linux/crypto/testmgr.c
Ard Biesheuvel 04b46fbdea crypto: testmgr - fix overlap in chunked tests again
Commit 7e4c7f17cde2 ("crypto: testmgr - avoid overlap in chunked tests")
attempted to address a problem in the crypto testmgr code where chunked
test cases are copied to memory in a way that results in overlap.

However, the fix recreated the exact same issue for other chunked tests,
by putting IDX3 within 492 bytes of IDX1, which causes overlap if the
first chunk exceeds 492 bytes, which is the case for at least one of
the xts(aes) test cases.

So increase IDX3 by another 1000 bytes.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2016-12-08 20:14:59 +08:00

4201 lines
90 KiB
C

/*
* Algorithm testing framework and tests.
*
* Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
* Copyright (c) 2002 Jean-Francois Dive <jef@linuxbe.org>
* Copyright (c) 2007 Nokia Siemens Networks
* Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
*
* Updated RFC4106 AES-GCM testing.
* Authors: Aidan O'Mahony (aidan.o.mahony@intel.com)
* Adrian Hoban <adrian.hoban@intel.com>
* Gabriele Paoloni <gabriele.paoloni@intel.com>
* Tadeusz Struk (tadeusz.struk@intel.com)
* Copyright (c) 2010, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#include <crypto/aead.h>
#include <crypto/hash.h>
#include <crypto/skcipher.h>
#include <linux/err.h>
#include <linux/fips.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <crypto/rng.h>
#include <crypto/drbg.h>
#include <crypto/akcipher.h>
#include <crypto/kpp.h>
#include <crypto/acompress.h>
#include "internal.h"
static bool notests;
module_param(notests, bool, 0644);
MODULE_PARM_DESC(notests, "disable crypto self-tests");
#ifdef CONFIG_CRYPTO_MANAGER_DISABLE_TESTS
/* a perfect nop */
int alg_test(const char *driver, const char *alg, u32 type, u32 mask)
{
return 0;
}
#else
#include "testmgr.h"
/*
* Need slab memory for testing (size in number of pages).
*/
#define XBUFSIZE 8
/*
* Indexes into the xbuf to simulate cross-page access.
*/
#define IDX1 32
#define IDX2 32400
#define IDX3 1511
#define IDX4 8193
#define IDX5 22222
#define IDX6 17101
#define IDX7 27333
#define IDX8 3000
/*
* Used by test_cipher()
*/
#define ENCRYPT 1
#define DECRYPT 0
struct tcrypt_result {
struct completion completion;
int err;
};
struct aead_test_suite {
struct {
struct aead_testvec *vecs;
unsigned int count;
} enc, dec;
};
struct cipher_test_suite {
struct {
struct cipher_testvec *vecs;
unsigned int count;
} enc, dec;
};
struct comp_test_suite {
struct {
struct comp_testvec *vecs;
unsigned int count;
} comp, decomp;
};
struct hash_test_suite {
struct hash_testvec *vecs;
unsigned int count;
};
struct cprng_test_suite {
struct cprng_testvec *vecs;
unsigned int count;
};
struct drbg_test_suite {
struct drbg_testvec *vecs;
unsigned int count;
};
struct akcipher_test_suite {
struct akcipher_testvec *vecs;
unsigned int count;
};
struct kpp_test_suite {
struct kpp_testvec *vecs;
unsigned int count;
};
struct alg_test_desc {
const char *alg;
int (*test)(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask);
int fips_allowed; /* set if alg is allowed in fips mode */
union {
struct aead_test_suite aead;
struct cipher_test_suite cipher;
struct comp_test_suite comp;
struct hash_test_suite hash;
struct cprng_test_suite cprng;
struct drbg_test_suite drbg;
struct akcipher_test_suite akcipher;
struct kpp_test_suite kpp;
} suite;
};
static unsigned int IDX[8] = { IDX1, IDX2, IDX3, IDX4, IDX5, IDX6, IDX7, IDX8 };
static void hexdump(unsigned char *buf, unsigned int len)
{
print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
16, 1,
buf, len, false);
}
static void tcrypt_complete(struct crypto_async_request *req, int err)
{
struct tcrypt_result *res = req->data;
if (err == -EINPROGRESS)
return;
res->err = err;
complete(&res->completion);
}
static int testmgr_alloc_buf(char *buf[XBUFSIZE])
{
int i;
for (i = 0; i < XBUFSIZE; i++) {
buf[i] = (void *)__get_free_page(GFP_KERNEL);
if (!buf[i])
goto err_free_buf;
}
return 0;
err_free_buf:
while (i-- > 0)
free_page((unsigned long)buf[i]);
return -ENOMEM;
}
static void testmgr_free_buf(char *buf[XBUFSIZE])
{
int i;
for (i = 0; i < XBUFSIZE; i++)
free_page((unsigned long)buf[i]);
}
static int wait_async_op(struct tcrypt_result *tr, int ret)
{
if (ret == -EINPROGRESS || ret == -EBUSY) {
wait_for_completion(&tr->completion);
reinit_completion(&tr->completion);
ret = tr->err;
}
return ret;
}
static int ahash_partial_update(struct ahash_request **preq,
struct crypto_ahash *tfm, struct hash_testvec *template,
void *hash_buff, int k, int temp, struct scatterlist *sg,
const char *algo, char *result, struct tcrypt_result *tresult)
{
char *state;
struct ahash_request *req;
int statesize, ret = -EINVAL;
const char guard[] = { 0x00, 0xba, 0xad, 0x00 };
req = *preq;
statesize = crypto_ahash_statesize(
crypto_ahash_reqtfm(req));
state = kmalloc(statesize + sizeof(guard), GFP_KERNEL);
if (!state) {
pr_err("alt: hash: Failed to alloc state for %s\n", algo);
goto out_nostate;
}
memcpy(state + statesize, guard, sizeof(guard));
ret = crypto_ahash_export(req, state);
WARN_ON(memcmp(state + statesize, guard, sizeof(guard)));
if (ret) {
pr_err("alt: hash: Failed to export() for %s\n", algo);
goto out;
}
ahash_request_free(req);
req = ahash_request_alloc(tfm, GFP_KERNEL);
if (!req) {
pr_err("alg: hash: Failed to alloc request for %s\n", algo);
goto out_noreq;
}
ahash_request_set_callback(req,
CRYPTO_TFM_REQ_MAY_BACKLOG,
tcrypt_complete, tresult);
memcpy(hash_buff, template->plaintext + temp,
template->tap[k]);
sg_init_one(&sg[0], hash_buff, template->tap[k]);
ahash_request_set_crypt(req, sg, result, template->tap[k]);
ret = crypto_ahash_import(req, state);
if (ret) {
pr_err("alg: hash: Failed to import() for %s\n", algo);
goto out;
}
ret = wait_async_op(tresult, crypto_ahash_update(req));
if (ret)
goto out;
*preq = req;
ret = 0;
goto out_noreq;
out:
ahash_request_free(req);
out_noreq:
kfree(state);
out_nostate:
return ret;
}
static int __test_hash(struct crypto_ahash *tfm, struct hash_testvec *template,
unsigned int tcount, bool use_digest,
const int align_offset)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
unsigned int i, j, k, temp;
struct scatterlist sg[8];
char *result;
char *key;
struct ahash_request *req;
struct tcrypt_result tresult;
void *hash_buff;
char *xbuf[XBUFSIZE];
int ret = -ENOMEM;
result = kmalloc(MAX_DIGEST_SIZE, GFP_KERNEL);
if (!result)
return ret;
key = kmalloc(MAX_KEYLEN, GFP_KERNEL);
if (!key)
goto out_nobuf;
if (testmgr_alloc_buf(xbuf))
goto out_nobuf;
init_completion(&tresult.completion);
req = ahash_request_alloc(tfm, GFP_KERNEL);
if (!req) {
printk(KERN_ERR "alg: hash: Failed to allocate request for "
"%s\n", algo);
goto out_noreq;
}
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
tcrypt_complete, &tresult);
j = 0;
for (i = 0; i < tcount; i++) {
if (template[i].np)
continue;
ret = -EINVAL;
if (WARN_ON(align_offset + template[i].psize > PAGE_SIZE))
goto out;
j++;
memset(result, 0, MAX_DIGEST_SIZE);
hash_buff = xbuf[0];
hash_buff += align_offset;
memcpy(hash_buff, template[i].plaintext, template[i].psize);
sg_init_one(&sg[0], hash_buff, template[i].psize);
if (template[i].ksize) {
crypto_ahash_clear_flags(tfm, ~0);
if (template[i].ksize > MAX_KEYLEN) {
pr_err("alg: hash: setkey failed on test %d for %s: key size %d > %d\n",
j, algo, template[i].ksize, MAX_KEYLEN);
ret = -EINVAL;
goto out;
}
memcpy(key, template[i].key, template[i].ksize);
ret = crypto_ahash_setkey(tfm, key, template[i].ksize);
if (ret) {
printk(KERN_ERR "alg: hash: setkey failed on "
"test %d for %s: ret=%d\n", j, algo,
-ret);
goto out;
}
}
ahash_request_set_crypt(req, sg, result, template[i].psize);
if (use_digest) {
ret = wait_async_op(&tresult, crypto_ahash_digest(req));
if (ret) {
pr_err("alg: hash: digest failed on test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
} else {
ret = wait_async_op(&tresult, crypto_ahash_init(req));
if (ret) {
pr_err("alt: hash: init failed on test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
ret = wait_async_op(&tresult, crypto_ahash_update(req));
if (ret) {
pr_err("alt: hash: update failed on test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
ret = wait_async_op(&tresult, crypto_ahash_final(req));
if (ret) {
pr_err("alt: hash: final failed on test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
}
if (memcmp(result, template[i].digest,
crypto_ahash_digestsize(tfm))) {
printk(KERN_ERR "alg: hash: Test %d failed for %s\n",
j, algo);
hexdump(result, crypto_ahash_digestsize(tfm));
ret = -EINVAL;
goto out;
}
}
j = 0;
for (i = 0; i < tcount; i++) {
/* alignment tests are only done with continuous buffers */
if (align_offset != 0)
break;
if (!template[i].np)
continue;
j++;
memset(result, 0, MAX_DIGEST_SIZE);
temp = 0;
sg_init_table(sg, template[i].np);
ret = -EINVAL;
for (k = 0; k < template[i].np; k++) {
if (WARN_ON(offset_in_page(IDX[k]) +
template[i].tap[k] > PAGE_SIZE))
goto out;
sg_set_buf(&sg[k],
memcpy(xbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]),
template[i].plaintext + temp,
template[i].tap[k]),
template[i].tap[k]);
temp += template[i].tap[k];
}
if (template[i].ksize) {
if (template[i].ksize > MAX_KEYLEN) {
pr_err("alg: hash: setkey failed on test %d for %s: key size %d > %d\n",
j, algo, template[i].ksize, MAX_KEYLEN);
ret = -EINVAL;
goto out;
}
crypto_ahash_clear_flags(tfm, ~0);
memcpy(key, template[i].key, template[i].ksize);
ret = crypto_ahash_setkey(tfm, key, template[i].ksize);
if (ret) {
printk(KERN_ERR "alg: hash: setkey "
"failed on chunking test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
}
ahash_request_set_crypt(req, sg, result, template[i].psize);
ret = crypto_ahash_digest(req);
switch (ret) {
case 0:
break;
case -EINPROGRESS:
case -EBUSY:
wait_for_completion(&tresult.completion);
reinit_completion(&tresult.completion);
ret = tresult.err;
if (!ret)
break;
/* fall through */
default:
printk(KERN_ERR "alg: hash: digest failed "
"on chunking test %d for %s: "
"ret=%d\n", j, algo, -ret);
