mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-12 00:00:00 +00:00
f721bb0dbd
This patch fixes checkpatch.pl errors for assignment in if condition. It also removes unused readq / readl function calls. As Andrew had disabled the compilation of drivers for 32 bit, I have modified format specifiers in few VPRINTKs to avoid warnings during 64 bit compilation. Signed-off-by: Akhil Bhansali <abhansali@stec-inc.com> Reviewed-by: Ramprasad Chinthekindi <rchinthekindi@stec-inc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
5827 lines
146 KiB
C
5827 lines
146 KiB
C
/* Copyright 2012 STEC, Inc.
|
|
*
|
|
* This file is licensed under the terms of the 3-clause
|
|
* BSD License (http://opensource.org/licenses/BSD-3-Clause)
|
|
* or the GNU GPL-2.0 (http://www.gnu.org/licenses/gpl-2.0.html),
|
|
* at your option. Both licenses are also available in the LICENSE file
|
|
* distributed with this project. This file may not be copied, modified,
|
|
* or distributed except in accordance with those terms.
|
|
* Gordoni Waidhofer <gwaidhofer@stec-inc.com>
|
|
* Initial Driver Design!
|
|
* Thomas Swann <tswann@stec-inc.com>
|
|
* Interrupt handling.
|
|
* Ramprasad Chinthekindi <rchinthekindi@stec-inc.com>
|
|
* biomode implementation.
|
|
* Akhil Bhansali <abhansali@stec-inc.com>
|
|
* Added support for DISCARD / FLUSH and FUA.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/time.h>
|
|
#include <linux/hdreg.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/version.h>
|
|
#include <linux/err.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/aer.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/uio.h>
|
|
#include <scsi/scsi.h>
|
|
#include <scsi/scsi_host.h>
|
|
#include <scsi/scsi_tcq.h>
|
|
#include <scsi/scsi_cmnd.h>
|
|
#include <scsi/sg.h>
|
|
#include <linux/io.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm-generic/unaligned.h>
|
|
|
|
#include "skd_s1120.h"
|
|
|
|
static int skd_dbg_level;
|
|
static int skd_isr_comp_limit = 4;
|
|
|
|
enum {
|
|
STEC_LINK_2_5GTS = 0,
|
|
STEC_LINK_5GTS = 1,
|
|
STEC_LINK_8GTS = 2,
|
|
STEC_LINK_UNKNOWN = 0xFF
|
|
};
|
|
|
|
enum {
|
|
SKD_FLUSH_INITIALIZER,
|
|
SKD_FLUSH_ZERO_SIZE_FIRST,
|
|
SKD_FLUSH_DATA_SECOND,
|
|
};
|
|
|
|
#define DPRINTK(skdev, fmt, args ...) \
|
|
do { \
|
|
if (unlikely((skdev)->dbg_level > 0)) { \
|
|
pr_err("%s:%s:%d " fmt, (skdev)->name, \
|
|
__func__, __LINE__, ## args); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define SKD_ASSERT(expr) \
|
|
do { \
|
|
if (unlikely(!(expr))) { \
|
|
pr_err("Assertion failed! %s,%s,%s,line=%d\n", \
|
|
# expr, __FILE__, __func__, __LINE__); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define VPRINTK(skdev, fmt, args ...) \
|
|
do { \
|
|
if (unlikely((skdev)->dbg_level > 1)) { \
|
|
pr_err("%s:%s:%d " fmt, (skdev)->name, \
|
|
__func__, __LINE__, ## args); \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
#define DRV_NAME "skd"
|
|
#define DRV_VERSION "2.2.1"
|
|
#define DRV_BUILD_ID "0260"
|
|
#define PFX DRV_NAME ": "
|
|
#define DRV_BIN_VERSION 0x100
|
|
#define DRV_VER_COMPL "2.2.1." DRV_BUILD_ID
|
|
|
|
MODULE_AUTHOR("bug-reports: support@stec-inc.com");
|
|
MODULE_LICENSE("Dual BSD/GPL");
|
|
|
|
MODULE_DESCRIPTION("STEC s1120 PCIe SSD block/BIO driver (b" DRV_BUILD_ID ")");
|
|
MODULE_VERSION(DRV_VERSION "-" DRV_BUILD_ID);
|
|
|
|
#define PCI_VENDOR_ID_STEC 0x1B39
|
|
#define PCI_DEVICE_ID_S1120 0x0001
|
|
|
|
#define SKD_FUA_NV (1 << 1)
|
|
#define SKD_MINORS_PER_DEVICE 16
|
|
|
|
#define SKD_MAX_QUEUE_DEPTH 200u
|
|
|
|
#define SKD_PAUSE_TIMEOUT (5 * 1000)
|
|
|
|
#define SKD_N_FITMSG_BYTES (512u)
|
|
|
|
#define SKD_N_SPECIAL_CONTEXT 32u
|
|
#define SKD_N_SPECIAL_FITMSG_BYTES (128u)
|
|
|
|
/* SG elements are 32 bytes, so we can make this 4096 and still be under the
|
|
* 128KB limit. That allows 4096*4K = 16M xfer size
|
|
*/
|
|
#define SKD_N_SG_PER_REQ_DEFAULT 256u
|
|
#define SKD_N_SG_PER_SPECIAL 256u
|
|
|
|
#define SKD_N_COMPLETION_ENTRY 256u
|
|
#define SKD_N_READ_CAP_BYTES (8u)
|
|
|
|
#define SKD_N_INTERNAL_BYTES (512u)
|
|
|
|
/* 5 bits of uniqifier, 0xF800 */
|
|
#define SKD_ID_INCR (0x400)
|
|
#define SKD_ID_TABLE_MASK (3u << 8u)
|
|
#define SKD_ID_RW_REQUEST (0u << 8u)
|
|
#define SKD_ID_INTERNAL (1u << 8u)
|
|
#define SKD_ID_SPECIAL_REQUEST (2u << 8u)
|
|
#define SKD_ID_FIT_MSG (3u << 8u)
|
|
#define SKD_ID_SLOT_MASK 0x00FFu
|
|
#define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
|
|
|
|
#define SKD_N_TIMEOUT_SLOT 4u
|
|
#define SKD_TIMEOUT_SLOT_MASK 3u
|
|
|
|
#define SKD_N_MAX_SECTORS 2048u
|
|
|
|
#define SKD_MAX_RETRIES 2u
|
|
|
|
#define SKD_TIMER_SECONDS(seconds) (seconds)
|
|
#define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
|
|
|
|
#define INQ_STD_NBYTES 36
|
|
#define SKD_DISCARD_CDB_LENGTH 24
|
|
|
|
enum skd_drvr_state {
|
|
SKD_DRVR_STATE_LOAD,
|
|
SKD_DRVR_STATE_IDLE,
|
|
SKD_DRVR_STATE_BUSY,
|
|
SKD_DRVR_STATE_STARTING,
|
|
SKD_DRVR_STATE_ONLINE,
|
|
SKD_DRVR_STATE_PAUSING,
|
|
SKD_DRVR_STATE_PAUSED,
|
|
SKD_DRVR_STATE_DRAINING_TIMEOUT,
|
|
SKD_DRVR_STATE_RESTARTING,
|
|
SKD_DRVR_STATE_RESUMING,
|
|
SKD_DRVR_STATE_STOPPING,
|
|
SKD_DRVR_STATE_FAULT,
|
|
SKD_DRVR_STATE_DISAPPEARED,
|
|
SKD_DRVR_STATE_PROTOCOL_MISMATCH,
|
|
SKD_DRVR_STATE_BUSY_ERASE,
|
|
SKD_DRVR_STATE_BUSY_SANITIZE,
|
|
SKD_DRVR_STATE_BUSY_IMMINENT,
|
|
SKD_DRVR_STATE_WAIT_BOOT,
|
|
SKD_DRVR_STATE_SYNCING,
|
|
};
|
|
|
|
#define SKD_WAIT_BOOT_TIMO SKD_TIMER_SECONDS(90u)
|
|
#define SKD_STARTING_TIMO SKD_TIMER_SECONDS(8u)
|
|
#define SKD_RESTARTING_TIMO SKD_TIMER_MINUTES(4u)
|
|
#define SKD_DRAINING_TIMO SKD_TIMER_SECONDS(6u)
|
|
#define SKD_BUSY_TIMO SKD_TIMER_MINUTES(20u)
|
|
#define SKD_STARTED_BUSY_TIMO SKD_TIMER_SECONDS(60u)
|
|
#define SKD_START_WAIT_SECONDS 90u
|
|
|
|
enum skd_req_state {
|
|
SKD_REQ_STATE_IDLE,
|
|
SKD_REQ_STATE_SETUP,
|
|
SKD_REQ_STATE_BUSY,
|
|
SKD_REQ_STATE_COMPLETED,
|
|
SKD_REQ_STATE_TIMEOUT,
|
|
SKD_REQ_STATE_ABORTED,
|
|
};
|
|
|
|
enum skd_fit_msg_state {
|
|
SKD_MSG_STATE_IDLE,
|
|
SKD_MSG_STATE_BUSY,
|
|
};
|
|
|
|
enum skd_check_status_action {
|
|
SKD_CHECK_STATUS_REPORT_GOOD,
|
|
SKD_CHECK_STATUS_REPORT_SMART_ALERT,
|
|
SKD_CHECK_STATUS_REQUEUE_REQUEST,
|
|
SKD_CHECK_STATUS_REPORT_ERROR,
|
|
SKD_CHECK_STATUS_BUSY_IMMINENT,
|
|
};
|
|
|
|
struct skd_fitmsg_context {
|
|
enum skd_fit_msg_state state;
|
|
|
|
