struct data_chunk *dc = &il->sgl[i];
|
|
|
|
if (il->src_sgl) {
|
|
src_addr += burst->sz;
|
|
src_addr += dmaengine_get_src_icg(il, dc);
|
|
}
|
|
|
|
if (il->dst_sgl) {
|
|
dst_addr += burst->sz;
|
|
dst_addr += dmaengine_get_dst_icg(il, dc);
|
|
}
|
|
}
|
|
}
|
|
|
|
return vchan_tx_prep(&chan->vc, &desc->vd, xfer->flags);
|
|
|
|
err_alloc:
|
|
if (desc)
|
|
dw_edma_free_desc(desc);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
dw_edma_device_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
|
|
unsigned int len,
|
|
enum dma_transfer_direction direction,
|
|
unsigned long flags, void *context)
|
|
{
|
|
struct dw_edma_transfer xfer;
|
|
|
|
xfer.dchan = dchan;
|
|
xfer.direction = direction;
|
|
xfer.xfer.sg.sgl = sgl;
|
|
xfer.xfer.sg.len = len;
|
|
xfer.flags = flags;
|
|
xfer.type = EDMA_XFER_SCATTER_GATHER;
|
|
|
|
return dw_edma_device_transfer(&xfer);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
dw_edma_device_prep_dma_cyclic(struct dma_chan *dchan, dma_addr_t paddr,
|
|
size_t len, size_t count,
|
|
enum dma_transfer_direction direction,
|
|
unsigned long flags)
|
|
{
|
|
struct dw_edma_transfer xfer;
|
|
|
|
xfer.dchan = dchan;
|
|
xfer.direction = direction;
|
|
xfer.xfer.cyclic.paddr = paddr;
|
|
xfer.xfer.cyclic.len = len;
|
|
xfer.xfer.cyclic.cnt = count;
|
|
xfer.flags = flags;
|
|
xfer.type = EDMA_XFER_CYCLIC;
|
|
|
|
return dw_edma_device_transfer(&xfer);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
dw_edma_device_prep_interleaved_dma(struct dma_chan *dchan,
|
|
struct dma_interleaved_template *ilt,
|
|
unsigned long flags)
|
|
{
|
|
struct dw_edma_transfer xfer;
|
|
|
|
xfer.dchan = dchan;
|
|
xfer.direction = ilt->dir;
|
|
xfer.xfer.il = ilt;
|
|
xfer.flags = flags;
|
|
xfer.type = EDMA_XFER_INTERLEAVED;
|
|
|
|
return dw_edma_device_transfer(&xfer);
|
|
}
|
|
|
|
static void dw_edma_done_interrupt(struct dw_edma_chan *chan)
|
|
{
|
|
struct dw_edma_desc *desc;
|
|
struct virt_dma_desc *vd;
|
|
unsigned long flags;
|
|
|
|
dw_edma_v0_core_clear_done_int(chan);
|
|
|
|
spin_lock_irqsave(&chan->vc.lock, flags);
|
|
vd = vchan_next_desc(&chan->vc);
|
|
if (vd) {
|
|
switch (chan->request) {
|
|
case EDMA_REQ_NONE:
|
|
desc = vd2dw_edma_desc(vd);
|
|
if (desc->chunks_alloc) {
|
|
chan->status = EDMA_ST_BUSY;
|
|
dw_edma_start_transfer(chan);
|
|
} else {
|
|
list_del(&vd->node);
|
|
vchan_cookie_complete(vd);
|
|
chan->status = EDMA_ST_IDLE;
|
|
}
|
|
break;
|
|
|
|
case EDMA_REQ_STOP:
|
|
list_del(&vd->node);
|
|
vchan_cookie_complete(vd);
|
|
chan->request = EDMA_REQ_NONE;
|
|
chan->status = EDMA_ST_IDLE;
|
|
break;
|
|
|
|
case EDMA_REQ_PAUSE:
|
|
chan->request = EDMA_REQ_NONE;
|
|
chan->status = EDMA_ST_PAUSE;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&chan->vc.lock, flags);
|
|
}
|
|
|
|
static void dw_edma_abort_interrupt(struct dw_edma_chan *chan)
|
|
{
|
|
struct virt_dma_desc *vd;
|
|
unsigned long flags;
|
|
|
|
dw_edma_v0_core_clear_abort_int(chan);
|
|
|
|
spin_lock_irqsave(&chan->vc.lock, flags);
|
|
vd = vchan_next_desc(&chan->vc);
|
|
if (vd) {
|
|
list_del(&vd->node);
|
|
vchan_cookie_complete(vd);
|
|
}
|
|
spin_unlock_irqrestore(&chan->vc.lock, flags);
|
|
chan->request = EDMA_REQ_NONE;
|
|
chan->status = EDMA_ST_IDLE;
|
|
}
|
|
|
|
static irqreturn_t dw_edma_interrupt(int irq, void *data, bool write)
|
|
{
|
|
struct dw_edma_irq *dw_irq = data;
|
|
struct dw_edma *dw = dw_irq->dw;
|
|
unsigned long total, pos, val;
|
|
unsigned long off;
|
|
u32 mask;
|
|
|
|
if (write) {
|
|
total = dw->wr_ch_cnt;
|
|
off = 0;
|
|
mask = dw_irq->wr_mask;
|
|
} else {
|
|
total = dw->rd_ch_cnt;
|
|
off = dw->wr_ch_cnt;
|
|
mask = dw_irq->rd_mask;
|
|
}
|
|
|
|
val = dw_edma_v0_core_status_done_int(dw, write ?