goto out;
}
if (memcmp(result, template[i].digest,
crypto_ahash_digestsize(tfm))) {
printk(KERN_ERR "alg: hash: Chunking test %d "
"failed for %s\n", j, algo);
hexdump(result, crypto_ahash_digestsize(tfm));
ret = -EINVAL;
goto out;
}
}
/* partial update exercise */
j = 0;
for (i = 0; i < tcount; i++) {
/* alignment tests are only done with continuous buffers */
if (align_offset != 0)
break;
if (template[i].np < 2)
continue;
j++;
memset(result, 0, MAX_DIGEST_SIZE);
ret = -EINVAL;
hash_buff = xbuf[0];
memcpy(hash_buff, template[i].plaintext,
template[i].tap[0]);
sg_init_one(&sg[0], hash_buff, template[i].tap[0]);
if (template[i].ksize) {
crypto_ahash_clear_flags(tfm, ~0);
if (template[i].ksize > MAX_KEYLEN) {
pr_err("alg: hash: setkey failed on test %d for %s: key size %d > %d\n",
j, algo, template[i].ksize, MAX_KEYLEN);
ret = -EINVAL;
goto out;
}
memcpy(key, template[i].key, template[i].ksize);
ret = crypto_ahash_setkey(tfm, key, template[i].ksize);
if (ret) {
pr_err("alg: hash: setkey failed on test %d for %s: ret=%d\n",
j, algo, -ret);
goto out;
}
}
ahash_request_set_crypt(req, sg, result, template[i].tap[0]);
ret = wait_async_op(&tresult, crypto_ahash_init(req));
if (ret) {
pr_err("alt: hash: init failed on test %d for %s: ret=%d\n",
j, algo, -ret);
goto out;
}
ret = wait_async_op(&tresult, crypto_ahash_update(req));
if (ret) {
pr_err("alt: hash: update failed on test %d for %s: ret=%d\n",
j, algo, -ret);
goto out;
}
temp = template[i].tap[0];
for (k = 1; k < template[i].np; k++) {
ret = ahash_partial_update(&req, tfm, &template[i],
hash_buff, k, temp, &sg[0], algo, result,
&tresult);
if (ret) {
pr_err("hash: partial update failed on test %d for %s: ret=%d\n",
j, algo, -ret);
goto out_noreq;
}
temp += template[i].tap[k];
}
ret = wait_async_op(&tresult, crypto_ahash_final(req));
if (ret) {
pr_err("alt: hash: final failed on test %d for %s: ret=%d\n",
j, algo, -ret);
goto out;
}
if (memcmp(result, template[i].digest,
crypto_ahash_digestsize(tfm))) {
pr_err("alg: hash: Partial Test %d failed for %s\n",
j, algo);
hexdump(result, crypto_ahash_digestsize(tfm));
ret = -EINVAL;
goto out;
}
}
ret = 0;
out:
ahash_request_free(req);
out_noreq:
testmgr_free_buf(xbuf);
out_nobuf:
kfree(key);
kfree(result);
return ret;
}
static int test_hash(struct crypto_ahash *tfm, struct hash_testvec *template,
unsigned int tcount, bool use_digest)
{
unsigned int alignmask;
int ret;
ret = __test_hash(tfm, template, tcount, use_digest, 0);
if (ret)
return ret;
/* test unaligned buffers, check with one byte offset */
ret = __test_hash(tfm, template, tcount, use_digest, 1);
if (ret)
return ret;
alignmask = crypto_tfm_alg_alignmask(&tfm->base);
if (alignmask) {
/* Check if alignment mask for tfm is correctly set. */
ret = __test_hash(tfm, template, tcount, use_digest,
alignmask + 1);
if (ret)
return ret;
}
return 0;
}
static int __test_aead(struct crypto_aead *tfm, int enc,
struct aead_testvec *template, unsigned int tcount,
const bool diff_dst, const int align_offset)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_aead_tfm(tfm));
unsigned int i, j, k, n, temp;
int ret = -ENOMEM;
char *q;
char *key;
struct aead_request *req;
struct scatterlist *sg;
struct scatterlist *sgout;
const char *e, *d;
struct tcrypt_result result;
unsigned int authsize, iv_len;
void *input;
void *output;
void *assoc;
char *iv;
char *xbuf[XBUFSIZE];
char *xoutbuf[XBUFSIZE];
char *axbuf[XBUFSIZE];
iv = kzalloc(MAX_IVLEN, GFP_KERNEL);
if (!iv)
return ret;
key = kmalloc(MAX_KEYLEN, GFP_KERNEL);
if (!key)
goto out_noxbuf;
if (testmgr_alloc_buf(xbuf))
goto out_noxbuf;
if (testmgr_alloc_buf(axbuf))
goto out_noaxbuf;
if (diff_dst && testmgr_alloc_buf(xoutbuf))
goto out_nooutbuf;
/* avoid "the frame size is larger than 1024 bytes" compiler warning */
sg = kmalloc(sizeof(*sg) * 8 * (diff_dst ? 4 : 2), GFP_KERNEL);
if (!sg)
goto out_nosg;
sgout = &sg[16];
if (diff_dst)
d = "-ddst";
else
d = "";
if (enc == ENCRYPT)
e = "encryption";
else
e = "decryption";
init_completion(&result.completion);
req = aead_request_alloc(tfm, GFP_KERNEL);
if (!req) {
pr_err("alg: aead%s: Failed to allocate request for %s\n",
d, algo);
goto out;
}
aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
tcrypt_complete, &result);
iv_len = crypto_aead_ivsize(tfm);
for (i = 0, j = 0; i < tcount; i++) {
if (template[i].np)
continue;
j++;
/* some templates have no input data but they will
* touch input
*/
input = xbuf[0];
input += align_offset;
assoc = axbuf[0];
ret = -EINVAL;
if (WARN_ON(align_offset + template[i].ilen >
PAGE_SIZE || template[i].alen > PAGE_SIZE))
goto out;
memcpy(input, template[i].input, template[i].ilen);
memcpy(assoc, template[i].assoc, template[i].alen);
if (template[i].iv)
memcpy(iv, template[i].iv, iv_len);
else
memset(iv, 0, iv_len);
crypto_aead_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_aead_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
if (template[i].klen > MAX_KEYLEN) {
pr_err("alg: aead%s: setkey failed on test %d for %s: key size %d > %d\n",
d, j, algo, template[i].klen,
MAX_KEYLEN);
ret = -EINVAL;
goto out;
}
memcpy(key, template[i].key, template[i].klen);
ret = crypto_aead_setkey(tfm, key, template[i].klen);
if (template[i].fail == !ret) {
pr_err("alg: aead%s: setkey failed on test %d for %s: flags=%x\n",
d, j, algo, crypto_aead_get_flags(tfm));
goto out;
} else if (ret)
continue;
authsize = abs(template[i].rlen - template[i].ilen);
ret = crypto_aead_setauthsize(tfm, authsize);
if (ret) {
pr_err("alg: aead%s: Failed to set authsize to %u on test %d for %s\n",
d, authsize, j, algo);
goto out;
}
k = !!template[i].alen;
sg_init_table(sg, k + 1);
sg_set_buf(&sg[0], assoc, template[i].alen);
sg_set_buf(&sg[k], input,
template[i].ilen + (enc ? authsize : 0));
output = input;
if (diff_dst) {
sg_init_table(sgout, k + 1);
sg_set_buf(&sgout[0], assoc, template[i].alen);
output = xoutbuf[0];
output += align_offset;
sg_set_buf(&sgout[k], output,
template[i].rlen + (enc ? 0 : authsize));
}
aead_request_set_crypt(req, sg, (diff_dst) ? sgout : sg,
template[i].ilen, iv);
aead_request_set_ad(req, template[i].alen);
ret = enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req);
switch (ret) {
case 0:
if (template[i].novrfy) {
/* verification was supposed to fail */
pr_err("alg: aead%s: %s failed on test %d for %s: ret was 0, expected -EBADMSG\n",
d, e, j, algo);
/* so really, we got a bad message */
ret = -EBADMSG;
goto out;
}
break;
case -EINPROGRESS:
case -EBUSY:
wait_for_completion(&result.completion);
reinit_completion(&result.completion);
ret = result.err;
if (!ret)
break;
case -EBADMSG:
if (template[i].novrfy)
/* verification failure was expected */
continue;
/* fall through */
default:
pr_err("alg: aead%s: %s failed on test %d for %s: ret=%d\n",
d, e, j, algo, -ret);
goto out;
}
q = output;
if (memcmp(q, template[i].result, template[i].rlen)) {
pr_err("alg: aead%s: Test %d failed on %s for %s\n",
d, j, e, algo);
hexdump(q, template[i].rlen);
ret = -EINVAL;
goto out;
}
}
for (i = 0, j = 0; i < tcount; i++) {
/* alignment tests are only done with continuous buffers */
if (align_offset != 0)
break;
if (!template[i].np)
continue;
j++;
if (template[i].iv)
memcpy(iv, template[i].iv, iv_len);
else
memset(iv, 0, MAX_IVLEN);
crypto_aead_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_aead_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
if (template[i].klen > MAX_KEYLEN) {
pr_err("alg: aead%s: setkey failed on test %d for %s: key size %d > %d\n",
d, j, algo, template[i].klen, MAX_KEYLEN);
ret = -EINVAL;
goto out;
}
memcpy(key, template[i].key, template[i].klen);
ret = crypto_aead_setkey(tfm, key, template[i].klen);
if (template[i].fail == !ret) {
pr_err("alg: aead%s: setkey failed on chunk test %d for %s: flags=%x\n",
d, j, algo, crypto_aead_get_flags(tfm));
goto out;
} else if (ret)
continue;
authsize = abs(template[i].rlen - template[i].ilen);
ret = -EINVAL;
sg_init_table(sg, template[i].anp + template[i].np);
if (diff_dst)
sg_init_table(sgout, template[i].anp + template[i].np);
ret = -EINVAL;
for (k = 0, temp = 0; k < template[i].anp; k++) {
if (WARN_ON(offset_in_page(IDX[k]) +
template[i].atap[k] > PAGE_SIZE))
goto out;
sg_set_buf(&sg[k],
memcpy(axbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]),
template[i].assoc + temp,
template[i].atap[k]),
template[i].atap[k]);
if (diff_dst)
sg_set_buf(&sgout[k],
axbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]),
template[i].atap[k]);
temp += template[i].atap[k];
}
for (k = 0, temp = 0; k < template[i].np; k++) {
if (WARN_ON(offset_in_page(IDX[k]) +
template[i].tap[k] > PAGE_SIZE))
goto out;
q = xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]);
memcpy(q, template[i].input + temp, template[i].tap[k]);
sg_set_buf(&sg[template[i].anp + k],
q, template[i].tap[k]);
if (diff_dst) {
q = xoutbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
memset(q, 0, template[i].tap[k]);
sg_set_buf(&sgout[template[i].anp + k],
q, template[i].tap[k]);
}
n = template[i].tap[k];
if (k == template[i].np - 1 && enc)
n += authsize;
if (offset_in_page(q) + n < PAGE_SIZE)
q[n] = 0;
temp += template[i].tap[k];
}
ret = crypto_aead_setauthsize(tfm, authsize);
if (ret) {
pr_err("alg: aead%s: Failed to set authsize to %u on chunk test %d for %s\n",
d, authsize, j, algo);
goto out;
}
if (enc) {
if (WARN_ON(sg[template[i].anp + k - 1].offset +
sg[template[i].anp + k - 1].length +
authsize > PAGE_SIZE)) {
ret = -EINVAL;
goto out;
}
if (diff_dst)
sgout[template[i].anp + k - 1].length +=
authsize;
sg[template[i].anp + k - 1].length += authsize;
}
aead_request_set_crypt(req, sg, (diff_dst) ? sgout : sg,
template[i].ilen,
iv);
aead_request_set_ad(req, template[i].alen);
ret = enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req);
switch (ret) {
case 0:
if (template[i].novrfy) {
/* verification was supposed to fail */
pr_err("alg: aead%s: %s failed on chunk test %d for %s: ret was 0, expected -EBADMSG\n",
d, e, j, algo);
/* so really, we got a bad message */
ret = -EBADMSG;
goto out;
}
break;
case -EINPROGRESS:
case -EBUSY:
wait_for_completion(&result.completion);
reinit_completion(&result.completion);
ret = result.err;
if (!ret)
break;
case -EBADMSG:
if (template[i].novrfy)
/* verification failure was expected */
continue;
/* fall through */
default:
pr_err("alg: aead%s: %s failed on chunk test %d for %s: ret=%d\n",
d, e, j, algo, -ret);
goto out;
}
ret = -EINVAL;
for (k = 0, temp = 0; k < template[i].np; k++) {
if (diff_dst)
q = xoutbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
else
q = xbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
n = template[i].tap[k];
if (k == template[i].np - 1)
n += enc ? authsize : -authsize;
if (memcmp(q, template[i].result + temp, n)) {
pr_err("alg: aead%s: Chunk test %d failed on %s at page %u for %s\n",
d, j, e, k, algo);
hexdump(q, n);
goto out;
}
q += n;
if (k == template[i].np - 1 && !enc) {
if (!diff_dst &&
memcmp(q, template[i].input +
temp + n, authsize))
n = authsize;
else
n = 0;
} else {
for (n = 0; offset_in_page(q + n) && q[n]; n++)
;
}
if (n) {
pr_err("alg: aead%s: Result buffer corruption in chunk test %d on %s at page %u for %s: %u bytes:\n",
d, j, e, k, algo, n);
hexdump(q, n);
goto out;
}
temp += template[i].tap[k];
}
}
ret = 0;
out:
aead_request_free(req);
kfree(sg);
out_nosg:
if (diff_dst)
testmgr_free_buf(xoutbuf);
out_nooutbuf:
testmgr_free_buf(axbuf);
out_noaxbuf:
testmgr_free_buf(xbuf);
out_noxbuf:
kfree(key);
kfree(iv);
return ret;
}
static int test_aead(struct crypto_aead *tfm, int enc,
struct aead_testvec *template, unsigned int tcount)
{
unsigned int alignmask;
int ret;
/* test 'dst == src' case */
ret = __test_aead(tfm, enc, template, tcount, false, 0);
if (ret)
return ret;
/* test 'dst != src' case */
ret = __test_aead(tfm, enc, template, tcount, true, 0);
if (ret)
return ret;
/* test unaligned buffers, check with one byte offset */
ret = __test_aead(tfm, enc, template, tcount, true, 1);
if (ret)
return ret;
alignmask = crypto_tfm_alg_alignmask(&tfm->base);
if (alignmask) {
/* Check if alignment mask for tfm is correctly set. */
ret = __test_aead(tfm, enc, template, tcount, true,
alignmask + 1);
if (ret)
return ret;
}
return 0;
}
static int test_cipher(struct crypto_cipher *tfm, int enc,
struct cipher_testvec *template, unsigned int tcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_cipher_tfm(tfm));
unsigned int i, j, k;
char *q;
const char *e;
void *data;
char *xbuf[XBUFSIZE];
int ret = -ENOMEM;
if (testmgr_alloc_buf(xbuf))
goto out_nobuf;
if (enc == ENCRYPT)
e = "encryption";
else
e = "decryption";
j = 0;
for (i = 0; i < tcount; i++) {
if (template[i].np)
continue;
if (fips_enabled && template[i].fips_skip)
continue;
j++;
ret = -EINVAL;
if (WARN_ON(template[i].ilen > PAGE_SIZE))
goto out;
data = xbuf[0];
memcpy(data, template[i].input, template[i].ilen);
crypto_cipher_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_cipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
ret = crypto_cipher_setkey(tfm, template[i].key,
template[i].klen);
if (template[i].fail == !ret) {
printk(KERN_ERR "alg: cipher: setkey failed "
"on test %d for %s: flags=%x\n", j,
algo, crypto_cipher_get_flags(tfm));
goto out;
} else if (ret)
continue;
for (k = 0; k < template[i].ilen;
k += crypto_cipher_blocksize(tfm)) {
if (enc)
crypto_cipher_encrypt_one(tfm, data + k,
data + k);
else
crypto_cipher_decrypt_one(tfm, data + k,
data + k);
}
q = data;
if (memcmp(q, template[i].result, template[i].rlen)) {
printk(KERN_ERR "alg: cipher: Test %d failed "
"on %s for %s\n", j, e, algo);
hexdump(q, template[i].rlen);
ret = -EINVAL;
goto out;
}
}
ret = 0;
out:
testmgr_free_buf(xbuf);
out_nobuf:
return ret;
}
static int __test_skcipher(struct crypto_skcipher *tfm, int enc,
struct cipher_testvec *template, unsigned int tcount,
const bool diff_dst, const int align_offset)
{
const char *algo =
crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
unsigned int i, j, k, n, temp;
char *q;
struct skcipher_request *req;
struct scatterlist sg[8];
struct scatterlist sgout[8];
const char *e, *d;
struct tcrypt_result result;
void *data;
char iv[MAX_IVLEN];
char *xbuf[XBUFSIZE];
char *xoutbuf[XBUFSIZE];
int ret = -ENOMEM;
unsigned int ivsize = crypto_skcipher_ivsize(tfm);
if (testmgr_alloc_buf(xbuf))
goto out_nobuf;
if (diff_dst && testmgr_alloc_buf(xoutbuf))
goto out_nooutbuf;
if (diff_dst)
d = "-ddst";
else
d = "";
if (enc == ENCRYPT)
e = "encryption";
else
e = "decryption";
init_completion(&result.completion);
req = skcipher_request_alloc(tfm, GFP_KERNEL);
if (!req) {
pr_err("alg: skcipher%s: Failed to allocate request for %s\n",
d, algo);
goto out;
}
skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
tcrypt_complete, &result);
j = 0;
for (i = 0; i < tcount; i++) {
if (template[i].np && !template[i].also_non_np)
continue;
if (fips_enabled && template[i].fips_skip)
continue;
if (template[i].iv)
memcpy(iv, template[i].iv, ivsize);
else
memset(iv, 0, MAX_IVLEN);
j++;
ret = -EINVAL;
if (WARN_ON(align_offset + template[i].ilen > PAGE_SIZE))
goto out;
data = xbuf[0];
data += align_offset;
memcpy(data, template[i].input, template[i].ilen);
crypto_skcipher_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_skcipher_set_flags(tfm,
CRYPTO_TFM_REQ_WEAK_KEY);
ret = crypto_skcipher_setkey(tfm, template[i].key,
template[i].klen);
if (template[i].fail == !ret) {
pr_err("alg: skcipher%s: setkey failed on test %d for %s: flags=%x\n",
d, j, algo, crypto_skcipher_get_flags(tfm));
goto out;
} else if (ret)
continue;
sg_init_one(&sg[0], data, template[i].ilen);
if (diff_dst) {
data = xoutbuf[0];
data += align_offset;
sg_init_one(&sgout[0], data, template[i].ilen);
}
skcipher_request_set_crypt(req, sg, (diff_dst) ? sgout : sg,
template[i].ilen, iv);
ret = enc ? crypto_skcipher_encrypt(req) :
crypto_skcipher_decrypt(req);
switch (ret) {
case 0:
break;
case -EINPROGRESS:
case -EBUSY:
wait_for_completion(&result.completion);
reinit_completion(&result.completion);
ret = result.err;
if (!ret)
break;
/* fall through */
default:
pr_err("alg: skcipher%s: %s failed on test %d for %s: ret=%d\n",
d, e, j, algo, -ret);
goto out;
}
q = data;
if (memcmp(q, template[i].result, template[i].rlen)) {
pr_err("alg: skcipher%s: Test %d failed (invalid result) on %s for %s\n",
d, j, e, algo);
hexdump(q, template[i].rlen);
ret = -EINVAL;
goto out;
}
if (template[i].iv_out &&
memcmp(iv, template[i].iv_out,
crypto_skcipher_ivsize(tfm))) {
pr_err("alg: skcipher%s: Test %d failed (invalid output IV) on %s for %s\n",
d, j, e, algo);
hexdump(iv, crypto_skcipher_ivsize(tfm));
ret = -EINVAL;
goto out;
}
}
j = 0;
for (i = 0; i < tcount; i++) {
/* alignment tests are only done with continuous buffers */
if (align_offset != 0)
break;
if (!template[i].np)
continue;
if (fips_enabled && template[i].fips_skip)
continue;
if (template[i].iv)
memcpy(iv, template[i].iv, ivsize);
else
memset(iv, 0, MAX_IVLEN);
j++;
crypto_skcipher_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_skcipher_set_flags(tfm,
CRYPTO_TFM_REQ_WEAK_KEY);
ret = crypto_skcipher_setkey(tfm, template[i].key,
template[i].klen);
if (template[i].fail == !ret) {
pr_err("alg: skcipher%s: setkey failed on chunk test %d for %s: flags=%x\n",
d, j, algo, crypto_skcipher_get_flags(tfm));
goto out;
} else if (ret)
continue;
temp = 0;
ret = -EINVAL;
sg_init_table(sg, template[i].np);
if (diff_dst)
sg_init_table(sgout, template[i].np);
for (k = 0; k < template[i].np; k++) {
if (WARN_ON(offset_in_page(IDX[k]) +
template[i].tap[k] > PAGE_SIZE))
goto out;
q = xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]);
memcpy(q, template[i].input + temp, template[i].tap[k]);
if (offset_in_page(q) + template[i].tap[k] < PAGE_SIZE)
q[template[i].tap[k]] = 0;
sg_set_buf(&sg[k], q, template[i].tap[k]);
if (diff_dst) {
q = xoutbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
sg_set_buf(&sgout[k], q, template[i].tap[k]);
memset(q, 0, template[i].tap[k]);
if (offset_in_page(q) +
template[i].tap[k] < PAGE_SIZE)
q[template[i].tap[k]] = 0;
}
temp += template[i].tap[k];
}
skcipher_request_set_crypt(req, sg, (diff_dst) ? sgout : sg,
template[i].ilen, iv);
ret = enc ? crypto_skcipher_encrypt(req) :
crypto_skcipher_decrypt(req);
switch (ret) {
case 0:
break;
case -EINPROGRESS:
case -EBUSY:
wait_for_completion(&result.completion);
reinit_completion(&result.completion);
ret = result.err;
if (!ret)
break;
/* fall through */
default:
pr_err("alg: skcipher%s: %s failed on chunk test %d for %s: ret=%d\n",
d, e, j, algo, -ret);
goto out;
}
temp = 0;
ret = -EINVAL;
for (k = 0; k < template[i].np; k++) {
if (diff_dst)
q = xoutbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
else
q = xbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
if (memcmp(q, template[i].result + temp,
template[i].tap[k])) {
pr_err("alg: skcipher%s: Chunk test %d failed on %s at page %u for %s\n",
d, j, e, k, algo);
hexdump(q, template[i].tap[k]);
goto out;
}
q += template[i].tap[k];
for (n = 0; offset_in_page(q + n) && q[n]; n++)
;
if (n) {
pr_err("alg: skcipher%s: Result buffer corruption in chunk test %d on %s at page %u for %s: %u bytes:\n",
d, j, e, k, algo, n);
hexdump(q, n);
goto out;
}
temp += template[i].tap[k];
}
}
ret = 0;
out:
skcipher_request_free(req);
if (diff_dst)
testmgr_free_buf(xoutbuf);
out_nooutbuf:
testmgr_free_buf(xbuf);
out_nobuf:
return ret;
}
static int test_skcipher(struct crypto_skcipher *tfm, int enc,
struct cipher_testvec *template, unsigned int tcount)
{
unsigned int alignmask;
int ret;
/* test 'dst == src' case */
ret = __test_skcipher(tfm, enc, template, tcount, false, 0);
if (ret)
return ret;
/* test 'dst != src' case */
ret = __test_skcipher(tfm, enc, template, tcount, true, 0);
if (ret)
return ret;
/* test unaligned buffers, check with one byte offset */
ret = __test_skcipher(tfm, enc, template, tcount, true, 1);
if (ret)
return ret;
alignmask = crypto_tfm_alg_alignmask(&tfm->base);
if (alignmask) {
/* Check if alignment mask for tfm is correctly set. */
ret = __test_skcipher(tfm, enc, template, tcount, true,
alignmask + 1);
if (ret)
return ret;
}
return 0;
}
