mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-17 10:26:09 +00:00
930b7c32ea
- Provide info about trusted.overlay.metacopy extended attribute - Minor rephrasing regarding copy-up operation with metacopy=on Signed-off-by: Yuriy Belikov <yuriybelikov1@gmail.com> Signed-off-by: Amir Goldstein <amir73il@gmail.com>
796 lines
35 KiB
ReStructuredText
796 lines
35 KiB
ReStructuredText
.. SPDX-License-Identifier: GPL-2.0
|
|
|
|
Written by: Neil Brown
|
|
Please see MAINTAINERS file for where to send questions.
|
|
|
|
Overlay Filesystem
|
|
==================
|
|
|
|
This document describes a prototype for a new approach to providing
|
|
overlay-filesystem functionality in Linux (sometimes referred to as
|
|
union-filesystems). An overlay-filesystem tries to present a
|
|
filesystem which is the result over overlaying one filesystem on top
|
|
of the other.
|
|
|
|
|
|
Overlay objects
|
|
---------------
|
|
|
|
The overlay filesystem approach is 'hybrid', because the objects that
|
|
appear in the filesystem do not always appear to belong to that filesystem.
|
|
In many cases, an object accessed in the union will be indistinguishable
|
|
from accessing the corresponding object from the original filesystem.
|
|
This is most obvious from the 'st_dev' field returned by stat(2).
|
|
|
|
While directories will report an st_dev from the overlay-filesystem,
|
|
non-directory objects may report an st_dev from the lower filesystem or
|
|
upper filesystem that is providing the object. Similarly st_ino will
|
|
only be unique when combined with st_dev, and both of these can change
|
|
over the lifetime of a non-directory object. Many applications and
|
|
tools ignore these values and will not be affected.
|
|
|
|
In the special case of all overlay layers on the same underlying
|
|
filesystem, all objects will report an st_dev from the overlay
|
|
filesystem and st_ino from the underlying filesystem. This will
|
|
make the overlay mount more compliant with filesystem scanners and
|
|
overlay objects will be distinguishable from the corresponding
|
|
objects in the original filesystem.
|
|
|
|
On 64bit systems, even if all overlay layers are not on the same
|
|
underlying filesystem, the same compliant behavior could be achieved
|
|
with the "xino" feature. The "xino" feature composes a unique object
|
|
identifier from the real object st_ino and an underlying fsid number.
|
|
The "xino" feature uses the high inode number bits for fsid, because the
|
|
underlying filesystems rarely use the high inode number bits. In case
|
|
the underlying inode number does overflow into the high xino bits, overlay
|
|
filesystem will fall back to the non xino behavior for that inode.
|
|
|
|
The "xino" feature can be enabled with the "-o xino=on" overlay mount option.
|
|
If all underlying filesystems support NFS file handles, the value of st_ino
|
|
for overlay filesystem objects is not only unique, but also persistent over
|
|
the lifetime of the filesystem. The "-o xino=auto" overlay mount option
|
|
enables the "xino" feature only if the persistent st_ino requirement is met.
|
|
|
|
The following table summarizes what can be expected in different overlay
|
|
configurations.
|
|
|
|
Inode properties
|
|
````````````````
|
|
|
|
+--------------+------------+------------+-----------------+----------------+
|
|
|Configuration | Persistent | Uniform | st_ino == d_ino | d_ino == i_ino |
|
|
| | st_ino | st_dev | | [*] |
|
|
+==============+=====+======+=====+======+========+========+========+=======+
|
|
| | dir | !dir | dir | !dir | dir + !dir | dir | !dir |
|
|
+--------------+-----+------+-----+------+--------+--------+--------+-------+
|
|
| All layers | Y | Y | Y | Y | Y | Y | Y | Y |
|
|
| on same fs | | | | | | | | |
|
|
+--------------+-----+------+-----+------+--------+--------+--------+-------+
|
|
| Layers not | N | N | Y | N | N | Y | N | Y |
|
|
| on same fs, | | | | | | | | |
|
|
| xino=off | | | | | | | | |
|
|
+--------------+-----+------+-----+------+--------+--------+--------+-------+
|
|
| xino=on/auto | Y | Y | Y | Y | Y | Y | Y | Y |
|
|
+--------------+-----+------+-----+------+--------+--------+--------+-------+
|
|
| xino=on/auto,| N | N | Y | N | N | Y | N | Y |
|
|
| ino overflow | | | | | | | | |
|
|
+--------------+-----+------+-----+------+--------+--------+--------+-------+
|
|
|
|
[*] nfsd v3 readdirplus verifies d_ino == i_ino. i_ino is exposed via several
|
|
/proc files, such as /proc/locks and /proc/self/fdinfo/<fd> of an inotify
|
|
file descriptor.