|
|
EDMA_DIR_WRITE :
|
|
EDMA_DIR_READ);
|
|
val &= mask;
|
|
for_each_set_bit(pos, &val, total) {
|
|
struct dw_edma_chan *chan = &dw->chan[pos + off];
|
|
|
|
dw_edma_done_interrupt(chan);
|
|
}
|
|
|
|
val = dw_edma_v0_core_status_abort_int(dw, write ?
|
|
EDMA_DIR_WRITE :
|
|
EDMA_DIR_READ);
|
|
val &= mask;
|
|
for_each_set_bit(pos, &val, total) {
|
|
struct dw_edma_chan *chan = &dw->chan[pos + off];
|
|
|
|
dw_edma_abort_interrupt(chan);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static inline irqreturn_t dw_edma_interrupt_write(int irq, void *data)
|
|
{
|
|
return dw_edma_interrupt(irq, data, true);
|
|
}
|
|
|
|
static inline irqreturn_t dw_edma_interrupt_read(int irq, void *data)
|
|
{
|
|
return dw_edma_interrupt(irq, data, false);
|
|
}
|
|
|
|
static irqreturn_t dw_edma_interrupt_common(int irq, void *data)
|
|
{
|
|
dw_edma_interrupt(irq, data, true);
|
|
dw_edma_interrupt(irq, data, false);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int dw_edma_alloc_chan_resources(struct dma_chan *dchan)
|
|
{
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
|
|
if (chan->status != EDMA_ST_IDLE)
|
|
return -EBUSY;
|
|
|
|
pm_runtime_get(chan->dw->chip->dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void dw_edma_free_chan_resources(struct dma_chan *dchan)
|
|
{
|
|
unsigned long timeout = jiffies + msecs_to_jiffies(5000);
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
int ret;
|
|
|
|
while (time_before(jiffies, timeout)) {
|
|
ret = dw_edma_device_terminate_all(dchan);
|
|
if (!ret)
|
|
break;
|
|
|
|
if (time_after_eq(jiffies, timeout))
|
|
return;
|
|
|
|
cpu_relax();
|
|
}
|
|
|
|
pm_runtime_put(chan->dw->chip->dev);
|
|
}
|
|
|
|
static int dw_edma_channel_setup(struct dw_edma *dw, bool write,
|
|
u32 wr_alloc, u32 rd_alloc)
|
|
{
|
|
struct dw_edma_chip *chip = dw->chip;
|
|
struct dw_edma_region *dt_region;
|
|
struct device *dev = chip->dev;
|
|
struct dw_edma_chan *chan;
|
|
struct dw_edma_irq *irq;
|
|
struct dma_device *dma;
|
|
u32 alloc, off_alloc;
|
|
u32 i, j, cnt;
|
|
int err = 0;
|
|
u32 pos;
|
|
|
|
if (write) {
|
|
i = 0;
|
|
cnt = dw->wr_ch_cnt;
|
|
dma = &dw->wr_edma;
|
|
alloc = wr_alloc;
|
|
off_alloc = 0;
|
|
} else {
|
|
i = dw->wr_ch_cnt;
|
|
cnt = dw->rd_ch_cnt;
|
|
dma = &dw->rd_edma;
|
|
alloc = rd_alloc;
|
|
off_alloc = wr_alloc;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&dma->channels);
|
|