static int test_comp(struct crypto_comp *tfm, struct comp_testvec *ctemplate,
struct comp_testvec *dtemplate, int ctcount, int dtcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_comp_tfm(tfm));
unsigned int i;
char result[COMP_BUF_SIZE];
int ret;
for (i = 0; i < ctcount; i++) {
int ilen;
unsigned int dlen = COMP_BUF_SIZE;
memset(result, 0, sizeof (result));
ilen = ctemplate[i].inlen;
ret = crypto_comp_compress(tfm, ctemplate[i].input,
ilen, result, &dlen);
if (ret) {
printk(KERN_ERR "alg: comp: compression failed "
"on test %d for %s: ret=%d\n", i + 1, algo,
-ret);
goto out;
}
if (dlen != ctemplate[i].outlen) {
printk(KERN_ERR "alg: comp: Compression test %d "
"failed for %s: output len = %d\n", i + 1, algo,
dlen);
ret = -EINVAL;
goto out;
}
if (memcmp(result, ctemplate[i].output, dlen)) {
printk(KERN_ERR "alg: comp: Compression test %d "
"failed for %s\n", i + 1, algo);
hexdump(result, dlen);
ret = -EINVAL;
goto out;
}
}
for (i = 0; i < dtcount; i++) {
int ilen;
unsigned int dlen = COMP_BUF_SIZE;
memset(result, 0, sizeof (result));
ilen = dtemplate[i].inlen;
ret = crypto_comp_decompress(tfm, dtemplate[i].input,
ilen, result, &dlen);
if (ret) {
printk(KERN_ERR "alg: comp: decompression failed "
"on test %d for %s: ret=%d\n", i + 1, algo,
-ret);
goto out;
}
if (dlen != dtemplate[i].outlen) {
printk(KERN_ERR "alg: comp: Decompression test %d "
"failed for %s: output len = %d\n", i + 1, algo,
dlen);
ret = -EINVAL;
goto out;
}
if (memcmp(result, dtemplate[i].output, dlen)) {
printk(KERN_ERR "alg: comp: Decompression test %d "
"failed for %s\n", i + 1, algo);
hexdump(result, dlen);
ret = -EINVAL;
goto out;
}
}
ret = 0;
out:
return ret;
}
static int test_acomp(struct crypto_acomp *tfm, struct comp_testvec *ctemplate,
struct comp_testvec *dtemplate, int ctcount, int dtcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_acomp_tfm(tfm));
unsigned int i;
char *output;
int ret;
struct scatterlist src, dst;
struct acomp_req *req;
struct tcrypt_result result;
output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL);
if (!output)
return -ENOMEM;
for (i = 0; i < ctcount; i++) {
unsigned int dlen = COMP_BUF_SIZE;
int ilen = ctemplate[i].inlen;
memset(output, 0, dlen);
init_completion(&result.completion);
sg_init_one(&src, ctemplate[i].input, ilen);
sg_init_one(&dst, output, dlen);
req = acomp_request_alloc(tfm);
if (!req) {
pr_err("alg: acomp: request alloc failed for %s\n",
algo);
ret = -ENOMEM;
goto out;
}
acomp_request_set_params(req, &src, &dst, ilen, dlen);
acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
tcrypt_complete, &result);
ret = wait_async_op(&result, crypto_acomp_compress(req));
if (ret) {
pr_err("alg: acomp: compression failed on test %d for %s: ret=%d\n",
i + 1, algo, -ret);
acomp_request_free(req);
goto out;
}
if (req->dlen != ctemplate[i].outlen) {
pr_err("alg: acomp: Compression test %d failed for %s: output len = %d\n",
i + 1, algo, req->dlen);
ret = -EINVAL;
acomp_request_free(req);
goto out;
}
if (memcmp(output, ctemplate[i].output, req->dlen)) {
pr_err("alg: acomp: Compression test %d failed for %s\n",
i + 1, algo);
hexdump(output, req->dlen);
ret = -EINVAL;
acomp_request_free(req);
goto out;
}
acomp_request_free(req);
}
for (i = 0; i < dtcount; i++) {
unsigned int dlen = COMP_BUF_SIZE;
int ilen = dtemplate[i].inlen;
memset(output, 0, dlen);
init_completion(&result.completion);
sg_init_one(&src, dtemplate[i].input, ilen);
sg_init_one(&dst, output, dlen);
req = acomp_request_alloc(tfm);
if (!req) {
pr_err("alg: acomp: request alloc failed for %s\n",
algo);
ret = -ENOMEM;
goto out;
}
acomp_request_set_params(req, &src, &dst, ilen, dlen);
acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
tcrypt_complete, &result);
ret = wait_async_op(&result, crypto_acomp_decompress(req));
if (ret) {
pr_err("alg: acomp: decompression failed on test %d for %s: ret=%d\n",
i + 1, algo, -ret);
acomp_request_free(req);
goto out;
}
if (req->dlen != dtemplate[i].outlen) {
pr_err("alg: acomp: Decompression test %d failed for %s: output len = %d\n",
i + 1, algo, req->dlen);
ret = -EINVAL;
acomp_request_free(req);
goto out;
}
if (memcmp(output, dtemplate[i].output, req->dlen)) {
pr_err("alg: acomp: Decompression test %d failed for %s\n",
i + 1, algo);
hexdump(output, req->dlen);
ret = -EINVAL;
acomp_request_free(req);
goto out;
}
acomp_request_free(req);
}
ret = 0;
out:
kfree(output);
return ret;
}
static int test_cprng(struct crypto_rng *tfm, struct cprng_testvec *template,
unsigned int tcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_rng_tfm(tfm));
int err = 0, i, j, seedsize;
u8 *seed;
char result[32];
seedsize = crypto_rng_seedsize(tfm);
seed = kmalloc(seedsize, GFP_KERNEL);
if (!seed) {
printk(KERN_ERR "alg: cprng: Failed to allocate seed space "
"for %s\n", algo);
return -ENOMEM;
}
for (i = 0; i < tcount; i++) {
memset(result, 0, 32);
memcpy(seed, template[i].v, template[i].vlen);
memcpy(seed + template[i].vlen, template[i].key,
template[i].klen);
memcpy(seed + template[i].vlen + template[i].klen,
template[i].dt, template[i].dtlen);
err = crypto_rng_reset(tfm, seed, seedsize);
if (err) {
printk(KERN_ERR "alg: cprng: Failed to reset rng "
"for %s\n", algo);
goto out;
}
for (j = 0; j < template[i].loops; j++) {
err = crypto_rng_get_bytes(tfm, result,
template[i].rlen);
if (err < 0) {
printk(KERN_ERR "alg: cprng: Failed to obtain "
"the correct amount of random data for "
"%s (requested %d)\n", algo,
template[i].rlen);
goto out;
}
}
err = memcmp(result, template[i].result,
template[i].rlen);
if (err) {
printk(KERN_ERR "alg: cprng: Test %d failed for %s\n",
i, algo);
hexdump(result, template[i].rlen);
err = -EINVAL;
goto out;
}
}
out:
kfree(seed);
return err;
}
static int alg_test_aead(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_aead *tfm;
int err = 0;
tfm = crypto_alloc_aead(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: aead: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
if (desc->suite.aead.enc.vecs) {
err = test_aead(tfm, ENCRYPT, desc->suite.aead.enc.vecs,
desc->suite.aead.enc.count);
if (err)
goto out;
}
if (!err && desc->suite.aead.dec.vecs)
err = test_aead(tfm, DECRYPT, desc->suite.aead.dec.vecs,
desc->suite.aead.dec.count);
out:
crypto_free_aead(tfm);
return err;
}
static int alg_test_cipher(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
struct crypto_cipher *tfm;
int err = 0;
tfm = crypto_alloc_cipher(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: cipher: Failed to load transform for "
"%s: %ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
if (desc->suite.cipher.enc.vecs) {
err = test_cipher(tfm, ENCRYPT, desc->suite.cipher.enc.vecs,
desc->suite.cipher.enc.count);
if (err)
goto out;
}
if (desc->suite.cipher.dec.vecs)
err = test_cipher(tfm, DECRYPT, desc->suite.cipher.dec.vecs,
desc->suite.cipher.dec.count);
out:
crypto_free_cipher(tfm);
return err;
}
static int alg_test_skcipher(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
struct crypto_skcipher *tfm;
int err = 0;
tfm = crypto_alloc_skcipher(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: skcipher: Failed to load transform for "
"%s: %ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
if (desc->suite.cipher.enc.vecs) {
err = test_skcipher(tfm, ENCRYPT, desc->suite.cipher.enc.vecs,
desc->suite.cipher.enc.count);
if (err)
goto out;
}
if (desc->suite.cipher.dec.vecs)
err = test_skcipher(tfm, DECRYPT, desc->suite.cipher.dec.vecs,
desc->suite.cipher.dec.count);
out:
crypto_free_skcipher(tfm);
return err;
}
static int alg_test_comp(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_comp *comp;
struct crypto_acomp *acomp;
int err;
u32 algo_type = type & CRYPTO_ALG_TYPE_ACOMPRESS_MASK;
if (algo_type == CRYPTO_ALG_TYPE_ACOMPRESS) {
acomp = crypto_alloc_acomp(driver, type, mask);
if (IS_ERR(acomp)) {
pr_err("alg: acomp: Failed to load transform for %s: %ld\n",
driver, PTR_ERR(acomp));
return PTR_ERR(acomp);
}
err = test_acomp(acomp, desc->suite.comp.comp.vecs,
desc->suite.comp.decomp.vecs,
desc->suite.comp.comp.count,
desc->suite.comp.decomp.count);
crypto_free_acomp(acomp);
} else {
comp = crypto_alloc_comp(driver, type, mask);
if (IS_ERR(comp)) {
pr_err("alg: comp: Failed to load transform for %s: %ld\n",
driver, PTR_ERR(comp));
return PTR_ERR(comp);
}
err = test_comp(comp, desc->suite.comp.comp.vecs,
desc->suite.comp.decomp.vecs,
desc->suite.comp.comp.count,
desc->suite.comp.decomp.count);
crypto_free_comp(comp);
}
return err;
}
static int alg_test_hash(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_ahash *tfm;
int err;
tfm = crypto_alloc_ahash(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: hash: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
err = test_hash(tfm, desc->suite.hash.vecs,
desc->suite.hash.count, true);
if (!err)
err = test_hash(tfm, desc->suite.hash.vecs,
desc->suite.hash.count, false);
crypto_free_ahash(tfm);
return err;
}
static int alg_test_crc32c(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
struct crypto_shash *tfm;
u32 val;
int err;
err = alg_test_hash(desc, driver, type, mask);
if (err)
goto out;
tfm = crypto_alloc_shash(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: crc32c: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(tfm));
err = PTR_ERR(tfm);
goto out;
}
do {
SHASH_DESC_ON_STACK(shash, tfm);
u32 *ctx = (u32 *)shash_desc_ctx(shash);
shash->tfm = tfm;
shash->flags = 0;
*ctx = le32_to_cpu(420553207);
err = crypto_shash_final(shash, (u8 *)&val);
if (err) {
printk(KERN_ERR "alg: crc32c: Operation failed for "
"%s: %d\n", driver, err);
break;
}
if (val != ~420553207) {
printk(KERN_ERR "alg: crc32c: Test failed for %s: "
"%d\n", driver, val);
err = -EINVAL;
}
} while (0);
crypto_free_shash(tfm);
out:
return err;
}
static int alg_test_cprng(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_rng *rng;
int err;
rng = crypto_alloc_rng(driver, type, mask);
if (IS_ERR(rng)) {
printk(KERN_ERR "alg: cprng: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(rng));
return PTR_ERR(rng);
}