struct skd_fitmsg_context *next;
|
|
|
|
u32 id;
|
|
u16 outstanding;
|
|
|
|
u32 length;
|
|
u32 offset;
|
|
|
|
u8 *msg_buf;
|
|
dma_addr_t mb_dma_address;
|
|
};
|
|
|
|
struct skd_request_context {
|
|
enum skd_req_state state;
|
|
|
|
struct skd_request_context *next;
|
|
|
|
u16 id;
|
|
u32 fitmsg_id;
|
|
|
|
struct request *req;
|
|
struct bio *bio;
|
|
unsigned long start_time;
|
|
u8 flush_cmd;
|
|
u8 discard_page;
|
|
|
|
u32 timeout_stamp;
|
|
u8 sg_data_dir;
|
|
struct scatterlist *sg;
|
|
u32 n_sg;
|
|
u32 sg_byte_count;
|
|
|
|
struct fit_sg_descriptor *sksg_list;
|
|
dma_addr_t sksg_dma_address;
|
|
|
|
struct fit_completion_entry_v1 completion;
|
|
|
|
struct fit_comp_error_info err_info;
|
|
|
|
};
|
|
#define SKD_DATA_DIR_HOST_TO_CARD 1
|
|
#define SKD_DATA_DIR_CARD_TO_HOST 2
|
|
#define SKD_DATA_DIR_NONE 3 /* especially for DISCARD requests. */
|
|
|
|
struct skd_special_context {
|
|
struct skd_request_context req;
|
|
|
|
u8 orphaned;
|
|
|
|
void *data_buf;
|
|
dma_addr_t db_dma_address;
|
|
|
|
u8 *msg_buf;
|
|
dma_addr_t mb_dma_address;
|
|
};
|
|
|
|
struct skd_sg_io {
|
|
fmode_t mode;
|
|
void __user *argp;
|
|
|
|
struct sg_io_hdr sg;
|
|
|
|
u8 cdb[16];
|
|
|
|
u32 dxfer_len;
|
|
u32 iovcnt;
|
|
struct sg_iovec *iov;
|
|
struct sg_iovec no_iov_iov;
|
|
|
|
struct skd_special_context *skspcl;
|
|
};
|
|
|
|
typedef enum skd_irq_type {
|
|
SKD_IRQ_LEGACY,
|
|
SKD_IRQ_MSI,
|
|
SKD_IRQ_MSIX
|
|
} skd_irq_type_t;
|
|
|
|
#define SKD_MAX_BARS 2
|
|
|
|
struct skd_device {
|
|
volatile void __iomem *mem_map[SKD_MAX_BARS];
|
|
resource_size_t mem_phys[SKD_MAX_BARS];
|
|
u32 mem_size[SKD_MAX_BARS];
|
|
|
|
skd_irq_type_t irq_type;
|
|
u32 msix_count;
|
|
struct skd_msix_entry *msix_entries;
|
|
|
|
struct pci_dev *pdev;
|
|
int pcie_error_reporting_is_enabled;
|
|
|
|
spinlock_t lock;
|
|
struct gendisk *disk;
|
|
struct request_queue *queue;
|
|
struct device *class_dev;
|
|
int gendisk_on;
|
|
int sync_done;
|
|
|
|
atomic_t device_count;
|
|
u32 devno;
|
|
u32 major;
|
|
char name[32];
|
|
char isr_name[30];
|
|
|
|
enum skd_drvr_state state;
|
|
u32 drive_state;
|
|
|
|
u32 in_flight;
|
|
u32 cur_max_queue_depth;
|
|
u32 queue_low_water_mark;
|
|
u32 dev_max_queue_depth;
|
|
|
|
u32 num_fitmsg_context;
|
|
u32 num_req_context;
|
|
|
|
u32 timeout_slot[SKD_N_TIMEOUT_SLOT];
|
|
u32 timeout_stamp;
|
|
struct skd_fitmsg_context *skmsg_free_list;
|
|
struct skd_fitmsg_context *skmsg_table;
|
|
|
|
struct skd_request_context *skreq_free_list;
|
|
struct skd_request_context *skreq_table;
|
|
|
|
struct skd_special_context *skspcl_free_list;
|
|
struct skd_special_context *skspcl_table;
|
|
|
|
struct skd_special_context internal_skspcl;
|
|
u32 read_cap_blocksize;
|
|
u32 read_cap_last_lba;
|
|
int read_cap_is_valid;
|
|
int inquiry_is_valid;
|
|
u8 inq_serial_num[13]; /*12 chars plus null term */
|
|
u8 id_str[80]; /* holds a composite name (pci + sernum) */
|
|
|
|
u8 skcomp_cycle;
|
|
u32 skcomp_ix;
|
|
struct fit_completion_entry_v1 *skcomp_table;
|
|
struct fit_comp_error_info *skerr_table;
|
|
dma_addr_t cq_dma_address;
|
|
|
|
wait_queue_head_t waitq;
|
|
|
|
struct timer_list timer;
|
|
u32 timer_countdown;
|
|
u32 timer_substate;
|
|
|
|
int n_special;
|
|
int sgs_per_request;
|
|
u32 last_mtd;
|
|
|
|
u32 proto_ver;
|
|
|
|
int dbg_level;
|
|
u32 connect_time_stamp;
|
|
int connect_retries;
|
|
#define SKD_MAX_CONNECT_RETRIES 16
|
|
u32 drive_jiffies;
|
|
|
|
u32 timo_slot;
|
|
|
|
|
|
struct work_struct completion_worker;
|
|
|
|
struct bio_list bio_queue;
|
|
int queue_stopped;
|
|
|
|
struct list_head flush_list;
|
|
};
|
|
|
|
#define SKD_FLUSH_JOB "skd-flush-jobs"
|
|
struct kmem_cache *skd_flush_slab;
|
|
|
|
/*
|
|
* These commands hold "nonzero size FLUSH bios",
|
|
* which are enqueud in skdev->flush_list during
|
|
* completion of "zero size FLUSH commands".
|
|
* It will be active in biomode.
|
|
*/
|
|
struct skd_flush_cmd {
|
|
void *cmd;
|
|
struct list_head flist;
|
|
};
|
|
|
|
#define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
|
|
#define SKD_READL(DEV, OFF) skd_reg_read32(DEV, OFF)
|
|
#define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
|
|
|
|
static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
|
|
{
|
|
u32 val;
|
|
|
|
if (likely(skdev->dbg_level < 2))
|
|
return readl(skdev->mem_map[1] + offset);
|
|
else {
|
|
barrier();
|
|
val = readl(skdev->mem_map[1] + offset);
|
|
barrier();
|
|
VPRINTK(skdev, "offset %x = %x\n", offset, val);
|
|
return val;
|
|
}
|
|
|
|
}
|
|
|
|
static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
|
|
u32 offset)
|
|
{
|
|
if (likely(skdev->dbg_level < 2)) {
|
|
writel(val, skdev->mem_map[1] + offset);
|
|
barrier();
|
|
} else {
|
|
barrier();
|
|
writel(val, skdev->mem_map[1] + offset);
|
|
barrier();
|
|
VPRINTK(skdev, "offset %x = %x\n", offset, val);
|
|
}
|
|
}
|
|
|
|
static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
|
|
u32 offset)
|
|
{
|
|
if (likely(skdev->dbg_level < 2)) {
|
|
writeq(val, skdev->mem_map[1] + offset);
|
|
barrier();
|
|
} else {
|
|
barrier();
|
|
writeq(val, skdev->mem_map[1] + offset);
|
|
barrier();
|
|
VPRINTK(skdev, "offset %x = %016llx\n", offset, val);
|
|
}
|
|
}
|
|
|
|
|
|
#define SKD_IRQ_DEFAULT SKD_IRQ_MSI
|
|
static int skd_isr_type = SKD_IRQ_DEFAULT;
|
|
|
|
module_param(skd_isr_type, int, 0444);
|
|
MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
|
|
" (0==legacy, 1==MSI, 2==MSI-X, default==1)");
|
|
|
|
#define SKD_MAX_REQ_PER_MSG_DEFAULT 1
|
|
static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
|
|
|
|
module_param(skd_max_req_per_msg, int, 0444);
|
|
MODULE_PARM_DESC(skd_max_req_per_msg,
|
|
"Maximum SCSI requests packed in a single message."
|
|
" (1-14, default==1)");
|
|
|
|
#define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
|
|
#define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
|
|
static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
|
|
|
|
module_param(skd_max_queue_depth, int, 0444);
|
|
MODULE_PARM_DESC(skd_max_queue_depth,
|
|
"Maximum SCSI requests issued to s1120."
|
|
" (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
|
|
|
|
static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
|
|
module_param(skd_sgs_per_request, int, 0444);
|
|
MODULE_PARM_DESC(skd_sgs_per_request,
|
|
"Maximum SG elements per block request."