|
|
|
|
Upper and Lower
|
|
---------------
|
|
|
|
An overlay filesystem combines two filesystems - an 'upper' filesystem
|
|
and a 'lower' filesystem. When a name exists in both filesystems, the
|
|
object in the 'upper' filesystem is visible while the object in the
|
|
'lower' filesystem is either hidden or, in the case of directories,
|
|
merged with the 'upper' object.
|
|
|
|
It would be more correct to refer to an upper and lower 'directory
|
|
tree' rather than 'filesystem' as it is quite possible for both
|
|
directory trees to be in the same filesystem and there is no
|
|
requirement that the root of a filesystem be given for either upper or
|
|
lower.
|
|
|
|
A wide range of filesystems supported by Linux can be the lower filesystem,
|
|
but not all filesystems that are mountable by Linux have the features
|
|
needed for OverlayFS to work. The lower filesystem does not need to be
|
|
writable. The lower filesystem can even be another overlayfs. The upper
|
|
filesystem will normally be writable and if it is it must support the
|
|
creation of trusted.* and/or user.* extended attributes, and must provide
|
|
valid d_type in readdir responses, so NFS is not suitable.
|
|
|
|
A read-only overlay of two read-only filesystems may use any
|
|
filesystem type.
|
|
|
|
Directories
|
|
-----------
|
|
|
|
Overlaying mainly involves directories. If a given name appears in both
|
|
upper and lower filesystems and refers to a non-directory in either,
|
|
then the lower object is hidden - the name refers only to the upper
|
|
object.
|
|
|
|
Where both upper and lower objects are directories, a merged directory
|
|
is formed.
|
|
|
|
At mount time, the two directories given as mount options "lowerdir" and
|
|
"upperdir" are combined into a merged directory::
|
|
|
|
mount -t overlay overlay -olowerdir=/lower,upperdir=/upper,\
|
|
workdir=/work /merged
|
|
|
|
The "workdir" needs to be an empty directory on the same filesystem
|
|
as upperdir.
|
|
|
|
Then whenever a lookup is requested in such a merged directory, the
|
|
lookup is performed in each actual directory and the combined result
|
|
is cached in the dentry belonging to the overlay filesystem. If both
|
|
actual lookups find directories, both are stored and a merged
|
|
directory is created, otherwise only one is stored: the upper if it
|
|
exists, else the lower.
|
|
|
|
Only the lists of names from directories are merged. Other content
|
|
such as metadata and extended attributes are reported for the upper
|
|
directory only. These attributes of the lower directory are hidden.
|
|
|
|
whiteouts and opaque directories
|
|
--------------------------------
|
|
|
|
In order to support rm and rmdir without changing the lower
|
|
filesystem, an overlay filesystem needs to record in the upper filesystem
|
|
that files have been removed. This is done using whiteouts and opaque
|
|
directories (non-directories are always opaque).
|
|
|
|
A whiteout is created as a character device with 0/0 device number or
|
|
as a zero-size regular file with the xattr "trusted.overlay.whiteout".
|
|
|
|
When a whiteout is found in the upper level of a merged directory, any
|
|
matching name in the lower level is ignored, and the whiteout itself
|
|
is also hidden.
|
|
|
|
A directory is made opaque by setting the xattr "trusted.overlay.opaque"
|
|
to "y". Where the upper filesystem contains an opaque directory, any
|
|
directory in the lower filesystem with the same name is ignored.
|
|
|
|
An opaque directory should not conntain any whiteouts, because they do not
|
|
serve any purpose. A merge directory containing regular files with the xattr
|
|
"trusted.overlay.whiteout", should be additionally marked by setting the xattr
|
|
"trusted.overlay.opaque" to "x" on the merge directory itself.
|
|
This is needed to avoid the overhead of checking the "trusted.overlay.whiteout"
|
|
on all entries during readdir in the common case.
|
|
|
|
readdir
|
|
-------
|
|
|
|
When a 'readdir' request is made on a merged directory, the upper and
|
|
lower directories are each read and the name lists merged in the
|
|
obvious way (upper is read first, then lower - entries that already
|
|
exist are not re-added). This merged name list is cached in the
|
|
'struct file' and so remains as long as the file is kept open. If the
|
|
directory is opened and read by two processes at the same time, they
|
|
will each have separate caches. A seekdir to the start of the
|
|
directory (offset 0) followed by a readdir will cause the cache to be
|
|
discarded and rebuilt.
|
|
|
|
This means that changes to the merged directory do not appear while a
|
|
directory is being read. This is unlikely to be noticed by many
|
|
programs.
|
|
|
|
seek offsets are assigned sequentially when the directories are read.
|
|
Thus if:
|
|
|
|
- read part of a directory
|
|
- remember an offset, and close the directory
|
|
- re-open the directory some time later
|
|
- seek to the remembered offset
|
|
|
|
there may be little correlation between the old and new locations in
|
|
the list of filenames, particularly if anything has changed in the
|
|
directory.