err = test_cprng(rng, desc->suite.cprng.vecs, desc->suite.cprng.count);
crypto_free_rng(rng);
return err;
}
static int drbg_cavs_test(struct drbg_testvec *test, int pr,
const char *driver, u32 type, u32 mask)
{
int ret = -EAGAIN;
struct crypto_rng *drng;
struct drbg_test_data test_data;
struct drbg_string addtl, pers, testentropy;
unsigned char *buf = kzalloc(test->expectedlen, GFP_KERNEL);
if (!buf)
return -ENOMEM;
drng = crypto_alloc_rng(driver, type, mask);
if (IS_ERR(drng)) {
printk(KERN_ERR "alg: drbg: could not allocate DRNG handle for "
"%s\n", driver);
kzfree(buf);
return -ENOMEM;
}
test_data.testentropy = &testentropy;
drbg_string_fill(&testentropy, test->entropy, test->entropylen);
drbg_string_fill(&pers, test->pers, test->perslen);
ret = crypto_drbg_reset_test(drng, &pers, &test_data);
if (ret) {
printk(KERN_ERR "alg: drbg: Failed to reset rng\n");
goto outbuf;
}
drbg_string_fill(&addtl, test->addtla, test->addtllen);
if (pr) {
drbg_string_fill(&testentropy, test->entpra, test->entprlen);
ret = crypto_drbg_get_bytes_addtl_test(drng,
buf, test->expectedlen, &addtl, &test_data);
} else {
ret = crypto_drbg_get_bytes_addtl(drng,
buf, test->expectedlen, &addtl);
}
if (ret < 0) {
printk(KERN_ERR "alg: drbg: could not obtain random data for "
"driver %s\n", driver);
goto outbuf;
}
drbg_string_fill(&addtl, test->addtlb, test->addtllen);
if (pr) {
drbg_string_fill(&testentropy, test->entprb, test->entprlen);
ret = crypto_drbg_get_bytes_addtl_test(drng,
buf, test->expectedlen, &addtl, &test_data);
} else {
ret = crypto_drbg_get_bytes_addtl(drng,
buf, test->expectedlen, &addtl);
}
if (ret < 0) {
printk(KERN_ERR "alg: drbg: could not obtain random data for "
"driver %s\n", driver);
goto outbuf;
}
ret = memcmp(test->expected, buf, test->expectedlen);
outbuf:
crypto_free_rng(drng);
kzfree(buf);
return ret;
}
static int alg_test_drbg(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
int err = 0;
int pr = 0;
int i = 0;
struct drbg_testvec *template = desc->suite.drbg.vecs;
unsigned int tcount = desc->suite.drbg.count;
if (0 == memcmp(driver, "drbg_pr_", 8))
pr = 1;
for (i = 0; i < tcount; i++) {
err = drbg_cavs_test(&template[i], pr, driver, type, mask);
if (err) {
printk(KERN_ERR "alg: drbg: Test %d failed for %s\n",
i, driver);
err = -EINVAL;
break;
}
}
return err;
}
static int do_test_kpp(struct crypto_kpp *tfm, struct kpp_testvec *vec,
const char *alg)
{
struct kpp_request *req;
void *input_buf = NULL;
void *output_buf = NULL;
struct tcrypt_result result;
unsigned int out_len_max;
int err = -ENOMEM;
struct scatterlist src, dst;
req = kpp_request_alloc(tfm, GFP_KERNEL);
if (!req)
return err;
init_completion(&result.completion);
err = crypto_kpp_set_secret(tfm, vec->secret, vec->secret_size);
if (err < 0)
goto free_req;
out_len_max = crypto_kpp_maxsize(tfm);
output_buf = kzalloc(out_len_max, GFP_KERNEL);
if (!output_buf) {
err = -ENOMEM;
goto free_req;
}
/* Use appropriate parameter as base */
kpp_request_set_input(req, NULL, 0);
sg_init_one(&dst, output_buf, out_len_max);
kpp_request_set_output(req, &dst, out_len_max);
kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
tcrypt_complete, &result);
/* Compute public key */
err = wait_async_op(&result, crypto_kpp_generate_public_key(req));
if (err) {
pr_err("alg: %s: generate public key test failed. err %d\n",
alg, err);
goto free_output;
}
/* Verify calculated public key */
if (memcmp(vec->expected_a_public, sg_virt(req->dst),
vec->expected_a_public_size)) {
pr_err("alg: %s: generate public key test failed. Invalid output\n",
alg);
err = -EINVAL;
goto free_output;
}
/* Calculate shared secret key by using counter part (b) public key. */
input_buf = kzalloc(vec->b_public_size, GFP_KERNEL);
if (!input_buf) {
err = -ENOMEM;
goto free_output;
}
memcpy(input_buf, vec->b_public, vec->b_public_size);
sg_init_one(&src, input_buf, vec->b_public_size);
sg_init_one(&dst, output_buf, out_len_max);
kpp_request_set_input(req, &src, vec->b_public_size);
kpp_request_set_output(req, &dst, out_len_max);
kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
tcrypt_complete, &result);
err = wait_async_op(&result, crypto_kpp_compute_shared_secret(req));
if (err) {
pr_err("alg: %s: compute shard secret test failed. err %d\n",
alg, err);
goto free_all;
}
/*
* verify shared secret from which the user will derive
* secret key by executing whatever hash it has chosen
*/
if (memcmp(vec->expected_ss, sg_virt(req->dst),
vec->expected_ss_size)) {
pr_err("alg: %s: compute shared secret test failed. Invalid output\n",
alg);
err = -EINVAL;
}
free_all:
kfree(input_buf);
free_output:
kfree(output_buf);
free_req:
kpp_request_free(req);
return err;
}
static int test_kpp(struct crypto_kpp *tfm, const char *alg,
struct kpp_testvec *vecs, unsigned int tcount)
{
int ret, i;
for (i = 0; i < tcount; i++) {
ret = do_test_kpp(tfm, vecs++, alg);
if (ret) {
pr_err("alg: %s: test failed on vector %d, err=%d\n",
alg, i + 1, ret);
return ret;
}
}
return 0;
}
static int alg_test_kpp(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_kpp *tfm;
int err = 0;
tfm = crypto_alloc_kpp(driver, type, mask);
if (IS_ERR(tfm)) {
pr_err("alg: kpp: Failed to load tfm for %s: %ld\n",
driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
if (desc->suite.kpp.vecs)
err = test_kpp(tfm, desc->alg, desc->suite.kpp.vecs,
desc->suite.kpp.count);
crypto_free_kpp(tfm);
return err;
}
static int test_akcipher_one(struct crypto_akcipher *tfm,
struct akcipher_testvec *vecs)
{
char *xbuf[XBUFSIZE];
struct akcipher_request *req;
void *outbuf_enc = NULL;
void *outbuf_dec = NULL;
struct tcrypt_result result;
unsigned int out_len_max, out_len = 0;
int err = -ENOMEM;
struct scatterlist src, dst, src_tab[2];
if (testmgr_alloc_buf(xbuf))
return err;
req = akcipher_request_alloc(tfm, GFP_KERNEL);
if (!req)
goto free_xbuf;
init_completion(&result.completion);
if (vecs->public_key_vec)
err = crypto_akcipher_set_pub_key(tfm, vecs->key,
vecs->key_len);
else
err = crypto_akcipher_set_priv_key(tfm, vecs->key,
vecs->key_len);
if (err)
goto free_req;
err = -ENOMEM;
out_len_max = crypto_akcipher_maxsize(tfm);
outbuf_enc = kzalloc(out_len_max, GFP_KERNEL);
if (!outbuf_enc)
goto free_req;
if (WARN_ON(vecs->m_size > PAGE_SIZE))
goto free_all;
memcpy(xbuf[0], vecs->m, vecs->m_size);
sg_init_table(src_tab, 2);
sg_set_buf(&src_tab[0], xbuf[0], 8);
sg_set_buf(&src_tab[1], xbuf[0] + 8, vecs->m_size - 8);
sg_init_one(&dst, outbuf_enc, out_len_max);
akcipher_request_set_crypt(req, src_tab, &dst, vecs->m_size,
out_len_max);
akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
tcrypt_complete, &result);
/* Run RSA encrypt - c = m^e mod n;*/
err = wait_async_op(&result, crypto_akcipher_encrypt(req));
if (err) {
pr_err("alg: akcipher: encrypt test failed. err %d\n", err);
goto free_all;
}
if (req->dst_len != vecs->c_size) {
pr_err("alg: akcipher: encrypt test failed. Invalid output len\n");
err = -EINVAL;
goto free_all;
}
/* verify that encrypted message is equal to expected */
if (memcmp(vecs->c, outbuf_enc, vecs->c_size)) {
pr_err("alg: akcipher: encrypt test failed. Invalid output\n");
hexdump(outbuf_enc, vecs->c_size);
err = -EINVAL;
goto free_all;
}
/* Don't invoke decrypt for vectors with public key */
if (vecs->public_key_vec) {
err = 0;
goto free_all;
}
outbuf_dec = kzalloc(out_len_max, GFP_KERNEL);
if (!outbuf_dec) {
err = -ENOMEM;
goto free_all;
}
if (WARN_ON(vecs->c_size > PAGE_SIZE))
goto free_all;
memcpy(xbuf[0], vecs->c, vecs->c_size);
sg_init_one(&src, xbuf[0], vecs->c_size);
sg_init_one(&dst, outbuf_dec, out_len_max);
init_completion(&result.completion);
akcipher_request_set_crypt(req, &src, &dst, vecs->c_size, out_len_max);
/* Run RSA decrypt - m = c^d mod n;*/
err = wait_async_op(&result, crypto_akcipher_decrypt(req));
if (err) {
pr_err("alg: akcipher: decrypt test failed. err %d\n", err);
goto free_all;
}
out_len = req->dst_len;
if (out_len < vecs->m_size) {
pr_err("alg: akcipher: decrypt test failed. "
"Invalid output len %u\n", out_len);
err = -EINVAL;
goto free_all;
}
/* verify that decrypted message is equal to the original msg */
if (memchr_inv(outbuf_dec, 0, out_len - vecs->m_size) ||
memcmp(vecs->m, outbuf_dec + out_len - vecs->m_size,
vecs->m_size)) {
pr_err("alg: akcipher: decrypt test failed. Invalid output\n");
hexdump(outbuf_dec, out_len);
err = -EINVAL;
}
free_all:
kfree(outbuf_dec);
kfree(outbuf_enc);
free_req:
akcipher_request_free(req);
free_xbuf:
testmgr_free_buf(xbuf);
return err;
}
static int test_akcipher(struct crypto_akcipher *tfm, const char *alg,
struct akcipher_testvec *vecs, unsigned int tcount)
{
const char *algo =
crypto_tfm_alg_driver_name(crypto_akcipher_tfm(tfm));
int ret, i;
for (i = 0; i < tcount; i++) {
ret = test_akcipher_one(tfm, vecs++);
if (!ret)
continue;
pr_err("alg: akcipher: test %d failed for %s, err=%d\n",
i + 1, algo, ret);
return ret;
}
return 0;
}
static int alg_test_akcipher(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
struct crypto_akcipher *tfm;
int err = 0;
tfm = crypto_alloc_akcipher(driver, type, mask);
if (IS_ERR(tfm)) {
pr_err("alg: akcipher: Failed to load tfm for %s: %ld\n",
driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
if (desc->suite.akcipher.vecs)
err = test_akcipher(tfm, desc->alg, desc->suite.akcipher.vecs,
desc->suite.akcipher.count);
crypto_free_akcipher(tfm);
return err;
}
static int alg_test_null(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
return 0;
}
/* Please keep this list sorted by algorithm name. */
static const struct alg_test_desc alg_test_descs[] = {
{
.alg = "ansi_cprng",
.test = alg_test_cprng,
.suite = {
.cprng = {
.vecs = ansi_cprng_aes_tv_template,
.count = ANSI_CPRNG_AES_TEST_VECTORS
}
}
}, {
.alg = "authenc(hmac(md5),ecb(cipher_null))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs = hmac_md5_ecb_cipher_null_enc_tv_template,
.count = HMAC_MD5_ECB_CIPHER_NULL_ENC_TEST_VECTORS
},
.dec = {
.vecs = hmac_md5_ecb_cipher_null_dec_tv_template,
.count = HMAC_MD5_ECB_CIPHER_NULL_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "authenc(hmac(sha1),cbc(aes))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha1_aes_cbc_enc_tv_temp,
