Mathias Nyman ec7e43e2d9 xhci: Ensure a command structure points to the correct trb on the command ring
If a command on the command ring needs to be cancelled before it is handled
it can be turned to a no-op operation when the ring is stopped.
We want to store the command ring enqueue pointer in the command structure
when the command in enqueued for the cancellation case.

Some commands used to store the command ring dequeue pointers instead of enqueue
(these often worked because enqueue happends to equal dequeue quite often)

Other commands correctly used the enqueue pointer but did not check if it pointed
to a valid trb or a link trb, this caused for example stop endpoint command to timeout in
xhci_stop_device() in about 2% of suspend/resume cases.

This should also solve some weird behavior happening in command cancellation cases.

This patch is based on a patch submitted by Sarah Sharp to linux-usb, but
then forgotten:
    http://marc.info/?l=linux-usb&m=136269803207465&w=2

This patch should be backported to kernels as old as 3.7, that contain
the commit b92cc66c047ff7cf587b318fe377061a353c120f "xHCI: add aborting
command ring function"

Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@vger.kernel.org
2013-09-23 15:43:30 -07:00
..
2013-09-17 13:00:43 -07:00
2013-08-18 20:33:01 -07:00
2013-09-13 15:09:52 +02:00
2013-09-17 11:05:30 -05:00
2013-08-18 20:33:01 -07:00
2013-08-13 15:28:01 -07:00

To understand all the Linux-USB framework, you'll use these resources:

    * This source code.  This is necessarily an evolving work, and
      includes kerneldoc that should help you get a current overview.
      ("make pdfdocs", and then look at "usb.pdf" for host side and
      "gadget.pdf" for peripheral side.)  Also, Documentation/usb has
      more information.

    * The USB 2.0 specification (from www.usb.org), with supplements
      such as those for USB OTG and the various device classes.
      The USB specification has a good overview chapter, and USB
      peripherals conform to the widely known "Chapter 9".

    * Chip specifications for USB controllers.  Examples include
      host controllers (on PCs, servers, and more); peripheral
      controllers (in devices with Linux firmware, like printers or
      cell phones); and hard-wired peripherals like Ethernet adapters.

    * Specifications for other protocols implemented by USB peripheral
      functions.  Some are vendor-specific; others are vendor-neutral
      but just standardized outside of the www.usb.org team.

Here is a list of what each subdirectory here is, and what is contained in
them.

core/		- This is for the core USB host code, including the
		  usbfs files and the hub class driver ("khubd").

host/		- This is for USB host controller drivers.  This
		  includes UHCI, OHCI, EHCI, and others that might
		  be used with more specialized "embedded" systems.

gadget/		- This is for USB peripheral controller drivers and
		  the various gadget drivers which talk to them.


Individual USB driver directories.  A new driver should be added to the
first subdirectory in the list below that it fits into.

image/		- This is for still image drivers, like scanners or
		  digital cameras.
../input/	- This is for any driver that uses the input subsystem,
		  like keyboard, mice, touchscreens, tablets, etc.
../media/	- This is for multimedia drivers, like video cameras,
		  radios, and any other drivers that talk to the v4l
		  subsystem.
../net/		- This is for network drivers.
serial/		- This is for USB to serial drivers.
storage/	- This is for USB mass-storage drivers.
class/		- This is for all USB device drivers that do not fit
		  into any of the above categories, and work for a range
		  of USB Class specified devices. 
misc/		- This is for all USB device drivers that do not fit
		  into any of the above categories.