|
|
|
|
Readdir on directories that are not merged is simply handled by the
|
|
underlying directory (upper or lower).
|
|
|
|
renaming directories
|
|
--------------------
|
|
|
|
When renaming a directory that is on the lower layer or merged (i.e. the
|
|
directory was not created on the upper layer to start with) overlayfs can
|
|
handle it in two different ways:
|
|
|
|
1. return EXDEV error: this error is returned by rename(2) when trying to
|
|
move a file or directory across filesystem boundaries. Hence
|
|
applications are usually prepared to handle this error (mv(1) for example
|
|
recursively copies the directory tree). This is the default behavior.
|
|
|
|
2. If the "redirect_dir" feature is enabled, then the directory will be
|
|
copied up (but not the contents). Then the "trusted.overlay.redirect"
|
|
extended attribute is set to the path of the original location from the
|
|
root of the overlay. Finally the directory is moved to the new
|
|
location.
|
|
|
|
There are several ways to tune the "redirect_dir" feature.
|
|
|
|
Kernel config options:
|
|
|
|
- OVERLAY_FS_REDIRECT_DIR:
|
|
If this is enabled, then redirect_dir is turned on by default.
|
|
- OVERLAY_FS_REDIRECT_ALWAYS_FOLLOW:
|
|
If this is enabled, then redirects are always followed by default. Enabling
|
|
this results in a less secure configuration. Enable this option only when
|
|
worried about backward compatibility with kernels that have the redirect_dir
|
|
feature and follow redirects even if turned off.
|
|
|
|
Module options (can also be changed through /sys/module/overlay/parameters/):
|
|
|
|
- "redirect_dir=BOOL":
|
|
See OVERLAY_FS_REDIRECT_DIR kernel config option above.
|
|
- "redirect_always_follow=BOOL":
|
|
See OVERLAY_FS_REDIRECT_ALWAYS_FOLLOW kernel config option above.
|
|
- "redirect_max=NUM":
|
|
The maximum number of bytes in an absolute redirect (default is 256).
|
|
|
|
Mount options:
|
|
|
|
- "redirect_dir=on":
|
|
Redirects are enabled.
|
|
- "redirect_dir=follow":
|
|
Redirects are not created, but followed.
|
|
- "redirect_dir=nofollow":
|
|
Redirects are not created and not followed.
|
|
- "redirect_dir=off":
|
|
If "redirect_always_follow" is enabled in the kernel/module config,
|
|
this "off" translates to "follow", otherwise it translates to "nofollow".
|
|
|
|
When the NFS export feature is enabled, every copied up directory is
|
|
indexed by the file handle of the lower inode and a file handle of the
|
|
upper directory is stored in a "trusted.overlay.upper" extended attribute
|
|
on the index entry. On lookup of a merged directory, if the upper
|
|
directory does not match the file handle stores in the index, that is an
|
|
indication that multiple upper directories may be redirected to the same
|
|
lower directory. In that case, lookup returns an error and warns about
|
|
a possible inconsistency.
|
|
|
|
Because lower layer redirects cannot be verified with the index, enabling
|
|
NFS export support on an overlay filesystem with no upper layer requires
|
|
turning off redirect follow (e.g. "redirect_dir=nofollow").
|
|
|
|
|
|
Non-directories
|
|
---------------
|
|
|
|
Objects that are not directories (files, symlinks, device-special
|
|
files etc.) are presented either from the upper or lower filesystem as
|
|
appropriate. When a file in the lower filesystem is accessed in a way
|
|
the requires write-access, such as opening for write access, changing
|
|
some metadata etc., the file is first copied from the lower filesystem
|
|
to the upper filesystem (copy_up). Note that creating a hard-link
|
|
also requires copy_up, though of course creation of a symlink does
|
|
not.
|
|
|
|
The copy_up may turn out to be unnecessary, for example if the file is
|
|
opened for read-write but the data is not modified.
|
|
|
|
The copy_up process first makes sure that the containing directory
|
|
exists in the upper filesystem - creating it and any parents as
|
|
necessary. It then creates the object with the same metadata (owner,
|
|
mode, mtime, symlink-target etc.) and then if the object is a file, the
|
|
data is copied from the lower to the upper filesystem. Finally any
|
|
extended attributes are copied up.
|
|
|
|
Once the copy_up is complete, the overlay filesystem simply
|
|
provides direct access to the newly created file in the upper
|
|
filesystem - future operations on the file are barely noticed by the
|
|
overlay filesystem (though an operation on the name of the file such as
|
|
rename or unlink will of course be noticed and handled).