.count =
HMAC_SHA1_AES_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha1),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha1_des_cbc_enc_tv_temp,
.count =
HMAC_SHA1_DES_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha1),cbc(des3_ede))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha1_des3_ede_cbc_enc_tv_temp,
.count =
HMAC_SHA1_DES3_EDE_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha1),ctr(aes))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha1),ecb(cipher_null))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha1_ecb_cipher_null_enc_tv_temp,
.count =
HMAC_SHA1_ECB_CIPHER_NULL_ENC_TEST_VEC
},
.dec = {
.vecs =
hmac_sha1_ecb_cipher_null_dec_tv_temp,
.count =
HMAC_SHA1_ECB_CIPHER_NULL_DEC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha224),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha224_des_cbc_enc_tv_temp,
.count =
HMAC_SHA224_DES_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha224),cbc(des3_ede))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha224_des3_ede_cbc_enc_tv_temp,
.count =
HMAC_SHA224_DES3_EDE_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha256),cbc(aes))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha256_aes_cbc_enc_tv_temp,
.count =
HMAC_SHA256_AES_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha256),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha256_des_cbc_enc_tv_temp,
.count =
HMAC_SHA256_DES_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha256),cbc(des3_ede))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha256_des3_ede_cbc_enc_tv_temp,
.count =
HMAC_SHA256_DES3_EDE_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha256),ctr(aes))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha384),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha384_des_cbc_enc_tv_temp,
.count =
HMAC_SHA384_DES_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha384),cbc(des3_ede))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha384_des3_ede_cbc_enc_tv_temp,
.count =
HMAC_SHA384_DES3_EDE_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha384),ctr(aes))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha384),rfc3686(ctr(aes)))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha512),cbc(aes))",
.fips_allowed = 1,
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha512_aes_cbc_enc_tv_temp,
.count =
HMAC_SHA512_AES_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha512),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha512_des_cbc_enc_tv_temp,
.count =
HMAC_SHA512_DES_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha512),cbc(des3_ede))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha512_des3_ede_cbc_enc_tv_temp,
.count =
HMAC_SHA512_DES3_EDE_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha512),ctr(aes))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha512),rfc3686(ctr(aes)))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "cbc(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = aes_cbc_enc_tv_template,
.count = AES_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_cbc_dec_tv_template,
.count = AES_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(anubis)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = anubis_cbc_enc_tv_template,
.count = ANUBIS_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = anubis_cbc_dec_tv_template,
.count = ANUBIS_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(blowfish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = bf_cbc_enc_tv_template,
.count = BF_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = bf_cbc_dec_tv_template,
.count = BF_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = camellia_cbc_enc_tv_template,
.count = CAMELLIA_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = camellia_cbc_dec_tv_template,
.count = CAMELLIA_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(cast5)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = cast5_cbc_enc_tv_template,
.count = CAST5_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = cast5_cbc_dec_tv_template,
.count = CAST5_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = cast6_cbc_enc_tv_template,
.count = CAST6_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = cast6_cbc_dec_tv_template,
.count = CAST6_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(des)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = des_cbc_enc_tv_template,
.count = DES_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = des_cbc_dec_tv_template,
.count = DES_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(des3_ede)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = des3_ede_cbc_enc_tv_template,
.count = DES3_EDE_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = des3_ede_cbc_dec_tv_template,
.count = DES3_EDE_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = serpent_cbc_enc_tv_template,
.count = SERPENT_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = serpent_cbc_dec_tv_template,
.count = SERPENT_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = tf_cbc_enc_tv_template,
.count = TF_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = tf_cbc_dec_tv_template,
.count = TF_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ccm(aes)",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = {
.vecs = aes_ccm_enc_tv_template,
.count = AES_CCM_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_ccm_dec_tv_template,
.count = AES_CCM_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "chacha20",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = chacha20_enc_tv_template,
.count = CHACHA20_ENC_TEST_VECTORS
},
.dec = {
.vecs = chacha20_enc_tv_template,
.count = CHACHA20_ENC_TEST_VECTORS
},
}
}
}, {
.alg = "cmac(aes)",
.fips_allowed = 1,
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = aes_cmac128_tv_template,
.count = CMAC_AES_TEST_VECTORS
}
}
}, {
.alg = "cmac(des3_ede)",
.fips_allowed = 1,
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = des3_ede_cmac64_tv_template,
.count = CMAC_DES3_EDE_TEST_VECTORS
}
}
}, {
.alg = "compress_null",
.test = alg_test_null,
}, {
.alg = "crc32",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = crc32_tv_template,
.count = CRC32_TEST_VECTORS
}
}
}, {
.alg = "crc32c",
.test = alg_test_crc32c,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = crc32c_tv_template,
.count = CRC32C_TEST_VECTORS
}
}
}, {
.alg = "crct10dif",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = crct10dif_tv_template,
.count = CRCT10DIF_TEST_VECTORS
}
}
}, {
.alg = "ctr(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = aes_ctr_enc_tv_template,
.count = AES_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_ctr_dec_tv_template,
.count = AES_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ctr(blowfish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = bf_ctr_enc_tv_template,
.count = BF_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = bf_ctr_dec_tv_template,
.count = BF_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ctr(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = camellia_ctr_enc_tv_template,
.count = CAMELLIA_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = camellia_ctr_dec_tv_template,
.count = CAMELLIA_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ctr(cast5)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = cast5_ctr_enc_tv_template,
.count = CAST5_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = cast5_ctr_dec_tv_template,
.count = CAST5_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ctr(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = cast6_ctr_enc_tv_template,
.count = CAST6_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = cast6_ctr_dec_tv_template,
.count = CAST6_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ctr(des)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = des_ctr_enc_tv_template,
.count = DES_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = des_ctr_dec_tv_template,
.count = DES_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ctr(des3_ede)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = des3_ede_ctr_enc_tv_template,
.count = DES3_EDE_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = des3_ede_ctr_dec_tv_template,
.count = DES3_EDE_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ctr(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = serpent_ctr_enc_tv_template,
.count = SERPENT_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = serpent_ctr_dec_tv_template,
.count = SERPENT_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ctr(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = tf_ctr_enc_tv_template,
.count = TF_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = tf_ctr_dec_tv_template,
.count = TF_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cts(cbc(aes))",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = cts_mode_enc_tv_template,
.count = CTS_MODE_ENC_TEST_VECTORS
},
.dec = {
.vecs = cts_mode_dec_tv_template,
.count = CTS_MODE_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "deflate",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = {
.vecs = deflate_comp_tv_template,
.count = DEFLATE_COMP_TEST_VECTORS
},
.decomp = {
.vecs = deflate_decomp_tv_template,
.count = DEFLATE_DECOMP_TEST_VECTORS
}
}
}
}, {
.alg = "dh",
.test = alg_test_kpp,
.fips_allowed = 1,
.suite = {
.kpp = {
.vecs = dh_tv_template,
.count = DH_TEST_VECTORS
}
}
}, {
.alg = "digest_null",
.test = alg_test_null,
}, {
.alg = "drbg_nopr_ctr_aes128",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = {
.vecs = drbg_nopr_ctr_aes128_tv_template,
.count = ARRAY_SIZE(drbg_nopr_ctr_aes128_tv_template)
}
}
}, {
.alg = "drbg_nopr_ctr_aes192",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = {
.vecs = drbg_nopr_ctr_aes192_tv_template,
.count = ARRAY_SIZE(drbg_nopr_ctr_aes192_tv_template)
}
}
}, {
.alg = "drbg_nopr_ctr_aes256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = {
.vecs = drbg_nopr_ctr_aes256_tv_template,
.count = ARRAY_SIZE(drbg_nopr_ctr_aes256_tv_template)
}
}
}, {
/*
* There is no need to specifically test the DRBG with every
* backend cipher -- covered by drbg_nopr_hmac_sha256 test
*/
.alg = "drbg_nopr_hmac_sha1",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_nopr_hmac_sha256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = {
.vecs = drbg_nopr_hmac_sha256_tv_template,
.count =
ARRAY_SIZE(drbg_nopr_hmac_sha256_tv_template)
}
}
}, {
/* covered by drbg_nopr_hmac_sha256 test */
.alg = "drbg_nopr_hmac_sha384",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_nopr_hmac_sha512",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "drbg_nopr_sha1",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_nopr_sha256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = {
.vecs = drbg_nopr_sha256_tv_template,
.count = ARRAY_SIZE(drbg_nopr_sha256_tv_template)
}
}
}, {
/* covered by drbg_nopr_sha256 test */
.alg = "drbg_nopr_sha384",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_nopr_sha512",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_ctr_aes128",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = {
.vecs = drbg_pr_ctr_aes128_tv_template,
.count = ARRAY_SIZE(drbg_pr_ctr_aes128_tv_template)
}
}
}, {
/* covered by drbg_pr_ctr_aes128 test */
.alg = "drbg_pr_ctr_aes192",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_ctr_aes256",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_hmac_sha1",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_hmac_sha256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = {
.vecs = drbg_pr_hmac_sha256_tv_template,
.count = ARRAY_SIZE(drbg_pr_hmac_sha256_tv_template)
}
}
}, {
/* covered by drbg_pr_hmac_sha256 test */
.alg = "drbg_pr_hmac_sha384",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_hmac_sha512",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "drbg_pr_sha1",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_sha256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = {
.vecs = drbg_pr_sha256_tv_template,
.count = ARRAY_SIZE(drbg_pr_sha256_tv_template)
}
}
}, {
/* covered by drbg_pr_sha256 test */
.alg = "drbg_pr_sha384",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_sha512",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "ecb(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = aes_enc_tv_template,
.count = AES_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_dec_tv_template,
.count = AES_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(anubis)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = anubis_enc_tv_template,
.count = ANUBIS_ENC_TEST_VECTORS
},
.dec = {
.vecs = anubis_dec_tv_template,
.count = ANUBIS_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(arc4)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = arc4_enc_tv_template,
.count = ARC4_ENC_TEST_VECTORS
},
.dec = {
.vecs = arc4_dec_tv_template,
.count = ARC4_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(blowfish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = bf_enc_tv_template,
.count = BF_ENC_TEST_VECTORS
},
.dec = {
.vecs = bf_dec_tv_template,
.count = BF_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = camellia_enc_tv_template,
.count = CAMELLIA_ENC_TEST_VECTORS
},
.dec = {
.vecs = camellia_dec_tv_template,
.count = CAMELLIA_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(cast5)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = cast5_enc_tv_template,
.count = CAST5_ENC_TEST_VECTORS
},
.dec = {
.vecs = cast5_dec_tv_template,
.count = CAST5_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = cast6_enc_tv_template,
.count = CAST6_ENC_TEST_VECTORS
},
.dec = {
.vecs = cast6_dec_tv_template,
.count = CAST6_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(cipher_null)",
.test = alg_test_null,
}, {
.alg = "ecb(des)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = des_enc_tv_template,
.count = DES_ENC_TEST_VECTORS
},
.dec = {
.vecs = des_dec_tv_template,
.count = DES_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(des3_ede)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = des3_ede_enc_tv_template,
.count = DES3_EDE_ENC_TEST_VECTORS
},
.dec = {
.vecs = des3_ede_dec_tv_template,
.count = DES3_EDE_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(fcrypt)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = fcrypt_pcbc_enc_tv_template,
.count = 1
},
.dec = {
.vecs = fcrypt_pcbc_dec_tv_template,
.count = 1
}
}
}
}, {
.alg = "ecb(khazad)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = khazad_enc_tv_template,
.count = KHAZAD_ENC_TEST_VECTORS
},
.dec = {
.vecs = khazad_dec_tv_template,
.count = KHAZAD_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(seed)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = seed_enc_tv_template,
.count = SEED_ENC_TEST_VECTORS
},
.dec = {
.vecs = seed_dec_tv_template,
.count = SEED_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = serpent_enc_tv_template,
.count = SERPENT_ENC_TEST_VECTORS
},
.dec = {
.vecs = serpent_dec_tv_template,
.count = SERPENT_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(tea)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = tea_enc_tv_template,
.count = TEA_ENC_TEST_VECTORS
},
.dec = {
.vecs = tea_dec_tv_template,
.count = TEA_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(tnepres)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = tnepres_enc_tv_template,
.count = TNEPRES_ENC_TEST_VECTORS
},
.dec = {
.vecs = tnepres_dec_tv_template,
.count = TNEPRES_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = tf_enc_tv_template,
.count = TF_ENC_TEST_VECTORS
},
.dec = {
.vecs = tf_dec_tv_template,
.count = TF_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(xeta)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = xeta_enc_tv_template,
.count = XETA_ENC_TEST_VECTORS
},
.dec = {
.vecs = xeta_dec_tv_template,
.count = XETA_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(xtea)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = xtea_enc_tv_template,
.count = XTEA_ENC_TEST_VECTORS
},
.dec = {
.vecs = xtea_dec_tv_template,
.count = XTEA_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecdh",
.test = alg_test_kpp,
.fips_allowed = 1,
.suite = {
.kpp = {
.vecs = ecdh_tv_template,
.count = ECDH_TEST_VECTORS
}
}
}, {
.alg = "gcm(aes)",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = {
.vecs = aes_gcm_enc_tv_template,
.count = AES_GCM_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_gcm_dec_tv_template,
.count = AES_GCM_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ghash",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = ghash_tv_template,
.count = GHASH_TEST_VECTORS
}
}
}, {
.alg = "hmac(crc32)",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = bfin_crc_tv_template,
.count = BFIN_CRC_TEST_VECTORS
}
}
}, {
.alg = "hmac(md5)",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = hmac_md5_tv_template,
.count = HMAC_MD5_TEST_VECTORS
}
}
}, {
.alg = "hmac(rmd128)",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = hmac_rmd128_tv_template,
.count = HMAC_RMD128_TEST_VECTORS
}
}
}, {
.alg = "hmac(rmd160)",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = hmac_rmd160_tv_template,
.count = HMAC_RMD160_TEST_VECTORS
}
}
}, {
.alg = "hmac(sha1)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = hmac_sha1_tv_template,
.count = HMAC_SHA1_TEST_VECTORS
}
}
}, {
.alg = "hmac(sha224)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = hmac_sha224_tv_template,
.count = HMAC_SHA224_TEST_VECTORS
}
}
}, {
.alg = "hmac(sha256)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = hmac_sha256_tv_template,
.count = HMAC_SHA256_TEST_VECTORS
}
}
}, {
.alg = "hmac(sha3-224)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = hmac_sha3_224_tv_template,
.count = HMAC_SHA3_224_TEST_VECTORS
}
}
}, {
.alg = "hmac(sha3-256)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = hmac_sha3_256_tv_template,
.count = HMAC_SHA3_256_TEST_VECTORS
}
}
}, {
.alg = "hmac(sha3-384)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = hmac_sha3_384_tv_template,
.count = HMAC_SHA3_384_TEST_VECTORS
}
}
}, {
.alg = "hmac(sha3-512)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = hmac_sha3_512_tv_template,
.count = HMAC_SHA3_512_TEST_VECTORS
}
}
}, {
.alg = "hmac(sha384)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = hmac_sha384_tv_template,
.count = HMAC_SHA384_TEST_VECTORS
}
}
}, {
.alg = "hmac(sha512)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = hmac_sha512_tv_template,
.count = HMAC_SHA512_TEST_VECTORS
}
}
}, {
.alg = "jitterentropy_rng",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "kw(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = aes_kw_enc_tv_template,
.count = ARRAY_SIZE(aes_kw_enc_tv_template)
},
.dec = {
.vecs = aes_kw_dec_tv_template,
.count = ARRAY_SIZE(aes_kw_dec_tv_template)
}
}
}
}, {
.alg = "lrw(aes)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = aes_lrw_enc_tv_template,
.count = AES_LRW_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_lrw_dec_tv_template,
.count = AES_LRW_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "lrw(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = camellia_lrw_enc_tv_template,
.count = CAMELLIA_LRW_ENC_TEST_VECTORS
},
.dec = {
.vecs = camellia_lrw_dec_tv_template,
.count = CAMELLIA_LRW_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "lrw(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = cast6_lrw_enc_tv_template,
.count = CAST6_LRW_ENC_TEST_VECTORS
},
.dec = {
.vecs = cast6_lrw_dec_tv_template,
.count = CAST6_LRW_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "lrw(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = serpent_lrw_enc_tv_template,
.count = SERPENT_LRW_ENC_TEST_VECTORS
},
.dec = {
.vecs = serpent_lrw_dec_tv_template,
.count = SERPENT_LRW_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "lrw(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = tf_lrw_enc_tv_template,