|
|
" (1-4096, default==256)");
|
|
|
|
static int skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT;
|
|
module_param(skd_max_pass_thru, int, 0444);
|
|
MODULE_PARM_DESC(skd_max_pass_thru,
|
|
"Maximum SCSI pass-thru at a time." " (1-50, default==32)");
|
|
|
|
module_param(skd_dbg_level, int, 0444);
|
|
MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
|
|
|
|
module_param(skd_isr_comp_limit, int, 0444);
|
|
MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
|
|
|
|
static int skd_bio;
|
|
module_param(skd_bio, int, 0444);
|
|
MODULE_PARM_DESC(skd_bio,
|
|
"Register as a bio device instead of block (0, 1) default=0");
|
|
|
|
/* Major device number dynamically assigned. */
|
|
static u32 skd_major;
|
|
|
|
static struct skd_device *skd_construct(struct pci_dev *pdev);
|
|
static void skd_destruct(struct skd_device *skdev);
|
|
static const struct block_device_operations skd_blockdev_ops;
|
|
static void skd_send_fitmsg(struct skd_device *skdev,
|
|
struct skd_fitmsg_context *skmsg);
|
|
static void skd_send_special_fitmsg(struct skd_device *skdev,
|
|
struct skd_special_context *skspcl);
|
|
static void skd_request_fn(struct request_queue *rq);
|
|
static void skd_end_request(struct skd_device *skdev,
|
|
struct skd_request_context *skreq, int error);
|
|
static int skd_preop_sg_list(struct skd_device *skdev,
|
|
struct skd_request_context *skreq);
|
|
static void skd_postop_sg_list(struct skd_device *skdev,
|
|
struct skd_request_context *skreq);
|
|
|
|
static void skd_restart_device(struct skd_device *skdev);
|
|
static int skd_quiesce_dev(struct skd_device *skdev);
|
|
static int skd_unquiesce_dev(struct skd_device *skdev);
|
|
static void skd_release_special(struct skd_device *skdev,
|
|
struct skd_special_context *skspcl);
|
|
static void skd_disable_interrupts(struct skd_device *skdev);
|
|
static void skd_isr_fwstate(struct skd_device *skdev);
|
|
static void skd_recover_requests(struct skd_device *skdev, int requeue);
|
|
static void skd_soft_reset(struct skd_device *skdev);
|
|
|
|
static const char *skd_name(struct skd_device *skdev);
|
|
const char *skd_drive_state_to_str(int state);
|
|
const char *skd_skdev_state_to_str(enum skd_drvr_state state);
|
|
static void skd_log_skdev(struct skd_device *skdev, const char *event);
|
|
static void skd_log_skmsg(struct skd_device *skdev,
|
|
struct skd_fitmsg_context *skmsg, const char *event);
|
|
static void skd_log_skreq(struct skd_device *skdev,
|
|
struct skd_request_context *skreq, const char *event);
|
|
|
|
/* FLUSH FUA flag handling. */
|
|
static int skd_flush_cmd_enqueue(struct skd_device *, void *);
|
|
static void *skd_flush_cmd_dequeue(struct skd_device *);
|
|
|
|
|
|
/*
|
|
*****************************************************************************
|
|
* READ/WRITE REQUESTS
|
|
*****************************************************************************
|
|
*/
|
|
static void skd_stop_queue(struct skd_device *skdev)
|
|
{
|
|
if (!skd_bio)
|
|
blk_stop_queue(skdev->queue);
|
|
else
|
|
skdev->queue_stopped = 1;
|
|
}
|
|
|
|
static void skd_unstop_queue(struct skd_device *skdev)
|
|
{
|
|
if (!skd_bio)
|
|
queue_flag_clear(QUEUE_FLAG_STOPPED, skdev->queue);
|
|
else
|
|
skdev->queue_stopped = 0;
|
|
}
|
|
|
|
static void skd_start_queue(struct skd_device *skdev)
|
|
{
|
|
if (!skd_bio) {
|
|
blk_start_queue(skdev->queue);
|
|
} else {
|
|
pr_err("(%s): Starting queue\n", skd_name(skdev));
|
|
skdev->queue_stopped = 0;
|
|
skd_request_fn(skdev->queue);
|
|
}
|
|
}
|
|
|
|
static int skd_queue_stopped(struct skd_device *skdev)
|
|
{
|
|
if (!skd_bio)
|
|
return blk_queue_stopped(skdev->queue);
|
|
else
|
|
return skdev->queue_stopped;
|
|
}
|
|
|
|
static void skd_fail_all_pending_blk(struct skd_device *skdev)
|
|
{
|
|
struct request_queue *q = skdev->queue;
|
|
struct request *req;
|
|
|
|
for (;; ) {
|
|
req = blk_peek_request(q);
|
|
if (req == NULL)
|
|
break;
|
|
blk_start_request(req);
|
|
__blk_end_request_all(req, -EIO);
|
|
}
|
|
}
|
|
|
|
static void skd_fail_all_pending_bio(struct skd_device *skdev)
|
|
{
|
|
struct bio *bio;
|
|
int error = -EIO;
|
|
|
|
for (;; ) {
|
|
bio = bio_list_pop(&skdev->bio_queue);
|
|
|
|
if (bio == NULL)
|
|
break;
|
|
|
|
bio_endio(bio, error);
|
|
}
|
|
}
|
|
|
|
static void skd_fail_all_pending(struct skd_device *skdev)
|
|
{
|
|
if (!skd_bio)
|
|
skd_fail_all_pending_blk(skdev);
|
|
else
|
|
skd_fail_all_pending_bio(skdev);
|
|
}
|
|
|
|
static void skd_make_request(struct request_queue *q, struct bio *bio)
|
|
{
|
|
struct skd_device *skdev = q->queuedata;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&skdev->lock, flags);
|
|
|
|
bio_list_add(&skdev->bio_queue, bio);
|
|
skd_request_fn(skdev->queue);
|
|
|
|
spin_unlock_irqrestore(&skdev->lock, flags);
|
|
}
|
|
|
|
static void
|
|
skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
|
|
int data_dir, unsigned lba,
|
|
unsigned count)
|
|
{
|
|
if (data_dir == READ)
|
|
scsi_req->cdb[0] = 0x28;
|
|
else
|
|
scsi_req->cdb[0] = 0x2a;
|
|
|
|
scsi_req->cdb[1] = 0;
|
|
scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
|
|
scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
|
|
scsi_req->cdb[4] = (lba & 0xff00) >> 8;
|
|
scsi_req->cdb[5] = (lba & 0xff);
|
|
scsi_req->cdb[6] = 0;
|
|
scsi_req->cdb[7] = (count & 0xff00) >> 8;
|
|
scsi_req->cdb[8] = count & 0xff;
|
|
scsi_req->cdb[9] = 0;
|
|
}
|
|
|
|
static void
|
|
skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
|
|
struct skd_request_context *skreq)
|
|
{
|
|
skreq->flush_cmd = 1;
|
|
|
|
scsi_req->cdb[0] = 0x35;
|
|
scsi_req->cdb[1] = 0;
|
|
scsi_req->cdb[2] = 0;
|
|
scsi_req->cdb[3] = 0;
|
|
scsi_req->cdb[4] = 0;
|
|
scsi_req->cdb[5] = 0;
|
|
scsi_req->cdb[6] = 0;
|
|
scsi_req->cdb[7] = 0;
|
|
scsi_req->cdb[8] = 0;
|
|
scsi_req->cdb[9] = 0;
|
|
}
|
|
|
|
static void
|
|
skd_prep_discard_cdb(struct skd_scsi_request *scsi_req,
|
|
struct skd_request_context *skreq,
|
|
struct page *page,
|
|
u32 lba, u32 count)
|
|
{
|
|
char *buf;
|
|
unsigned long len;
|
|
struct request *req;
|
|
|
|
buf = page_address(page);
|
|
len = SKD_DISCARD_CDB_LENGTH;
|
|
|
|
scsi_req->cdb[0] = UNMAP;
|
|
scsi_req->cdb[8] = len;
|
|
|
|
put_unaligned_be16(6 + 16, &buf[0]);
|
|
put_unaligned_be16(16, &buf[2]);
|
|
put_unaligned_be64(lba, &buf[8]);
|
|
put_unaligned_be32(count, &buf[16]);
|
|
|
|
if (!skd_bio) {
|
|
req = skreq->req;
|
|
blk_add_request_payload(req, page, len);
|
|
req->buffer = buf;
|
|
} else {
|
|
skreq->bio->bi_io_vec->bv_page = page;
|
|
skreq->bio->bi_io_vec->bv_offset = 0;
|
|
skreq->bio->bi_io_vec->bv_len = len;
|
|
|
|
skreq->bio->bi_vcnt = 1;
|
|
skreq->bio->bi_phys_segments = 1;
|
|
}
|
|
}
|
|
|
|
static void skd_request_fn_not_online(struct request_queue *q);
|
|
|
|
static void skd_request_fn(struct request_queue *q)
|
|
{
|
|
struct skd_device *skdev = q->queuedata;
|
|
struct skd_fitmsg_context *skmsg = NULL;
|
|
struct fit_msg_hdr *fmh = NULL;
|
|
struct skd_request_context *skreq;
|
|
struct request *req = NULL;
|
|
struct bio *bio = NULL;
|
|
struct skd_scsi_request *scsi_req;
|
|
struct page *page;
|
|
unsigned long io_flags;
|
|
int error;
|
|
u32 lba;
|
|
u32 count;
|
|
int data_dir;
|
|
u32 be_lba;
|
|
u32 be_count;
|
|
u64 be_dmaa;
|
|
u64 cmdctxt;
|
|
u32 timo_slot;
|
|
void *cmd_ptr;
|
|
int flush, fua;
|
|
|
|
if (skdev->state != SKD_DRVR_STATE_ONLINE) {
|
|
skd_request_fn_not_online(q);
|
|
return;
|
|
}
|
|
|
|
if (skd_queue_stopped(skdev)) {
|
|
if (skdev->skmsg_free_list == NULL ||
|
|
skdev->skreq_free_list == NULL ||
|
|
skdev->in_flight >= skdev->queue_low_water_mark)
|
|
/* There is still some kind of shortage */
|
|
return;
|
|
|
|
skd_unstop_queue(skdev);
|
|
}
|
|
|
|
/*
|
|
* Stop conditions:
|
|
* - There are no more native requests
|
|
* - There are already the maximum number of requests in progress
|
|
* - There are no more skd_request_context entries
|
|
* - There are no more FIT msg buffers
|
|
*/
|
|
for (;; ) {
|
|
|
|
flush = fua = 0;
|
|
|
|
if (!skd_bio) {
|
|
req = blk_peek_request(q);
|
|
|
|
/* Are there any native requests to start? */
|
|
if (req == NULL)
|
|
break;
|
|
|
|
lba = (u32)blk_rq_pos(req);
|
|
count = blk_rq_sectors(req);
|
|
data_dir = rq_data_dir(req);
|
|
io_flags = req->cmd_flags;
|
|
|
|
if (io_flags & REQ_FLUSH)
|
|
flush++;
|
|
|
|
if (io_flags & REQ_FUA)
|
|
fua++;
|
|
|
|
VPRINTK(skdev,
|
|
"new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n",
|
|
req, lba, lba, count, count, data_dir);
|
|
} else {
|
|
if (!list_empty(&skdev->flush_list)) {
|
|
/* Process data part of FLUSH request. */
|
|
bio = (struct bio *)skd_flush_cmd_dequeue(skdev);
|
|
flush++;
|
|
VPRINTK(skdev, "processing FLUSH request with data.\n");
|
|
} else {
|
|
/* peek at our bio queue */
|
|
bio = bio_list_peek(&skdev->bio_queue);
|
|
}
|
|
|
|
/* Are there any native requests to start? */
|
|
if (bio == NULL)
|
|
break;
|
|
|
|
lba = (u32)bio->bi_sector;
|
|
count = bio_sectors(bio);
|
|
data_dir = bio_data_dir(bio);
|
|
io_flags = bio->bi_rw;
|
|
|
|
VPRINTK(skdev,
|
|
"new bio=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n",
|
|
bio, lba, lba, count, count, data_dir);
|
|
|
|
if (io_flags & REQ_FLUSH)
|
|
flush++;
|
|
|
|
if (io_flags & REQ_FUA)
|
|
fua++;
|
|
}
|
|
|
|
/* At this point we know there is a request
|
|
* (from our bio q or req q depending on the way
|
|
* the driver is built do checks for resources.