|
|
|
|
|
|
Permission model
|
|
----------------
|
|
|
|
Permission checking in the overlay filesystem follows these principles:
|
|
|
|
1) permission check SHOULD return the same result before and after copy up
|
|
|
|
2) task creating the overlay mount MUST NOT gain additional privileges
|
|
|
|
3) non-mounting task MAY gain additional privileges through the overlay,
|
|
compared to direct access on underlying lower or upper filesystems
|
|
|
|
This is achieved by performing two permission checks on each access:
|
|
|
|
a) check if current task is allowed access based on local DAC (owner,
|
|
group, mode and posix acl), as well as MAC checks
|
|
|
|
b) check if mounting task would be allowed real operation on lower or
|
|
upper layer based on underlying filesystem permissions, again including
|
|
MAC checks
|
|
|
|
Check (a) ensures consistency (1) since owner, group, mode and posix acls
|
|
are copied up. On the other hand it can result in server enforced
|
|
permissions (used by NFS, for example) being ignored (3).
|
|
|
|
Check (b) ensures that no task gains permissions to underlying layers that
|
|
the mounting task does not have (2). This also means that it is possible
|
|
to create setups where the consistency rule (1) does not hold; normally,
|
|
however, the mounting task will have sufficient privileges to perform all
|
|
operations.
|
|
|
|
Another way to demonstrate this model is drawing parallels between::
|
|
|
|
mount -t overlay overlay -olowerdir=/lower,upperdir=/upper,... /merged
|
|
|
|
and::
|
|
|
|
cp -a /lower /upper
|
|
mount --bind /upper /merged
|
|
|
|
The resulting access permissions should be the same. The difference is in
|
|
the time of copy (on-demand vs. up-front).
|
|
|
|
|
|
Multiple lower layers
|
|
---------------------
|
|
|
|
Multiple lower layers can now be given using the colon (":") as a
|
|
separator character between the directory names. For example::
|
|
|
|
mount -t overlay overlay -olowerdir=/lower1:/lower2:/lower3 /merged
|
|
|
|
As the example shows, "upperdir=" and "workdir=" may be omitted. In
|
|
that case the overlay will be read-only.
|
|
|
|
The specified lower directories will be stacked beginning from the
|
|
rightmost one and going left. In the above example lower1 will be the
|
|
top, lower2 the middle and lower3 the bottom layer.
|
|
|
|
Note: directory names containing colons can be provided as lower layer by
|
|
escaping the colons with a single backslash. For example::
|
|
|
|
mount -t overlay overlay -olowerdir=/a\:lower\:\:dir /merged
|
|
|
|
Since kernel version v6.8, directory names containing colons can also
|
|
be configured as lower layer using the "lowerdir+" mount options and the
|
|
fsconfig syscall from new mount api. For example::
|
|
|
|
fsconfig(fs_fd, FSCONFIG_SET_STRING, "lowerdir+", "/a:lower::dir", 0);
|
|
|
|
In the latter case, colons in lower layer directory names will be escaped
|
|
as an octal characters (\072) when displayed in /proc/self/mountinfo.
|
|
|
|
Metadata only copy up
|
|
---------------------
|
|
|
|
When the "metacopy" feature is enabled, overlayfs will only copy
|
|
up metadata (as opposed to whole file), when a metadata specific operation
|
|
like chown/chmod is performed. An upper file in this state is marked with
|
|
"trusted.overlayfs.metacopy" xattr which indicates that the upper file
|
|
contains no data. The data will be copied up later when file is opened for
|
|
WRITE operation. After the lower file's data is copied up,
|
|
the "trusted.overlayfs.metacopy" xattr is removed from the upper file.
|
|
|
|
In other words, this is delayed data copy up operation and data is copied
|
|
up when there is a need to actually modify data.
|
|
|
|
There are multiple ways to enable/disable this feature. A config option
|
|
CONFIG_OVERLAY_FS_METACOPY can be set/unset to enable/disable this feature
|
|
by default. Or one can enable/disable it at module load time with module
|
|
parameter metacopy=on/off. Lastly, there is also a per mount option
|
|
metacopy=on/off to enable/disable this feature per mount.
|
|
|
|
Do not use metacopy=on with untrusted upper/lower directories. Otherwise
|
|
it is possible that an attacker can create a handcrafted file with
|
|
appropriate REDIRECT and METACOPY xattrs, and gain access to file on lower
|
|
pointed by REDIRECT. This should not be possible on local system as setting
|
|
"trusted." xattrs will require CAP_SYS_ADMIN. But it should be possible
|
|
for untrusted layers like from a pen drive.
|
|
|
|
Note: redirect_dir={off|nofollow|follow[*]} and nfs_export=on mount options
|
|
conflict with metacopy=on, and will result in an error.
|
|
|
|
[*] redirect_dir=follow only conflicts with metacopy=on if upperdir=... is
|
|
given.