.count = TF_LRW_ENC_TEST_VECTORS
},
.dec = {
.vecs = tf_lrw_dec_tv_template,
.count = TF_LRW_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "lz4",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = {
.vecs = lz4_comp_tv_template,
.count = LZ4_COMP_TEST_VECTORS
},
.decomp = {
.vecs = lz4_decomp_tv_template,
.count = LZ4_DECOMP_TEST_VECTORS
}
}
}
}, {
.alg = "lz4hc",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = {
.vecs = lz4hc_comp_tv_template,
.count = LZ4HC_COMP_TEST_VECTORS
},
.decomp = {
.vecs = lz4hc_decomp_tv_template,
.count = LZ4HC_DECOMP_TEST_VECTORS
}
}
}
}, {
.alg = "lzo",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = {
.vecs = lzo_comp_tv_template,
.count = LZO_COMP_TEST_VECTORS
},
.decomp = {
.vecs = lzo_decomp_tv_template,
.count = LZO_DECOMP_TEST_VECTORS
}
}
}
}, {
.alg = "md4",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = md4_tv_template,
.count = MD4_TEST_VECTORS
}
}
}, {
.alg = "md5",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = md5_tv_template,
.count = MD5_TEST_VECTORS
}
}
}, {
.alg = "michael_mic",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = michael_mic_tv_template,
.count = MICHAEL_MIC_TEST_VECTORS
}
}
}, {
.alg = "ofb(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = aes_ofb_enc_tv_template,
.count = AES_OFB_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_ofb_dec_tv_template,
.count = AES_OFB_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "pcbc(fcrypt)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = fcrypt_pcbc_enc_tv_template,
.count = FCRYPT_ENC_TEST_VECTORS
},
.dec = {
.vecs = fcrypt_pcbc_dec_tv_template,
.count = FCRYPT_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "poly1305",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = poly1305_tv_template,
.count = POLY1305_TEST_VECTORS
}
}
}, {
.alg = "rfc3686(ctr(aes))",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = aes_ctr_rfc3686_enc_tv_template,
.count = AES_CTR_3686_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_ctr_rfc3686_dec_tv_template,
.count = AES_CTR_3686_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "rfc4106(gcm(aes))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = {
.vecs = aes_gcm_rfc4106_enc_tv_template,
.count = AES_GCM_4106_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_gcm_rfc4106_dec_tv_template,
.count = AES_GCM_4106_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "rfc4309(ccm(aes))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = {
.vecs = aes_ccm_rfc4309_enc_tv_template,
.count = AES_CCM_4309_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_ccm_rfc4309_dec_tv_template,
.count = AES_CCM_4309_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "rfc4543(gcm(aes))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs = aes_gcm_rfc4543_enc_tv_template,
.count = AES_GCM_4543_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_gcm_rfc4543_dec_tv_template,
.count = AES_GCM_4543_DEC_TEST_VECTORS
},
}
}
}, {
.alg = "rfc7539(chacha20,poly1305)",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs = rfc7539_enc_tv_template,
.count = RFC7539_ENC_TEST_VECTORS
},
.dec = {
.vecs = rfc7539_dec_tv_template,
.count = RFC7539_DEC_TEST_VECTORS
},
}
}
}, {
.alg = "rfc7539esp(chacha20,poly1305)",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs = rfc7539esp_enc_tv_template,
.count = RFC7539ESP_ENC_TEST_VECTORS
},
.dec = {
.vecs = rfc7539esp_dec_tv_template,
.count = RFC7539ESP_DEC_TEST_VECTORS
},
}
}
}, {
.alg = "rmd128",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = rmd128_tv_template,
.count = RMD128_TEST_VECTORS
}
}
}, {
.alg = "rmd160",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = rmd160_tv_template,
.count = RMD160_TEST_VECTORS
}
}
}, {
.alg = "rmd256",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = rmd256_tv_template,
.count = RMD256_TEST_VECTORS
}
}
}, {
.alg = "rmd320",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = rmd320_tv_template,
.count = RMD320_TEST_VECTORS
}
}
}, {
.alg = "rsa",
.test = alg_test_akcipher,
.fips_allowed = 1,
.suite = {
.akcipher = {
.vecs = rsa_tv_template,
.count = RSA_TEST_VECTORS
}
}
}, {
.alg = "salsa20",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = salsa20_stream_enc_tv_template,
.count = SALSA20_STREAM_ENC_TEST_VECTORS
}
}
}
}, {
.alg = "sha1",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = sha1_tv_template,
.count = SHA1_TEST_VECTORS
}
}
}, {
.alg = "sha224",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = sha224_tv_template,
.count = SHA224_TEST_VECTORS
}
}
}, {
.alg = "sha256",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = sha256_tv_template,
.count = SHA256_TEST_VECTORS
}
}
}, {
.alg = "sha3-224",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = sha3_224_tv_template,
.count = SHA3_224_TEST_VECTORS
}
}
}, {
.alg = "sha3-256",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = sha3_256_tv_template,
.count = SHA3_256_TEST_VECTORS
}
}
}, {
.alg = "sha3-384",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = sha3_384_tv_template,
.count = SHA3_384_TEST_VECTORS
}
}
}, {
.alg = "sha3-512",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = sha3_512_tv_template,
.count = SHA3_512_TEST_VECTORS
}
}
}, {
.alg = "sha384",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = sha384_tv_template,
.count = SHA384_TEST_VECTORS
}
}
}, {
.alg = "sha512",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = sha512_tv_template,
.count = SHA512_TEST_VECTORS
}
}
}, {
.alg = "tgr128",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = tgr128_tv_template,
.count = TGR128_TEST_VECTORS
}
}
}, {
.alg = "tgr160",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = tgr160_tv_template,
.count = TGR160_TEST_VECTORS
}
}
}, {
.alg = "tgr192",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = tgr192_tv_template,
.count = TGR192_TEST_VECTORS
}
}
}, {
.alg = "vmac(aes)",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = aes_vmac128_tv_template,
.count = VMAC_AES_TEST_VECTORS
}
}
}, {
.alg = "wp256",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = wp256_tv_template,
.count = WP256_TEST_VECTORS
}
}
}, {
.alg = "wp384",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = wp384_tv_template,
.count = WP384_TEST_VECTORS
}
}
}, {
.alg = "wp512",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = wp512_tv_template,
.count = WP512_TEST_VECTORS
}
}
}, {
.alg = "xcbc(aes)",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = aes_xcbc128_tv_template,
.count = XCBC_AES_TEST_VECTORS
}
}
}, {
.alg = "xts(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = aes_xts_enc_tv_template,
.count = AES_XTS_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_xts_dec_tv_template,
.count = AES_XTS_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "xts(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = camellia_xts_enc_tv_template,
.count = CAMELLIA_XTS_ENC_TEST_VECTORS
},
.dec = {
.vecs = camellia_xts_dec_tv_template,
.count = CAMELLIA_XTS_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "xts(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = cast6_xts_enc_tv_template,
.count = CAST6_XTS_ENC_TEST_VECTORS
},
.dec = {
.vecs = cast6_xts_dec_tv_template,
.count = CAST6_XTS_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "xts(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = serpent_xts_enc_tv_template,
.count = SERPENT_XTS_ENC_TEST_VECTORS
},
.dec = {
.vecs = serpent_xts_dec_tv_template,
.count = SERPENT_XTS_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "xts(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = tf_xts_enc_tv_template,
.count = TF_XTS_ENC_TEST_VECTORS
},
.dec = {
.vecs = tf_xts_dec_tv_template,
.count = TF_XTS_DEC_TEST_VECTORS
}
}
}
}
};
static bool alg_test_descs_checked;
static void alg_test_descs_check_order(void)
{
int i;
/* only check once */
if (alg_test_descs_checked)
return;
alg_test_descs_checked = true;
for (i = 1; i < ARRAY_SIZE(alg_test_descs); i++) {
int diff = strcmp(alg_test_descs[i - 1].alg,
alg_test_descs[i].alg);
if (WARN_ON(diff > 0)) {
pr_warn("testmgr: alg_test_descs entries in wrong order: '%s' before '%s'\n",
alg_test_descs[i - 1].alg,
alg_test_descs[i].alg);
}
if (WARN_ON(diff == 0)) {
pr_warn("testmgr: duplicate alg_test_descs entry: '%s'\n",
alg_test_descs[i].alg);
}
}
}
static int alg_find_test(const char *alg)
{
int start = 0;
int end = ARRAY_SIZE(alg_test_descs);
while (start < end) {
int i = (start + end) / 2;
int diff = strcmp(alg_test_descs[i].alg, alg);
if (diff > 0) {
end = i;
continue;
}
if (diff < 0) {
start = i + 1;
continue;
}
return i;
}
return -1;
}
int alg_test(const char *driver, const char *alg, u32 type, u32 mask)
{
int i;
int j;
int rc;
if (!fips_enabled && notests) {
printk_once(KERN_INFO "alg: self-tests disabled\n");
return 0;
}
alg_test_descs_check_order();
if ((type & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_CIPHER) {
char nalg[CRYPTO_MAX_ALG_NAME];
if (snprintf(nalg, sizeof(nalg), "ecb(%s)", alg) >=
sizeof(nalg))
return -ENAMETOOLONG;
i = alg_find_test(nalg);
if (i < 0)
goto notest;
if (fips_enabled && !alg_test_descs[i].fips_allowed)
goto non_fips_alg;
rc = alg_test_cipher(alg_test_descs + i, driver, type, mask);
goto test_done;
}
i = alg_find_test(alg);
j = alg_find_test(driver);
if (i < 0 && j < 0)
goto notest;
if (fips_enabled && ((i >= 0 && !alg_test_descs[i].fips_allowed) ||
(j >= 0 && !alg_test_descs[j].fips_allowed)))
goto non_fips_alg;
rc = 0;
if (i >= 0)
rc |= alg_test_descs[i].test(alg_test_descs + i, driver,
type, mask);
if (j >= 0 && j != i)
rc |= alg_test_descs[j].test(alg_test_descs + j, driver,
type, mask);
test_done:
if (fips_enabled && rc)
panic("%s: %s alg self test failed in fips mode!\n", driver, alg);
if (fips_enabled && !rc)
pr_info("alg: self-tests for %s (%s) passed\n", driver, alg);
return rc;
notest:
printk(KERN_INFO "alg: No test for %s (%s)\n", alg, driver);
return 0;
non_fips_alg:
return -EINVAL;
}
#endif /* CONFIG_CRYPTO_MANAGER_DISABLE_TESTS */
EXPORT_SYMBOL_GPL(alg_test);