|
|
*/
|
|
|
|
/* Are too many requets already in progress? */
|
|
if (skdev->in_flight >= skdev->cur_max_queue_depth) {
|
|
VPRINTK(skdev, "qdepth %d, limit %d\n",
|
|
skdev->in_flight, skdev->cur_max_queue_depth);
|
|
break;
|
|
}
|
|
|
|
/* Is a skd_request_context available? */
|
|
skreq = skdev->skreq_free_list;
|
|
if (skreq == NULL) {
|
|
VPRINTK(skdev, "Out of req=%p\n", q);
|
|
break;
|
|
}
|
|
SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
|
|
SKD_ASSERT((skreq->id & SKD_ID_INCR) == 0);
|
|
|
|
/* Now we check to see if we can get a fit msg */
|
|
if (skmsg == NULL) {
|
|
if (skdev->skmsg_free_list == NULL) {
|
|
VPRINTK(skdev, "Out of msg\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
skreq->flush_cmd = 0;
|
|
skreq->n_sg = 0;
|
|
skreq->sg_byte_count = 0;
|
|
skreq->discard_page = 0;
|
|
|
|
/*
|
|
* OK to now dequeue request from either bio or q.
|
|
*
|
|
* At this point we are comitted to either start or reject
|
|
* the native request. Note that skd_request_context is
|
|
* available but is still at the head of the free list.
|
|
*/
|
|
if (!skd_bio) {
|
|
blk_start_request(req);
|
|
skreq->req = req;
|
|
skreq->fitmsg_id = 0;
|
|
} else {
|
|
if (unlikely(flush == SKD_FLUSH_DATA_SECOND)) {
|
|
skreq->bio = bio;
|
|
} else {
|
|
skreq->bio = bio_list_pop(&skdev->bio_queue);
|
|
SKD_ASSERT(skreq->bio == bio);
|
|
skreq->start_time = jiffies;
|
|
part_inc_in_flight(&skdev->disk->part0,
|
|
bio_data_dir(bio));
|
|
}
|
|
|
|
skreq->fitmsg_id = 0;
|
|
}
|
|
|
|
/* Either a FIT msg is in progress or we have to start one. */
|
|
if (skmsg == NULL) {
|
|
/* Are there any FIT msg buffers available? */
|
|
skmsg = skdev->skmsg_free_list;
|
|
if (skmsg == NULL) {
|
|
VPRINTK(skdev, "Out of msg skdev=%p\n", skdev);
|
|
break;
|
|
}
|
|
SKD_ASSERT(skmsg->state == SKD_MSG_STATE_IDLE);
|
|
SKD_ASSERT((skmsg->id & SKD_ID_INCR) == 0);
|
|
|
|
skdev->skmsg_free_list = skmsg->next;
|
|
|
|
skmsg->state = SKD_MSG_STATE_BUSY;
|
|
skmsg->id += SKD_ID_INCR;
|
|
|
|
/* Initialize the FIT msg header */
|
|
fmh = (struct fit_msg_hdr *)skmsg->msg_buf;
|
|
memset(fmh, 0, sizeof(*fmh));
|
|
fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
|
|
skmsg->length = sizeof(*fmh);
|
|
}
|
|
|
|
skreq->fitmsg_id = skmsg->id;
|
|
|
|
/*
|
|
* Note that a FIT msg may have just been started
|
|
* but contains no SoFIT requests yet.
|
|
*/
|
|
|
|
/*
|
|
* Transcode the request, checking as we go. The outcome of
|
|
* the transcoding is represented by the error variable.
|
|
*/
|
|
cmd_ptr = &skmsg->msg_buf[skmsg->length];
|
|
memset(cmd_ptr, 0, 32);
|
|
|
|
be_lba = cpu_to_be32(lba);
|
|
be_count = cpu_to_be32(count);
|
|
be_dmaa = cpu_to_be64((u64)skreq->sksg_dma_address);
|
|
cmdctxt = skreq->id + SKD_ID_INCR;
|
|
|
|
scsi_req = cmd_ptr;
|
|
scsi_req->hdr.tag = cmdctxt;
|
|
scsi_req->hdr.sg_list_dma_address = be_dmaa;
|
|
|
|
if (data_dir == READ)
|
|
skreq->sg_data_dir = SKD_DATA_DIR_CARD_TO_HOST;
|
|
else
|
|
skreq->sg_data_dir = SKD_DATA_DIR_HOST_TO_CARD;
|
|
|
|
if (io_flags & REQ_DISCARD) {
|
|
page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
|
|
if (!page) {
|
|
pr_err("request_fn:Page allocation failed.\n");
|
|
skd_end_request(skdev, skreq, -ENOMEM);
|
|
break;
|
|
}
|
|
skreq->discard_page = 1;
|
|
skd_prep_discard_cdb(scsi_req, skreq, page, lba, count);
|
|
|
|
} else if (flush == SKD_FLUSH_ZERO_SIZE_FIRST) {
|
|
skd_prep_zerosize_flush_cdb(scsi_req, skreq);
|
|
SKD_ASSERT(skreq->flush_cmd == 1);
|
|
|
|
} else {
|
|
skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
|
|
}
|
|
|
|
if (fua)
|
|
scsi_req->cdb[1] |= SKD_FUA_NV;
|
|
|
|
if ((!skd_bio && !req->bio) ||
|
|
(skd_bio && flush == SKD_FLUSH_ZERO_SIZE_FIRST))
|
|
goto skip_sg;
|
|
|
|
error = skd_preop_sg_list(skdev, skreq);
|
|
|
|
if (error != 0) {
|
|
/*
|
|
* Complete the native request with error.
|
|
* Note that the request context is still at the
|
|
* head of the free list, and that the SoFIT request
|
|
* was encoded into the FIT msg buffer but the FIT
|
|
* msg length has not been updated. In short, the
|
|
* only resource that has been allocated but might
|
|
* not be used is that the FIT msg could be empty.
|
|
*/
|
|
DPRINTK(skdev, "error Out\n");
|
|
skd_end_request(skdev, skreq, error);
|
|
continue;
|
|
}
|
|
|
|
skip_sg:
|
|
scsi_req->hdr.sg_list_len_bytes =
|
|
cpu_to_be32(skreq->sg_byte_count);
|
|
|
|
/* Complete resource allocations. */
|
|
skdev->skreq_free_list = skreq->next;
|
|
skreq->state = SKD_REQ_STATE_BUSY;
|
|
skreq->id += SKD_ID_INCR;
|
|
|
|
skmsg->length += sizeof(struct skd_scsi_request);
|
|
fmh->num_protocol_cmds_coalesced++;
|
|
|
|
/*
|
|
* Update the active request counts.
|
|
* Capture the timeout timestamp.
|
|
*/
|
|
skreq->timeout_stamp = skdev->timeout_stamp;
|
|
timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
|
|
skdev->timeout_slot[timo_slot]++;
|
|
skdev->in_flight++;
|
|
VPRINTK(skdev, "req=0x%x busy=%d\n",
|
|
skreq->id, skdev->in_flight);
|
|
|
|
/*
|
|
* If the FIT msg buffer is full send it.