for (j = 0; (alloc || dw->nr_irqs == 1) && j < cnt; j++, i++) {
|
|
chan = &dw->chan[i];
|
|
|
|
dt_region = devm_kzalloc(dev, sizeof(*dt_region), GFP_KERNEL);
|
|
if (!dt_region)
|
|
return -ENOMEM;
|
|
|
|
chan->vc.chan.private = dt_region;
|
|
|
|
chan->dw = dw;
|
|
chan->id = j;
|
|
chan->dir = write ? EDMA_DIR_WRITE : EDMA_DIR_READ;
|
|
chan->configured = false;
|
|
chan->request = EDMA_REQ_NONE;
|
|
chan->status = EDMA_ST_IDLE;
|
|
|
|
if (write)
|
|
chan->ll_max = (chip->ll_region_wr[j].sz / EDMA_LL_SZ);
|
|
else
|
|
chan->ll_max = (chip->ll_region_rd[j].sz / EDMA_LL_SZ);
|
|
chan->ll_max -= 1;
|
|
|
|
dev_vdbg(dev, "L. List:\tChannel %s[%u] max_cnt=%u\n",
|
|
write ? "write" : "read", j, chan->ll_max);
|
|
|
|
if (dw->nr_irqs == 1)
|
|
pos = 0;
|
|
else
|
|
pos = off_alloc + (j % alloc);
|
|
|
|
irq = &dw->irq[pos];
|
|
|
|
if (write)
|
|
irq->wr_mask |= BIT(j);
|
|
else
|
|
irq->rd_mask |= BIT(j);
|
|
|
|
irq->dw = dw;
|
|
memcpy(&chan->msi, &irq->msi, sizeof(chan->msi));
|
|
|
|
dev_vdbg(dev, "MSI:\t\tChannel %s[%u] addr=0x%.8x%.8x, data=0x%.8x\n",
|
|
write ? "write" : "read", j,
|
|
chan->msi.address_hi, chan->msi.address_lo,
|
|
chan->msi.data);
|
|
|
|
chan->vc.desc_free = vchan_free_desc;
|
|
vchan_init(&chan->vc, dma);
|
|
|
|
if (write) {
|
|
dt_region->paddr = chip->dt_region_wr[j].paddr;
|
|
dt_region->vaddr = chip->dt_region_wr[j].vaddr;
|
|
dt_region->sz = chip->dt_region_wr[j].sz;
|
|
} else {
|
|
dt_region->paddr = chip->dt_region_rd[j].paddr;
|
|
dt_region->vaddr = chip->dt_region_rd[j].vaddr;
|
|
dt_region->sz = chip->dt_region_rd[j].sz;
|
|
}
|
|
|
|
dw_edma_v0_core_device_config(chan);
|
|
}
|
|
|
|
/* Set DMA channel capabilities */
|
|
dma_cap_zero(dma->cap_mask);
|
|
dma_cap_set(DMA_SLAVE, dma->cap_mask);
|
|
dma_cap_set(DMA_CYCLIC, dma->cap_mask);
|
|
dma_cap_set(DMA_PRIVATE, dma->cap_mask);
|
|
dma_cap_set(DMA_INTERLEAVE, dma->cap_mask);
|
|
dma->directions = BIT(write ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV);
|
|
dma->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
|
|
dma->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
|
|
dma->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
|
|
dma->chancnt = cnt;
|
|
|
|
/* Set DMA channel callbacks */
|
|
dma->dev = chip->dev;
|
|
dma->device_alloc_chan_resources = dw_edma_alloc_chan_resources;
|
|
dma->device_free_chan_resources = dw_edma_free_chan_resources;
|
|