|
|
|
|
|
|
Data-only lower layers
|
|
----------------------
|
|
|
|
With "metacopy" feature enabled, an overlayfs regular file may be a composition
|
|
of information from up to three different layers:
|
|
|
|
1) metadata from a file in the upper layer
|
|
|
|
2) st_ino and st_dev object identifier from a file in a lower layer
|
|
|
|
3) data from a file in another lower layer (further below)
|
|
|
|
The "lower data" file can be on any lower layer, except from the top most
|
|
lower layer.
|
|
|
|
Below the top most lower layer, any number of lower most layers may be defined
|
|
as "data-only" lower layers, using double colon ("::") separators.
|
|
A normal lower layer is not allowed to be below a data-only layer, so single
|
|
colon separators are not allowed to the right of double colon ("::") separators.
|
|
|
|
|
|
For example::
|
|
|
|
mount -t overlay overlay -olowerdir=/l1:/l2:/l3::/do1::/do2 /merged
|
|
|
|
The paths of files in the "data-only" lower layers are not visible in the
|
|
merged overlayfs directories and the metadata and st_ino/st_dev of files
|
|
in the "data-only" lower layers are not visible in overlayfs inodes.
|
|
|
|
Only the data of the files in the "data-only" lower layers may be visible
|
|
when a "metacopy" file in one of the lower layers above it, has a "redirect"
|
|
to the absolute path of the "lower data" file in the "data-only" lower layer.
|
|
|
|
Since kernel version v6.8, "data-only" lower layers can also be added using
|
|
the "datadir+" mount options and the fsconfig syscall from new mount api.
|
|
For example::
|
|
|
|
fsconfig(fs_fd, FSCONFIG_SET_STRING, "lowerdir+", "/l1", 0);
|
|
fsconfig(fs_fd, FSCONFIG_SET_STRING, "lowerdir+", "/l2", 0);
|
|
fsconfig(fs_fd, FSCONFIG_SET_STRING, "lowerdir+", "/l3", 0);
|
|
fsconfig(fs_fd, FSCONFIG_SET_STRING, "datadir+", "/do1", 0);
|
|
fsconfig(fs_fd, FSCONFIG_SET_STRING, "datadir+", "/do2", 0);
|
|
|
|
|
|
fs-verity support
|
|
-----------------
|
|
|
|
During metadata copy up of a lower file, if the source file has
|
|
fs-verity enabled and overlay verity support is enabled, then the
|
|
digest of the lower file is added to the "trusted.overlay.metacopy"
|
|
xattr. This is then used to verify the content of the lower file
|
|
each the time the metacopy file is opened.
|
|
|
|
When a layer containing verity xattrs is used, it means that any such
|
|
metacopy file in the upper layer is guaranteed to match the content
|
|
that was in the lower at the time of the copy-up. If at any time
|
|
(during a mount, after a remount, etc) such a file in the lower is
|
|
replaced or modified in any way, access to the corresponding file in
|
|
overlayfs will result in EIO errors (either on open, due to overlayfs
|
|
digest check, or from a later read due to fs-verity) and a detailed
|
|
error is printed to the kernel logs. For more details of how fs-verity
|
|
file access works, see :ref:`Documentation/filesystems/fsverity.rst
|
|
<accessing_verity_files>`.
|
|
|
|
Verity can be used as a general robustness check to detect accidental
|
|
changes in the overlayfs directories in use. But, with additional care
|
|
it can also give more powerful guarantees. For example, if the upper
|
|
layer is fully trusted (by using dm-verity or something similar), then
|
|
an untrusted lower layer can be used to supply validated file content
|
|
for all metacopy files. If additionally the untrusted lower
|
|
directories are specified as "Data-only", then they can only supply
|
|
such file content, and the entire mount can be trusted to match the
|
|
upper layer.
|
|
|
|
This feature is controlled by the "verity" mount option, which
|
|
supports these values:
|
|
|
|
- "off":
|
|
The metacopy digest is never generated or used. This is the
|
|
default if verity option is not specified.
|
|
- "on":
|
|
Whenever a metacopy files specifies an expected digest, the
|
|
corresponding data file must match the specified digest. When
|
|
generating a metacopy file the verity digest will be set in it
|
|
based on the source file (if it has one).
|
|
- "require":
|
|
Same as "on", but additionally all metacopy files must specify a
|
|
digest (or EIO is returned on open). This means metadata copy up
|
|
will only be used if the data file has fs-verity enabled,
|
|
otherwise a full copy-up is used.
|
|
|
|
Sharing and copying layers
|
|
--------------------------
|
|
|
|
Lower layers may be shared among several overlay mounts and that is indeed
|
|
a very common practice. An overlay mount may use the same lower layer
|
|
path as another overlay mount and it may use a lower layer path that is
|
|
beneath or above the path of another overlay lower layer path.
|
|
|
|
Using an upper layer path and/or a workdir path that are already used by
|
|
another overlay mount is not allowed and may fail with EBUSY. Using
|
|
partially overlapping paths is not allowed and may fail with EBUSY.