|
|
*/
|
|
if (skmsg->length >= SKD_N_FITMSG_BYTES ||
|
|
fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
|
|
skd_send_fitmsg(skdev, skmsg);
|
|
skmsg = NULL;
|
|
fmh = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Is a FIT msg in progress? If it is empty put the buffer back
|
|
* on the free list. If it is non-empty send what we got.
|
|
* This minimizes latency when there are fewer requests than
|
|
* what fits in a FIT msg.
|
|
*/
|
|
if (skmsg != NULL) {
|
|
/* Bigger than just a FIT msg header? */
|
|
if (skmsg->length > sizeof(struct fit_msg_hdr)) {
|
|
VPRINTK(skdev, "sending msg=%p, len %d\n",
|
|
skmsg, skmsg->length);
|
|
skd_send_fitmsg(skdev, skmsg);
|
|
} else {
|
|
/*
|
|
* The FIT msg is empty. It means we got started
|
|
* on the msg, but the requests were rejected.
|
|
*/
|
|
skmsg->state = SKD_MSG_STATE_IDLE;
|
|
skmsg->id += SKD_ID_INCR;
|
|
skmsg->next = skdev->skmsg_free_list;
|
|
skdev->skmsg_free_list = skmsg;
|
|
}
|
|
skmsg = NULL;
|
|
fmh = NULL;
|
|
}
|
|
|
|
/*
|
|
* If req is non-NULL it means there is something to do but
|
|
* we are out of a resource.
|
|
*/
|
|
if (((!skd_bio) && req) ||
|
|
((skd_bio) && bio_list_peek(&skdev->bio_queue)))
|
|
skd_stop_queue(skdev);
|
|
}
|
|
|
|
static void skd_end_request_blk(struct skd_device *skdev,
|
|
struct skd_request_context *skreq, int error)
|
|
{
|
|
struct request *req = skreq->req;
|
|
unsigned int io_flags = req->cmd_flags;
|
|
|
|
if ((io_flags & REQ_DISCARD) &&
|
|
(skreq->discard_page == 1)) {
|
|
VPRINTK(skdev, "skd_end_request_blk, free the page!");
|
|
free_page((unsigned long)req->buffer);
|
|
req->buffer = NULL;
|
|
}
|
|
|
|
if (unlikely(error)) {
|
|
struct request *req = skreq->req;
|
|
char *cmd = (rq_data_dir(req) == READ) ? "read" : "write";
|
|
u32 lba = (u32)blk_rq_pos(req);
|
|
u32 count = blk_rq_sectors(req);
|
|
|
|
pr_err("(%s): Error cmd=%s sect=%u count=%u id=0x%x\n",
|
|
skd_name(skdev), cmd, lba, count, skreq->id);
|
|
} else
|
|
VPRINTK(skdev, "id=0x%x error=%d\n", skreq->id, error);
|
|
|
|
__blk_end_request_all(skreq->req, error);
|
|
}
|
|
|
|
static int skd_preop_sg_list_blk(struct skd_device *skdev,
|
|
struct skd_request_context *skreq)
|
|
{
|
|
struct request *req = skreq->req;
|
|
int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
|
|
int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
|
|
struct scatterlist *sg = &skreq->sg[0];
|
|
int n_sg;
|
|
int i;
|
|
|
|
skreq->sg_byte_count = 0;
|
|
|
|
/* SKD_ASSERT(skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD ||
|
|
skreq->sg_data_dir == SKD_DATA_DIR_CARD_TO_HOST); */
|
|
|
|
n_sg = blk_rq_map_sg(skdev->queue, req, sg);
|
|
if (n_sg <= 0)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Map scatterlist to PCI bus addresses.
|
|
* Note PCI might change the number of entries.
|
|
*/
|
|
n_sg = pci_map_sg(skdev->pdev, sg, n_sg, pci_dir);
|
|
if (n_sg <= 0)
|
|
return -EINVAL;
|
|
|
|
SKD_ASSERT(n_sg <= skdev->sgs_per_request);
|
|
|
|
skreq->n_sg = n_sg;
|
|
|
|
for (i = 0; i < n_sg; i++) {
|
|
struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
|
|
u32 cnt = sg_dma_len(&sg[i]);
|
|
uint64_t dma_addr = sg_dma_address(&sg[i]);
|
|
|
|
sgd->control = FIT_SGD_CONTROL_NOT_LAST;
|
|
sgd->byte_count = cnt;
|
|
skreq->sg_byte_count += cnt;
|
|
sgd->host_side_addr = dma_addr;
|
|
sgd->dev_side_addr = 0;
|
|
}
|
|
|
|
skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
|
|
skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
|
|
|
|
if (unlikely(skdev->dbg_level > 1)) {
|
|
VPRINTK(skdev, "skreq=%x sksg_list=%p sksg_dma=%llx\n",
|
|
skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
|
|
for (i = 0; i < n_sg; i++) {
|
|
struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
|
|
VPRINTK(skdev, " sg[%d] count=%u ctrl=0x%x "
|
|
"addr=0x%llx next=0x%llx\n",
|
|
i, sgd->byte_count, sgd->control,
|
|
sgd->host_side_addr, sgd->next_desc_ptr);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void skd_postop_sg_list_blk(struct skd_device *skdev,
|
|
struct skd_request_context *skreq)
|
|
{
|
|
int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
|
|
int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
|
|
|
|
/*
|
|
* restore the next ptr for next IO request so we
|
|
* don't have to set it every time.
|
|
*/
|
|
skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
|
|
skreq->sksg_dma_address +
|
|
((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
|
|
pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, pci_dir);
|
|
}
|
|
|
|
static void skd_end_request_bio(struct skd_device *skdev,
|
|
struct skd_request_context *skreq, int error)
|
|
{
|
|
struct bio *bio = skreq->bio;
|
|
int rw = bio_data_dir(bio);
|
|
unsigned long io_flags = bio->bi_rw;
|
|
|
|
if ((io_flags & REQ_DISCARD) &&
|
|
(skreq->discard_page == 1)) {
|
|
VPRINTK(skdev, "biomode: skd_end_request: freeing DISCARD page.\n");
|
|
free_page((unsigned long)page_address(bio->bi_io_vec->bv_page));
|
|
}
|
|
|
|
if (unlikely(error)) {
|
|
u32 lba = (u32)skreq->bio->bi_sector;
|
|
u32 count = bio_sectors(skreq->bio);
|
|
char *cmd = (rw == WRITE) ? "write" : "read";
|
|
pr_err("(%s): Error cmd=%s sect=%u count=%u id=0x%x\n",
|
|
skd_name(skdev), cmd, lba, count, skreq->id);
|
|
}
|
|
{
|
|
int cpu = part_stat_lock();
|
|
|
|
if (likely(!error)) {
|
|
part_stat_inc(cpu, &skdev->disk->part0, ios[rw]);
|
|
part_stat_add(cpu, &skdev->disk->part0, sectors[rw],
|
|
bio_sectors(bio));
|
|
}
|
|
part_stat_add(cpu, &skdev->disk->part0, ticks[rw],
|
|
jiffies - skreq->start_time);
|
|
part_dec_in_flight(&skdev->disk->part0, rw);
|
|
part_stat_unlock();
|
|
}
|
|
|
|
VPRINTK(skdev, "id=0x%x error=%d\n", skreq->id, error);
|
|
|
|
bio_endio(skreq->bio, error);
|
|
}
|
|
|
|
static int skd_preop_sg_list_bio(struct skd_device *skdev,
|
|
struct skd_request_context *skreq)
|
|
{
|
|
struct bio *bio = skreq->bio;
|
|
int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
|
|
int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
|
|
int n_sg;
|
|
int i;
|
|
struct bio_vec *vec;
|
|
struct fit_sg_descriptor *sgd;
|
|
u64 dma_addr;
|
|
u32 count;
|
|
int errs = 0;
|
|
unsigned int io_flags = 0;
|
|
io_flags |= bio->bi_rw;
|
|
|
|
skreq->sg_byte_count = 0;
|
|
n_sg = skreq->n_sg = skreq->bio->bi_vcnt;
|
|
|
|
if (n_sg <= 0)
|
|
return -EINVAL;
|
|
|
|
if (n_sg > skdev->sgs_per_request) {
|
|
pr_err("(%s): sg overflow n=%d\n",
|
|
skd_name(skdev), n_sg);
|
|
skreq->n_sg = 0;
|
|
return -EIO;
|
|
}
|
|
|
|
for (i = 0; i < skreq->n_sg; i++) {
|
|
vec = bio_iovec_idx(bio, i);
|
|
dma_addr = pci_map_page(skdev->pdev,
|
|
vec->bv_page,
|
|
vec->bv_offset, vec->bv_len, pci_dir);
|
|
count = vec->bv_len;
|
|
|
|
if (count == 0 || count > 64u * 1024u || (count & 3) != 0
|
|
|| (dma_addr & 3) != 0) {
|
|
pr_err(
|
|
"(%s): Bad sg ix=%d count=%d addr=0x%llx\n",
|
|
skd_name(skdev), i, count, dma_addr);
|
|
errs++;
|
|
}
|
|
|
|
sgd = &skreq->sksg_list[i];
|
|
|
|
sgd->control = FIT_SGD_CONTROL_NOT_LAST;
|
|
sgd->byte_count = vec->bv_len;
|
|
skreq->sg_byte_count += vec->bv_len;
|
|
sgd->host_side_addr = dma_addr;
|
|
sgd->dev_side_addr = 0; /* not used */
|
|
}
|
|
|
|
skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
|
|
skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
|
|
|
|
|
|
if (!(io_flags & REQ_DISCARD)) {
|
|
count = bio_sectors(bio) << 9u;
|
|
if (count != skreq->sg_byte_count) {
|
|
pr_err("(%s): mismatch count sg=%d req=%d\n",
|
|
skd_name(skdev), skreq->sg_byte_count, count);
|
|
errs++;
|
|
}
|
|
}
|
|
|
|
if (unlikely(skdev->dbg_level > 1)) {
|
|
VPRINTK(skdev, "skreq=%x sksg_list=%p sksg_dma=%llx\n",
|
|
skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
|
|
for (i = 0; i < n_sg; i++) {
|
|
struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
|
|
VPRINTK(skdev, " sg[%d] count=%u ctrl=0x%x "
|
|
"addr=0x%llx next=0x%llx\n",
|
|
i, sgd->byte_count, sgd->control,
|
|
sgd->host_side_addr, sgd->next_desc_ptr);
|
|
}
|
|
}
|
|
|
|
if (errs != 0) {
|
|
skd_postop_sg_list(skdev, skreq);
|
|
skreq->n_sg = 0;
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int skd_preop_sg_list(struct skd_device *skdev,
|
|
struct skd_request_context *skreq)
|
|
{
|
|
if (!skd_bio)
|
|
return skd_preop_sg_list_blk(skdev, skreq);
|
|
else
|
|
return skd_preop_sg_list_bio(skdev, skreq);
|
|
}
|
|
|
|
static void skd_postop_sg_list_bio(struct skd_device *skdev,
|
|
struct skd_request_context *skreq)
|
|
{
|
|
int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
|
|
int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
|
|
int i;
|
|
struct fit_sg_descriptor *sgd;
|
|
|
|
/*
|
|
* restore the next ptr for next IO request so we
|
|
* don't have to set it every time.