dma->device_config = dw_edma_device_config;
|
|
dma->device_pause = dw_edma_device_pause;
|
|
dma->device_resume = dw_edma_device_resume;
|
|
dma->device_terminate_all = dw_edma_device_terminate_all;
|
|
dma->device_issue_pending = dw_edma_device_issue_pending;
|
|
dma->device_tx_status = dw_edma_device_tx_status;
|
|
dma->device_prep_slave_sg = dw_edma_device_prep_slave_sg;
|
|
dma->device_prep_dma_cyclic = dw_edma_device_prep_dma_cyclic;
|
|
dma->device_prep_interleaved_dma = dw_edma_device_prep_interleaved_dma;
|
|
|
|
dma_set_max_seg_size(dma->dev, U32_MAX);
|
|
|
|
/* Register DMA device */
|
|
err = dma_async_device_register(dma);
|
|
|
|
return err;
|
|
}
|
|
|
|
static inline void dw_edma_dec_irq_alloc(int *nr_irqs, u32 *alloc, u16 cnt)
|
|
{
|
|
if (*nr_irqs && *alloc < cnt) {
|
|
(*alloc)++;
|
|
(*nr_irqs)--;
|
|
}
|
|
}
|
|
|
|
static inline void dw_edma_add_irq_mask(u32 *mask, u32 alloc, u16 cnt)
|
|
{
|
|
while (*mask * alloc < cnt)
|
|
(*mask)++;
|
|
}
|
|
|
|
static int dw_edma_irq_request(struct dw_edma *dw,
|
|
u32 *wr_alloc, u32 *rd_alloc)
|
|
{
|
|
struct dw_edma_chip *chip = dw->chip;
|
|
struct device *dev = dw->chip->dev;
|
|
u32 wr_mask = 1;
|
|
u32 rd_mask = 1;
|
|
int i, err = 0;
|
|
u32 ch_cnt;
|
|
int irq;
|
|
|
|
ch_cnt = dw->wr_ch_cnt + dw->rd_ch_cnt;
|
|
|
|
if (chip->nr_irqs < 1 || !chip->ops->irq_vector)
|
|
return -EINVAL;
|
|
|
|
dw->irq = devm_kcalloc(dev, chip->nr_irqs, sizeof(*dw->irq), GFP_KERNEL);
|
|
if (!dw->irq)
|
|
return -ENOMEM;
|
|
|
|
if (chip->nr_irqs == 1) {
|
|
/* Common IRQ shared among all channels */
|
|
irq = chip->ops->irq_vector(dev, 0);
|
|
err = request_irq(irq, dw_edma_interrupt_common,
|
|
IRQF_SHARED, dw->name, &dw->irq[0]);
|
|
if (err) {
|
|
dw->nr_irqs = 0;
|
|
return err;
|
|
}
|
|
|
|
if (irq_get_msi_desc(irq))
|
|
get_cached_msi_msg(irq, &dw->irq[0].msi);
|
|
|
|
dw->nr_irqs = 1;
|
|
} else {
|
|
/* Distribute IRQs equally among all channels */
|
|
int tmp = chip->nr_irqs;
|
|
|
|
while (tmp && (*wr_alloc + *rd_alloc) < ch_cnt) {
|
|
dw_edma_dec_irq_alloc(&tmp, wr_alloc, dw->wr_ch_cnt);
|
|
dw_edma_dec_irq_alloc(&tmp, rd_alloc, dw->rd_ch_cnt);
|
|
}
|
|
|
|
dw_edma_add_irq_mask(&wr_mask, *wr_alloc, dw->wr_ch_cnt);
|
|
dw_edma_add_irq_mask(&rd_mask, *rd_alloc, dw->rd_ch_cnt);
|
|
|
|
for (i = 0; i < (*wr_alloc + *rd_alloc); i++) {
|
|
irq = chip->ops->irq_vector(dev, i);
|
|
err = request_irq(irq,
|
|
i < *wr_alloc ?