|
|
If files are accessed from two overlayfs mounts which share or overlap the
|
|
upper layer and/or workdir path the behavior of the overlay is undefined,
|
|
though it will not result in a crash or deadlock.
|
|
|
|
Mounting an overlay using an upper layer path, where the upper layer path
|
|
was previously used by another mounted overlay in combination with a
|
|
different lower layer path, is allowed, unless the "index" or "metacopy"
|
|
features are enabled.
|
|
|
|
With the "index" feature, on the first time mount, an NFS file
|
|
handle of the lower layer root directory, along with the UUID of the lower
|
|
filesystem, are encoded and stored in the "trusted.overlay.origin" extended
|
|
attribute on the upper layer root directory. On subsequent mount attempts,
|
|
the lower root directory file handle and lower filesystem UUID are compared
|
|
to the stored origin in upper root directory. On failure to verify the
|
|
lower root origin, mount will fail with ESTALE. An overlayfs mount with
|
|
"index" enabled will fail with EOPNOTSUPP if the lower filesystem
|
|
does not support NFS export, lower filesystem does not have a valid UUID or
|
|
if the upper filesystem does not support extended attributes.
|
|
|
|
For the "metacopy" feature, there is no verification mechanism at
|
|
mount time. So if same upper is mounted with different set of lower, mount
|
|
probably will succeed but expect the unexpected later on. So don't do it.
|
|
|
|
It is quite a common practice to copy overlay layers to a different
|
|
directory tree on the same or different underlying filesystem, and even
|
|
to a different machine. With the "index" feature, trying to mount
|
|
the copied layers will fail the verification of the lower root file handle.
|
|
|
|
Nesting overlayfs mounts
|
|
------------------------
|
|
|
|
It is possible to use a lower directory that is stored on an overlayfs
|
|
mount. For regular files this does not need any special care. However, files
|
|
that have overlayfs attributes, such as whiteouts or "overlay.*" xattrs will be
|
|
interpreted by the underlying overlayfs mount and stripped out. In order to
|
|
allow the second overlayfs mount to see the attributes they must be escaped.
|
|
|
|
Overlayfs specific xattrs are escaped by using a special prefix of
|
|
"overlay.overlay.". So, a file with a "trusted.overlay.overlay.metacopy" xattr
|
|
in the lower dir will be exposed as a regular file with a
|
|
"trusted.overlay.metacopy" xattr in the overlayfs mount. This can be nested by
|
|
repeating the prefix multiple time, as each instance only removes one prefix.
|
|
|
|
A lower dir with a regular whiteout will always be handled by the overlayfs
|
|
mount, so to support storing an effective whiteout file in an overlayfs mount an
|
|
alternative form of whiteout is supported. This form is a regular, zero-size
|
|
file with the "overlay.whiteout" xattr set, inside a directory with the
|
|
"overlay.opaque" xattr set to "x" (see `whiteouts and opaque directories`_).
|
|
These alternative whiteouts are never created by overlayfs, but can be used by
|
|
userspace tools (like containers) that generate lower layers.
|
|
These alternative whiteouts can be escaped using the standard xattr escape
|
|
mechanism in order to properly nest to any depth.
|
|
|
|
Non-standard behavior
|
|
---------------------
|
|
|
|
Current version of overlayfs can act as a mostly POSIX compliant
|
|
filesystem.
|
|
|
|
This is the list of cases that overlayfs doesn't currently handle:
|
|
|
|
a) POSIX mandates updating st_atime for reads. This is currently not
|
|
done in the case when the file resides on a lower layer.
|
|
|
|
b) If a file residing on a lower layer is opened for read-only and then
|
|
memory mapped with MAP_SHARED, then subsequent changes to the file are not
|
|
reflected in the memory mapping.
|
|
|
|
c) If a file residing on a lower layer is being executed, then opening that
|
|
file for write or truncating the file will not be denied with ETXTBSY.
|
|
|
|
The following options allow overlayfs to act more like a standards
|
|
compliant filesystem:
|
|
|
|
redirect_dir
|
|
````````````
|
|
|
|
Enabled with the mount option or module option: "redirect_dir=on" or with
|
|
the kernel config option CONFIG_OVERLAY_FS_REDIRECT_DIR=y.
|
|
|
|
If this feature is disabled, then rename(2) on a lower or merged directory
|
|
will fail with EXDEV ("Invalid cross-device link").
|
|
|
|
index
|
|
`````
|
|
|
|
Enabled with the mount option or module option "index=on" or with the
|
|
kernel config option CONFIG_OVERLAY_FS_INDEX=y.
|
|
|
|
If this feature is disabled and a file with multiple hard links is copied
|
|
up, then this will "break" the link. Changes will not be propagated to
|
|
other names referring to the same inode.