|
|
*/
|
|
skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
|
|
skreq->sksg_dma_address +
|
|
((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
|
|
|
|
for (i = 0; i < skreq->n_sg; i++) {
|
|
sgd = &skreq->sksg_list[i];
|
|
pci_unmap_page(skdev->pdev, sgd->host_side_addr,
|
|
sgd->byte_count, pci_dir);
|
|
}
|
|
}
|
|
|
|
static void skd_postop_sg_list(struct skd_device *skdev,
|
|
struct skd_request_context *skreq)
|
|
{
|
|
if (!skd_bio)
|
|
skd_postop_sg_list_blk(skdev, skreq);
|
|
else
|
|
skd_postop_sg_list_bio(skdev, skreq);
|
|
}
|
|
|
|
static void skd_end_request(struct skd_device *skdev,
|
|
struct skd_request_context *skreq, int error)
|
|
{
|
|
if (likely(!skd_bio))
|
|
skd_end_request_blk(skdev, skreq, error);
|
|
else
|
|
skd_end_request_bio(skdev, skreq, error);
|
|
}
|
|
|
|
static void skd_request_fn_not_online(struct request_queue *q)
|
|
{
|
|
struct skd_device *skdev = q->queuedata;
|
|
int error;
|
|
|
|
SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
|
|
|
|
skd_log_skdev(skdev, "req_not_online");
|
|
switch (skdev->state) {
|
|
case SKD_DRVR_STATE_PAUSING:
|
|
case SKD_DRVR_STATE_PAUSED:
|
|
case SKD_DRVR_STATE_STARTING:
|
|
case SKD_DRVR_STATE_RESTARTING:
|
|
case SKD_DRVR_STATE_WAIT_BOOT:
|
|
/* In case of starting, we haven't started the queue,
|
|
* so we can't get here... but requests are
|
|
* possibly hanging out waiting for us because we
|
|
* reported the dev/skd0 already. They'll wait
|
|
* forever if connect doesn't complete.
|
|
* What to do??? delay dev/skd0 ??
|
|
*/
|
|
case SKD_DRVR_STATE_BUSY:
|
|
case SKD_DRVR_STATE_BUSY_IMMINENT:
|
|
case SKD_DRVR_STATE_BUSY_ERASE:
|
|
case SKD_DRVR_STATE_DRAINING_TIMEOUT:
|
|
return;
|
|
|
|
case SKD_DRVR_STATE_BUSY_SANITIZE:
|
|
case SKD_DRVR_STATE_STOPPING:
|
|
case SKD_DRVR_STATE_SYNCING:
|
|
case SKD_DRVR_STATE_FAULT:
|
|
case SKD_DRVR_STATE_DISAPPEARED:
|
|
default:
|
|
error = -EIO;
|
|
break;
|
|
}
|
|
|
|
/* If we get here, terminate all pending block requeusts
|
|
* with EIO and any scsi pass thru with appropriate sense
|
|
*/
|
|
|
|
skd_fail_all_pending(skdev);
|
|
}
|
|
|
|
/*
|
|
*****************************************************************************
|
|
* TIMER
|
|
*****************************************************************************
|
|
*/
|
|
|
|
static void skd_timer_tick_not_online(struct skd_device *skdev);
|
|
|
|
static void skd_timer_tick(ulong arg)
|
|
{
|
|
struct skd_device *skdev = (struct skd_device *)arg;
|
|
|
|
u32 timo_slot;
|
|
u32 overdue_timestamp;
|
|
unsigned long reqflags;
|
|
u32 state;
|
|
|
|
if (skdev->state == SKD_DRVR_STATE_FAULT)
|
|
/* The driver has declared fault, and we want it to
|
|
* stay that way until driver is reloaded.
|
|
*/
|
|
return;
|
|
|
|
spin_lock_irqsave(&skdev->lock, reqflags);
|
|
|
|
state = SKD_READL(skdev, FIT_STATUS);
|
|
state &= FIT_SR_DRIVE_STATE_MASK;
|
|
if (state != skdev->drive_state)
|
|
skd_isr_fwstate(skdev);
|
|
|
|
if (skdev->state != SKD_DRVR_STATE_ONLINE) {
|
|
skd_timer_tick_not_online(skdev);
|
|
goto timer_func_out;
|
|
}
|
|
skdev->timeout_stamp++;
|
|
timo_slot = skdev->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
|
|
|
|
/*
|
|
* All requests that happened during the previous use of
|
|
* this slot should be done by now. The previous use was
|
|
* over 7 seconds ago.
|
|
*/
|
|
if (skdev->timeout_slot[timo_slot] == 0)
|
|
goto timer_func_out;
|
|
|
|
/* Something is overdue */
|
|
overdue_timestamp = skdev->timeout_stamp - SKD_N_TIMEOUT_SLOT;
|
|
|
|
DPRINTK(skdev, "found %d timeouts, draining busy=%d\n",
|
|
skdev->timeout_slot[timo_slot], skdev->in_flight);
|
|
pr_err("(%s): Overdue IOs (%d), busy %d\n",
|
|
skd_name(skdev), skdev->timeout_slot[timo_slot],
|
|
skdev->in_flight);
|
|
|
|
skdev->timer_countdown = SKD_DRAINING_TIMO;
|
|
skdev->state = SKD_DRVR_STATE_DRAINING_TIMEOUT;
|
|
skdev->timo_slot = timo_slot;
|
|
skd_stop_queue(skdev);
|
|
|
|
timer_func_out:
|
|
mod_timer(&skdev->timer, (jiffies + HZ));
|
|
|
|
spin_unlock_irqrestore(&skdev->lock, reqflags);
|
|
}
|
|
|
|
static void skd_timer_tick_not_online(struct skd_device *skdev)
|
|
{
|
|
switch (skdev->state) {
|
|
case SKD_DRVR_STATE_IDLE:
|
|
case SKD_DRVR_STATE_LOAD:
|
|
break;
|
|
case SKD_DRVR_STATE_BUSY_SANITIZE:
|
|
VPRINTK(skdev, "drive busy sanitize[%x], driver[%x]\n",
|
|
skdev->drive_state, skdev->state);
|
|
/* If we've been in sanitize for 3 seconds, we figure we're not
|
|
* going to get anymore completions, so recover requests now
|
|
*/
|
|
if (skdev->timer_countdown > 0) {
|
|
skdev->timer_countdown--;
|
|
return;
|
|
}
|
|
skd_recover_requests(skdev, 0);
|
|
break;
|
|
|
|
case SKD_DRVR_STATE_BUSY:
|
|
case SKD_DRVR_STATE_BUSY_IMMINENT:
|
|
case SKD_DRVR_STATE_BUSY_ERASE:
|
|
VPRINTK(skdev, "busy[%x], countdown=%d\n",
|
|
skdev->state, skdev->timer_countdown);
|
|
if (skdev->timer_countdown > 0) {
|
|
skdev->timer_countdown--;
|
|
return;
|
|
}
|
|
DPRINTK(skdev, "busy[%x], timedout=%d, restarting device.",
|
|
skdev->state, skdev->timer_countdown);
|
|
skd_restart_device(skdev);
|
|
break;
|
|
|
|
case SKD_DRVR_STATE_WAIT_BOOT:
|
|
case SKD_DRVR_STATE_STARTING:
|
|
if (skdev->timer_countdown > 0) {
|
|
skdev->timer_countdown--;
|
|
return;
|
|
}
|
|
/* For now, we fault the drive. Could attempt resets to
|
|
* revcover at some point. */
|
|
skdev->state = SKD_DRVR_STATE_FAULT;
|
|
|
|
pr_err("(%s): DriveFault Connect Timeout (%x)\n",
|
|
skd_name(skdev), skdev->drive_state);
|
|
|
|
/*start the queue so we can respond with error to requests */
|
|
/* wakeup anyone waiting for startup complete */
|
|
skd_start_queue(skdev);
|
|
skdev->gendisk_on = -1;
|
|
wake_up_interruptible(&skdev->waitq);
|
|
break;
|
|
|
|
case SKD_DRVR_STATE_ONLINE:
|
|
/* shouldn't get here. */
|
|
break;
|
|
|
|
case SKD_DRVR_STATE_PAUSING:
|
|
case SKD_DRVR_STATE_PAUSED:
|
|
break;
|
|
|
|
case SKD_DRVR_STATE_DRAINING_TIMEOUT:
|
|
DPRINTK(skdev,
|
|
"draining busy [%d] tick[%d] qdb[%d] tmls[%d]\n",
|
|
skdev->timo_slot,
|
|
skdev->timer_countdown,
|
|
skdev->in_flight,
|
|
skdev->timeout_slot[skdev->timo_slot]);
|
|
/* if the slot has cleared we can let the I/O continue */
|
|
if (skdev->timeout_slot[skdev->timo_slot] == 0) {
|
|
DPRINTK(skdev, "Slot drained, starting queue.\n");
|
|
skdev->state = SKD_DRVR_STATE_ONLINE;
|
|
skd_start_queue(skdev);
|
|
return;
|
|
}
|
|
if (skdev->timer_countdown > 0) {
|
|
skdev->timer_countdown--;
|
|
return;
|
|
}
|
|
skd_restart_device(skdev);
|
|
break;
|
|
|
|
case SKD_DRVR_STATE_RESTARTING:
|
|
if (skdev->timer_countdown > 0) {
|
|
skdev->timer_countdown--;
|
|
return;
|
|
}
|
|
/* For now, we fault the drive. Could attempt resets to
|
|
* revcover at some point. */
|
|
skdev->state = SKD_DRVR_STATE_FAULT;
|
|
pr_err("(%s): DriveFault Reconnect Timeout (%x)\n",
|
|
skd_name(skdev), skdev->drive_state);
|
|
|
|
/*
|
|
* Recovering does two things:
|
|
* 1. completes IO with error
|
|
* 2. reclaims dma resources
|
|
* When is it safe to recover requests?