|
|
dw_edma_interrupt_write :
|
|
dw_edma_interrupt_read,
|
|
IRQF_SHARED, dw->name,
|
|
&dw->irq[i]);
|
|
if (err) {
|
|
dw->nr_irqs = i;
|
|
return err;
|
|
}
|
|
|
|
if (irq_get_msi_desc(irq))
|
|
get_cached_msi_msg(irq, &dw->irq[i].msi);
|
|
}
|
|
|
|
dw->nr_irqs = i;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int dw_edma_probe(struct dw_edma_chip *chip)
|
|
{
|
|
struct device *dev;
|
|
struct dw_edma *dw;
|
|
u32 wr_alloc = 0;
|
|
u32 rd_alloc = 0;
|
|
int i, err;
|
|
|
|
if (!chip)
|
|
return -EINVAL;
|
|
|
|
dev = chip->dev;
|
|
if (!dev || !chip->ops)
|
|
return -EINVAL;
|
|
|
|
dw = devm_kzalloc(dev, sizeof(*dw), GFP_KERNEL);
|
|
if (!dw)
|
|
return -ENOMEM;
|
|
|
|
dw->chip = chip;
|
|
|
|
raw_spin_lock_init(&dw->lock);
|
|
|
|
dw->wr_ch_cnt = min_t(u16, chip->ll_wr_cnt,
|
|
dw_edma_v0_core_ch_count(dw, EDMA_DIR_WRITE));
|
|
dw->wr_ch_cnt = min_t(u16, dw->wr_ch_cnt, EDMA_MAX_WR_CH);
|
|
|
|
dw->rd_ch_cnt = min_t(u16, chip->ll_rd_cnt,
|
|
dw_edma_v0_core_ch_count(dw, EDMA_DIR_READ));
|
|
dw->rd_ch_cnt = min_t(u16, dw->rd_ch_cnt, EDMA_MAX_RD_CH);
|
|
|
|
if (!dw->wr_ch_cnt && !dw->rd_ch_cnt)
|
|
return -EINVAL;
|
|
|
|
dev_vdbg(dev, "Channels:\twrite=%d, read=%d\n",
|
|
dw->wr_ch_cnt, dw->rd_ch_cnt);
|
|
|
|
/* Allocate channels */
|
|
dw->chan = devm_kcalloc(dev, dw->wr_ch_cnt + dw->rd_ch_cnt,
|
|
sizeof(*dw->chan), GFP_KERNEL);
|
|
if (!dw->chan)
|
|
return -ENOMEM;
|
|
|
|
snprintf(dw->name, sizeof(dw->name), "dw-edma-core:%d", chip->id);
|
|
|
|
/* Disable eDMA, only to establish the ideal initial conditions */
|
|
dw_edma_v0_core_off(dw);
|
|
|
|
/* Request IRQs */
|
|
err = dw_edma_irq_request(dw, &wr_alloc, &rd_alloc);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Setup write channels */
|
|
err = dw_edma_channel_setup(dw, true, wr_alloc, rd_alloc);
|
|
if (err)
|
|
goto err_irq_free;
|
|
|
|
/* Setup read channels */
|
|
err = dw_edma_channel_setup(dw, false, wr_alloc, rd_alloc);
|
|
if (err)
|
|
goto err_irq_free;
|
|
|
|
/* Power management */
|
|
pm_runtime_enable(dev);
|
|
|
|
/* Turn debugfs on */
|
|
dw_edma_v0_core_debugfs_on(dw);
|
|
|
|
chip->dw = dw;
|
|
|
|
return 0;
|
|
|
|
err_irq_free:
|
|
for (i = (dw->nr_irqs - 1); i >= 0; i--)
|
|
free_irq(chip->ops->irq_vector(dev, i), &dw->irq[i]);
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dw_edma_probe);
|
|
|
|
int dw_edma_remove(struct dw_edma_chip *chip)
|
|
{
|
|
struct dw_edma_chan *chan, *_chan;
|
|
struct device *dev = chip->dev;
|
|
struct dw_edma *dw = chip->dw;
|
|
int i;
|
|
|
|
/* Disable eDMA */
|
|
dw_edma_v0_core_off(dw);
|
|
|
|
/* Free irqs */
|
|
for (i = (dw->nr_irqs - 1); i >= 0; i--)
|
|
free_irq(chip->ops->irq_vector(dev, i), &dw->irq[i]);
|
|
|
|
/* Power management */
|
|
pm_runtime_disable(dev);
|
|
|
|
/* Deregister eDMA device */
|
|
dma_async_device_unregister(&dw->wr_edma);
|
|
list_for_each_entry_safe(chan, _chan, &dw->wr_edma.channels,
|
|
vc.chan.device_node) {
|
|
tasklet_kill(&chan->vc.task);
|
|
list_del(&chan->vc.chan.device_node);
|
|
}
|
|
|
|
dma_async_device_unregister(&dw->rd_edma);
|
|
list_for_each_entry_safe(chan, _chan, &dw->rd_edma.channels,
|
|
vc.chan.device_node) {
|
|
tasklet_kill(&chan->vc.task);
|
|
list_del(&chan->vc.chan.device_node);
|
|
}
|
|
|
|
/* Turn debugfs off */
|
|
dw_edma_v0_core_debugfs_off(dw);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dw_edma_remove);
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_DESCRIPTION("Synopsys DesignWare eDMA controller core driver");
|
|
MODULE_AUTHOR("Gustavo Pimentel <gustavo.pimentel@synopsys.com>");
|