|
|
|
|
xino
|
|
````
|
|
|
|
Enabled with the mount option "xino=auto" or "xino=on", with the module
|
|
option "xino_auto=on" or with the kernel config option
|
|
CONFIG_OVERLAY_FS_XINO_AUTO=y. Also implicitly enabled by using the same
|
|
underlying filesystem for all layers making up the overlay.
|
|
|
|
If this feature is disabled or the underlying filesystem doesn't have
|
|
enough free bits in the inode number, then overlayfs will not be able to
|
|
guarantee that the values of st_ino and st_dev returned by stat(2) and the
|
|
value of d_ino returned by readdir(3) will act like on a normal filesystem.
|
|
E.g. the value of st_dev may be different for two objects in the same
|
|
overlay filesystem and the value of st_ino for filesystem objects may not be
|
|
persistent and could change even while the overlay filesystem is mounted, as
|
|
summarized in the `Inode properties`_ table above.
|
|
|
|
|
|
Changes to underlying filesystems
|
|
---------------------------------
|
|
|
|
Changes to the underlying filesystems while part of a mounted overlay
|
|
filesystem are not allowed. If the underlying filesystem is changed,
|
|
the behavior of the overlay is undefined, though it will not result in
|
|
a crash or deadlock.
|
|
|
|
Offline changes, when the overlay is not mounted, are allowed to the
|
|
upper tree. Offline changes to the lower tree are only allowed if the
|
|
"metacopy", "index", "xino" and "redirect_dir" features
|
|
have not been used. If the lower tree is modified and any of these
|
|
features has been used, the behavior of the overlay is undefined,
|
|
though it will not result in a crash or deadlock.
|
|
|
|
When the overlay NFS export feature is enabled, overlay filesystems
|
|
behavior on offline changes of the underlying lower layer is different
|
|
than the behavior when NFS export is disabled.
|
|
|
|
On every copy_up, an NFS file handle of the lower inode, along with the
|
|
UUID of the lower filesystem, are encoded and stored in an extended
|
|
attribute "trusted.overlay.origin" on the upper inode.
|
|
|
|
When the NFS export feature is enabled, a lookup of a merged directory,
|
|
that found a lower directory at the lookup path or at the path pointed
|
|
to by the "trusted.overlay.redirect" extended attribute, will verify
|
|
that the found lower directory file handle and lower filesystem UUID
|
|
match the origin file handle that was stored at copy_up time. If a
|
|
found lower directory does not match the stored origin, that directory
|
|
will not be merged with the upper directory.
|
|
|
|
|
|
|
|
NFS export
|
|
----------
|
|
|
|
When the underlying filesystems supports NFS export and the "nfs_export"
|
|
feature is enabled, an overlay filesystem may be exported to NFS.
|
|
|
|
With the "nfs_export" feature, on copy_up of any lower object, an index
|
|
entry is created under the index directory. The index entry name is the
|
|
hexadecimal representation of the copy up origin file handle. For a
|
|
non-directory object, the index entry is a hard link to the upper inode.
|
|
For a directory object, the index entry has an extended attribute
|
|
"trusted.overlay.upper" with an encoded file handle of the upper
|
|
directory inode.
|
|
|
|
When encoding a file handle from an overlay filesystem object, the
|
|
following rules apply:
|
|
|
|
1. For a non-upper object, encode a lower file handle from lower inode
|
|
2. For an indexed object, encode a lower file handle from copy_up origin
|
|
3. For a pure-upper object and for an existing non-indexed upper object,
|
|
encode an upper file handle from upper inode
|
|
|
|
The encoded overlay file handle includes:
|
|
|
|
- Header including path type information (e.g. lower/upper)
|
|
- UUID of the underlying filesystem
|
|
- Underlying filesystem encoding of underlying inode
|
|
|
|
This encoding format is identical to the encoding format file handles that
|
|
are stored in extended attribute "trusted.overlay.origin".
|
|
|
|
When decoding an overlay file handle, the following steps are followed:
|
|
|
|
1. Find underlying layer by UUID and path type information.
|
|
2. Decode the underlying filesystem file handle to underlying dentry.
|
|
3. For a lower file handle, lookup the handle in index directory by name.
|
|
4. If a whiteout is found in index, return ESTALE. This represents an
|
|
overlay object that was deleted after its file handle was encoded.
|
|
5. For a non-directory, instantiate a disconnected overlay dentry from the
|
|
decoded underlying dentry, the path type and index inode, if found.
|
|
6. For a directory, use the connected underlying decoded dentry, path type
|
|
and index, to lookup a connected overlay dentry.
|
|
|
|
Decoding a non-directory file handle may return a disconnected dentry.
|
|
copy_up of that disconnected dentry will create an upper index entry with
|
|
no upper alias.