|
|
* - if the drive state is faulted
|
|
* - if the state is still soft reset after out timeout
|
|
* - if the drive registers are dead (state = FF)
|
|
* If it is "unsafe", we still need to recover, so we will
|
|
* disable pci bus mastering and disable our interrupts.
|
|
*/
|
|
|
|
if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
|
|
(skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
|
|
(skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
|
|
/* It never came out of soft reset. Try to
|
|
* recover the requests and then let them
|
|
* fail. This is to mitigate hung processes. */
|
|
skd_recover_requests(skdev, 0);
|
|
else {
|
|
pr_err("(%s): Disable BusMaster (%x)\n",
|
|
skd_name(skdev), skdev->drive_state);
|
|
pci_disable_device(skdev->pdev);
|
|
skd_disable_interrupts(skdev);
|
|
skd_recover_requests(skdev, 0);
|
|
}
|
|
|
|
/*start the queue so we can respond with error to requests */
|
|
/* wakeup anyone waiting for startup complete */
|
|
skd_start_queue(skdev);
|
|
skdev->gendisk_on = -1;
|
|
wake_up_interruptible(&skdev->waitq);
|
|
break;
|
|
|
|
case SKD_DRVR_STATE_RESUMING:
|
|
case SKD_DRVR_STATE_STOPPING:
|
|
case SKD_DRVR_STATE_SYNCING:
|
|
case SKD_DRVR_STATE_FAULT:
|
|
case SKD_DRVR_STATE_DISAPPEARED:
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int skd_start_timer(struct skd_device *skdev)
|
|
{
|
|
int rc;
|
|
|
|
init_timer(&skdev->timer);
|
|
setup_timer(&skdev->timer, skd_timer_tick, (ulong)skdev);
|
|
|
|
rc = mod_timer(&skdev->timer, (jiffies + HZ));
|
|
if (rc)
|
|
pr_err("%s: failed to start timer %d\n",
|
|
__func__, rc);
|
|
return rc;
|
|
}
|
|
|
|
static void skd_kill_timer(struct skd_device *skdev)
|
|
{
|
|
del_timer_sync(&skdev->timer);
|
|
}
|
|
|
|
/*
|
|
*****************************************************************************
|
|
* IOCTL
|
|
*****************************************************************************
|
|
*/
|
|
static int skd_ioctl_sg_io(struct skd_device *skdev,
|
|
fmode_t mode, void __user *argp);
|
|
static int skd_sg_io_get_and_check_args(struct skd_device *skdev,
|
|
struct skd_sg_io *sksgio);
|
|
static int skd_sg_io_obtain_skspcl(struct skd_device *skdev,
|
|
struct skd_sg_io *sksgio);
|
|
static int skd_sg_io_prep_buffering(struct skd_device *skdev,
|
|
struct skd_sg_io *sksgio);
|
|
static int skd_sg_io_copy_buffer(struct skd_device *skdev,
|
|
struct skd_sg_io *sksgio, int dxfer_dir);
|
|
static int skd_sg_io_send_fitmsg(struct skd_device *skdev,
|
|
struct skd_sg_io *sksgio);
|
|
static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio);
|
|
static int skd_sg_io_release_skspcl(struct skd_device *skdev,
|
|
struct skd_sg_io *sksgio);
|
|
static int skd_sg_io_put_status(struct skd_device *skdev,
|
|
struct skd_sg_io *sksgio);
|
|
|
|
static void skd_complete_special(struct skd_device *skdev,
|
|
volatile struct fit_completion_entry_v1
|
|
*skcomp,
|
|
volatile struct fit_comp_error_info *skerr,
|
|
struct skd_special_context *skspcl);
|
|
|
|
static int skd_bdev_ioctl(struct block_device *bdev, fmode_t mode,
|
|
uint cmd_in, ulong arg)
|
|
{
|
|
int rc = 0;
|
|
struct gendisk *disk = bdev->bd_disk;
|
|
struct skd_device *skdev = disk->private_data;
|
|
void __user *p = (void *)arg;
|
|
|
|
DPRINTK(skdev, "%s: CMD[%s] ioctl mode 0x%x, cmd 0x%x arg %0lx\n",
|
|
disk->disk_name, current->comm, mode, cmd_in, arg);
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
switch (cmd_in) {
|
|
case SG_SET_TIMEOUT:
|
|
case SG_GET_TIMEOUT:
|
|
case SG_GET_VERSION_NUM:
|
|
rc = scsi_cmd_ioctl(disk->queue, disk, mode, cmd_in, p);
|
|
break;
|
|
case SG_IO:
|
|
rc = skd_ioctl_sg_io(skdev, mode, p);
|
|
break;
|
|
|
|
default:
|
|
rc = -ENOTTY;
|
|
break;
|
|
}
|
|
|
|
DPRINTK(skdev, "%s: completion rc %d\n", disk->disk_name, rc);
|
|
return rc;
|
|
}
|
|
|
|
static int skd_ioctl_sg_io(struct skd_device *skdev, fmode_t mode,
|
|
void __user *argp)
|
|
{
|
|
int rc;
|
|
struct skd_sg_io sksgio;
|
|
|
|
memset(&sksgio, 0, sizeof(sksgio));
|
|
sksgio.mode = mode;
|
|
sksgio.argp = argp;
|
|
sksgio.iov = &sksgio.no_iov_iov;
|
|
|
|
switch (skdev->state) {
|
|
case SKD_DRVR_STATE_ONLINE:
|
|
case SKD_DRVR_STATE_BUSY_IMMINENT:
|
|
break;
|
|
|
|
default:
|
|
DPRINTK(skdev, "drive not online\n");
|
|
rc = -ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
rc = skd_sg_io_get_and_check_args(skdev, &sksgio);
|
|
if (rc)
|
|
goto out;
|
|
|
|
rc = skd_sg_io_obtain_skspcl(skdev, &sksgio);
|
|
if (rc)
|
|
goto out;
|
|
|
|
rc = skd_sg_io_prep_buffering(skdev, &sksgio);
|
|
if (rc)
|
|
goto out;
|
|
|
|
rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_TO_DEV);
|
|
if (rc)
|
|
goto out;
|
|
|
|
rc = skd_sg_io_send_fitmsg(skdev, &sksgio);
|
|
if (rc)
|
|
goto out;
|
|
|
|
rc = skd_sg_io_await(skdev, &sksgio);
|
|
if (rc)
|
|
goto out;
|
|
|
|
rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_FROM_DEV);
|
|
if (rc)
|
|
goto out;
|
|
|
|
rc = skd_sg_io_put_status(skdev, &sksgio);
|
|
if (rc)
|
|
goto out;
|
|
|
|
rc = 0;
|
|
|
|
out:
|
|
skd_sg_io_release_skspcl(skdev, &sksgio);
|
|
|
|
if (sksgio.iov != NULL && sksgio.iov != &sksgio.no_iov_iov)
|
|
kfree(sksgio.iov);
|
|
return rc;
|
|
}
|
|
|
|
static int skd_sg_io_get_and_check_args(struct skd_device *skdev,
|
|
struct skd_sg_io *sksgio)
|
|
{
|
|
struct sg_io_hdr *sgp = &sksgio->sg;
|
|
int i, acc;
|
|
|
|
if (!access_ok(VERIFY_WRITE, sksgio->argp, sizeof(sg_io_hdr_t))) {
|
|
DPRINTK(skdev, "access sg failed %p\n", sksgio->argp);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (__copy_from_user(sgp, sksgio->argp, sizeof(sg_io_hdr_t))) {
|
|
DPRINTK(skdev, "copy_from_user sg failed %p\n", sksgio->argp);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (sgp->interface_id != SG_INTERFACE_ID_ORIG) {
|
|
DPRINTK(skdev, "interface_id invalid 0x%x\n",
|
|
sgp->interface_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (sgp->cmd_len > sizeof(sksgio->cdb)) {
|
|
DPRINTK(skdev, "cmd_len invalid %d\n", sgp->cmd_len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (sgp->iovec_count > 256) {
|
|