|
|
|
|
When overlay filesystem has multiple lower layers, a middle layer
|
|
directory may have a "redirect" to lower directory. Because middle layer
|
|
"redirects" are not indexed, a lower file handle that was encoded from the
|
|
"redirect" origin directory, cannot be used to find the middle or upper
|
|
layer directory. Similarly, a lower file handle that was encoded from a
|
|
descendant of the "redirect" origin directory, cannot be used to
|
|
reconstruct a connected overlay path. To mitigate the cases of
|
|
directories that cannot be decoded from a lower file handle, these
|
|
directories are copied up on encode and encoded as an upper file handle.
|
|
On an overlay filesystem with no upper layer this mitigation cannot be
|
|
used NFS export in this setup requires turning off redirect follow (e.g.
|
|
"redirect_dir=nofollow").
|
|
|
|
The overlay filesystem does not support non-directory connectable file
|
|
handles, so exporting with the 'subtree_check' exportfs configuration will
|
|
cause failures to lookup files over NFS.
|
|
|
|
When the NFS export feature is enabled, all directory index entries are
|
|
verified on mount time to check that upper file handles are not stale.
|
|
This verification may cause significant overhead in some cases.
|
|
|
|
Note: the mount options index=off,nfs_export=on are conflicting for a
|
|
read-write mount and will result in an error.
|
|
|
|
Note: the mount option uuid=off can be used to replace UUID of the underlying
|
|
filesystem in file handles with null, and effectively disable UUID checks. This
|
|
can be useful in case the underlying disk is copied and the UUID of this copy
|
|
is changed. This is only applicable if all lower/upper/work directories are on
|
|
the same filesystem, otherwise it will fallback to normal behaviour.
|
|
|
|
|
|
UUID and fsid
|
|
-------------
|
|
|
|
The UUID of overlayfs instance itself and the fsid reported by statfs(2) are
|
|
controlled by the "uuid" mount option, which supports these values:
|
|
|
|
- "null":
|
|
UUID of overlayfs is null. fsid is taken from upper most filesystem.
|
|
- "off":
|
|
UUID of overlayfs is null. fsid is taken from upper most filesystem.
|
|
UUID of underlying layers is ignored.
|
|
- "on":
|
|
UUID of overlayfs is generated and used to report a unique fsid.
|
|
UUID is stored in xattr "trusted.overlay.uuid", making overlayfs fsid
|
|
unique and persistent. This option requires an overlayfs with upper
|
|
filesystem that supports xattrs.
|
|
- "auto": (default)
|
|
UUID is taken from xattr "trusted.overlay.uuid" if it exists.
|
|
Upgrade to "uuid=on" on first time mount of new overlay filesystem that
|
|
meets the prerequites.
|
|
Downgrade to "uuid=null" for existing overlay filesystems that were never
|
|
mounted with "uuid=on".
|
|
|
|
|
|
Volatile mount
|
|
--------------
|
|
|
|
This is enabled with the "volatile" mount option. Volatile mounts are not
|
|
guaranteed to survive a crash. It is strongly recommended that volatile
|
|
mounts are only used if data written to the overlay can be recreated
|
|
without significant effort.
|
|
|
|
The advantage of mounting with the "volatile" option is that all forms of
|
|
sync calls to the upper filesystem are omitted.
|
|
|
|
In order to avoid a giving a false sense of safety, the syncfs (and fsync)
|
|
semantics of volatile mounts are slightly different than that of the rest of
|
|
VFS. If any writeback error occurs on the upperdir's filesystem after a
|
|
volatile mount takes place, all sync functions will return an error. Once this
|
|
condition is reached, the filesystem will not recover, and every subsequent sync
|
|
call will return an error, even if the upperdir has not experience a new error
|
|
since the last sync call.
|
|
|
|
When overlay is mounted with "volatile" option, the directory
|
|
"$workdir/work/incompat/volatile" is created. During next mount, overlay
|
|
checks for this directory and refuses to mount if present. This is a strong
|
|
indicator that user should throw away upper and work directories and create
|
|
fresh one. In very limited cases where the user knows that the system has
|
|
not crashed and contents of upperdir are intact, The "volatile" directory
|
|
can be removed.
|
|
|
|
|
|
User xattr
|
|
----------
|
|
|
|
The "-o userxattr" mount option forces overlayfs to use the
|
|
"user.overlay." xattr namespace instead of "trusted.overlay.". This is
|
|
useful for unprivileged mounting of overlayfs.
|
|
|
|
|
|
Testsuite
|
|
---------
|
|
|
|
There's a testsuite originally developed by David Howells and currently
|
|
maintained by Amir Goldstein at:
|
|
|
|
https://github.com/amir73il/unionmount-testsuite.git
|
|
|
|
Run as root::
|
|
|
|
# cd unionmount-testsuite
|
|
# ./run --ov --verify
|