DPRINTK(skdev, "iovec_count invalid %d\n", sgp->iovec_count);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (sgp->dxfer_len > (PAGE_SIZE * SKD_N_SG_PER_SPECIAL)) {
|
|
DPRINTK(skdev, "dxfer_len invalid %d\n", sgp->dxfer_len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (sgp->dxfer_direction) {
|
|
case SG_DXFER_NONE:
|
|
acc = -1;
|
|
break;
|
|
|
|
case SG_DXFER_TO_DEV:
|
|
acc = VERIFY_READ;
|
|
break;
|
|
|
|
case SG_DXFER_FROM_DEV:
|
|
case SG_DXFER_TO_FROM_DEV:
|
|
acc = VERIFY_WRITE;
|
|
break;
|
|
|
|
default:
|
|
DPRINTK(skdev, "dxfer_dir invalid %d\n", sgp->dxfer_direction);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (copy_from_user(sksgio->cdb, sgp->cmdp, sgp->cmd_len)) {
|
|
DPRINTK(skdev, "copy_from_user cmdp failed %p\n", sgp->cmdp);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (sgp->mx_sb_len != 0) {
|
|
if (!access_ok(VERIFY_WRITE, sgp->sbp, sgp->mx_sb_len)) {
|
|
DPRINTK(skdev, "access sbp failed %p\n", sgp->sbp);
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
|
|
if (sgp->iovec_count == 0) {
|
|
sksgio->iov[0].iov_base = sgp->dxferp;
|
|
sksgio->iov[0].iov_len = sgp->dxfer_len;
|
|
sksgio->iovcnt = 1;
|
|
sksgio->dxfer_len = sgp->dxfer_len;
|
|
} else {
|
|
struct sg_iovec *iov;
|
|
uint nbytes = sizeof(*iov) * sgp->iovec_count;
|
|
size_t iov_data_len;
|
|
|
|
iov = kmalloc(nbytes, GFP_KERNEL);
|
|
if (iov == NULL) {
|
|
DPRINTK(skdev, "alloc iovec failed %d\n",
|
|
sgp->iovec_count);
|
|
return -ENOMEM;
|
|
}
|
|
sksgio->iov = iov;
|
|
sksgio->iovcnt = sgp->iovec_count;
|
|
|
|
if (copy_from_user(iov, sgp->dxferp, nbytes)) {
|
|
DPRINTK(skdev, "copy_from_user iovec failed %p\n",
|
|
sgp->dxferp);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/*
|
|
* Sum up the vecs, making sure they don't overflow
|
|
*/
|
|
iov_data_len = 0;
|
|
for (i = 0; i < sgp->iovec_count; i++) {
|
|
if (iov_data_len + iov[i].iov_len < iov_data_len)
|
|
return -EINVAL;
|
|
iov_data_len += iov[i].iov_len;
|
|
}
|
|
|
|
/* SG_IO howto says that the shorter of the two wins */
|
|
if (sgp->dxfer_len < iov_data_len) {
|
|
sksgio->iovcnt = iov_shorten((struct iovec *)iov,
|
|
sgp->iovec_count,
|
|
sgp->dxfer_len);
|
|
sksgio->dxfer_len = sgp->dxfer_len;
|
|
} else
|
|
sksgio->dxfer_len = iov_data_len;
|
|
}
|
|
|
|
if (sgp->dxfer_direction != SG_DXFER_NONE) {
|
|
struct sg_iovec *iov = sksgio->iov;
|
|
for (i = 0; i < sksgio->iovcnt; i++, iov++) {
|
|
if (!access_ok(acc, iov->iov_base, iov->iov_len)) {
|
|
DPRINTK(skdev, "access data failed %p/%d\n",
|
|
iov->iov_base, (int)iov->iov_len);
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int skd_sg_io_obtain_skspcl(struct skd_device *skdev,
|
|
struct skd_sg_io *sksgio)
|
|
{
|
|
struct skd_special_context *skspcl = NULL;
|
|
int rc;
|
|
|
|
for (;; ) {
|
|
ulong flags;
|
|
|
|
spin_lock_irqsave(&skdev->lock, flags);
|
|
skspcl = skdev->skspcl_free_list;
|
|
if (skspcl != NULL) {
|
|
skdev->skspcl_free_list =
|
|
(struct skd_special_context *)skspcl->req.next;
|
|
skspcl->req.id += SKD_ID_INCR;
|
|
skspcl->req.state = SKD_REQ_STATE_SETUP;
|
|
skspcl->orphaned = 0;
|
|
skspcl->req.n_sg = 0;
|
|
}
|
|
spin_unlock_irqrestore(&skdev->lock, flags);
|
|
|
|
if (skspcl != NULL) {
|
|
rc = 0;
|
|
break;
|
|
}
|
|
|
|
DPRINTK(skdev, "blocking\n");
|
|
|
|
rc = wait_event_interruptible_timeout(
|
|
skdev->waitq,
|
|
(skdev->skspcl_free_list != NULL),
|
|
msecs_to_jiffies(sksgio->sg.timeout));
|
|
|
|
DPRINTK(skdev, "unblocking, rc=%d\n", rc);
|
|
|
|
if (rc <= 0) {
|
|
if (rc == 0)
|
|
rc = -ETIMEDOUT;
|
|
else
|
|
rc = -EINTR;
|
|
break;
|
|
}
|
|
/*
|
|
* If we get here rc > 0 meaning the timeout to
|
|
* wait_event_interruptible_timeout() had time left, hence the
|
|
* sought event -- non-empty free list -- happened.
|
|
* Retry the allocation.
|
|
*/
|
|
}
|
|
sksgio->skspcl = skspcl;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int skd_skreq_prep_buffering(struct skd_device *skdev,
|
|
struct skd_request_context *skreq,
|
|
u32 dxfer_len)
|
|
{
|
|
u32 resid = dxfer_len;
|
|
|
|
/*
|
|
* The DMA engine must have aligned addresses and byte counts.
|
|
*/
|
|
resid += (-resid) & 3;
|
|
skreq->sg_byte_count = resid;
|
|
|
|
skreq->n_sg = 0;
|
|
|
|
while (resid > 0) {
|
|
u32 nbytes = PAGE_SIZE;
|
|
u32 ix = skreq->n_sg;
|
|
struct scatterlist *sg = &skreq->sg[ix];
|
|
struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix];
|
|
struct page *page;
|
|
|
|
if (nbytes > resid)
|
|
nbytes = resid;
|
|
|
|
page = alloc_page(GFP_KERNEL);
|
|
if (page == NULL)
|
|
return -ENOMEM;
|
|
|
|
sg_set_page(sg, page, nbytes, 0);
|
|
|
|
/* TODO: This should be going through a pci_???()
|
|
* routine to do proper mapping. */
|
|
sksg->control = FIT_SGD_CONTROL_NOT_LAST;
|
|
sksg->byte_count = nbytes;
|
|
|
|
sksg->host_side_addr = sg_phys(sg);
|
|
|
|
sksg->dev_side_addr = 0;
|
|
sksg->next_desc_ptr = skreq->sksg_dma_address +
|
|
(ix + 1) * sizeof(*sksg);
|
|
|
|
skreq->n_sg++;
|
|
resid -= nbytes;
|
|
}
|
|
|
|
if (skreq->n_sg > 0) {
|
|
u32 ix = skreq->n_sg - 1;
|
|
struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix];
|
|
|
|
sksg->control = FIT_SGD_CONTROL_LAST;
|
|
sksg->next_desc_ptr = 0;
|
|
}
|
|
|
|
if (unlikely(skdev->dbg_level > 1)) {
|
|
u32 i;
|
|
|
|
VPRINTK(skdev, "skreq=%x sksg_list=%p sksg_dma=%llx\n",
|
|
skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
|
|
for (i = 0; i < skreq->n_sg; i++) {
|
|
struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
|
|
|
|
VPRINTK(skdev, " sg[%d] count=%u ctrl=0x%x "
|
|
"addr=0x%llx next=0x%llx\n",
|
|
i, sgd->byte_count, sgd->control,
|
|
sgd->host_side_addr, sgd->next_desc_ptr);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int skd_sg_io_prep_buffering(struct skd_device *skdev,
|
|
struct skd_sg_io *sksgio)
|
|
{
|
|
struct skd_special_context *skspcl = sksgio->skspcl;
|
|
struct skd_request_context *skreq = &skspcl->req;
|
|
u32 dxfer_len = sksgio->dxfer_len;
|
|
int rc;
|
|
|
|
rc = skd_skreq_prep_buffering(skdev, skreq, dxfer_len);
|
|
/*
|
|
* Eventually, errors or not, skd_release_special() is called
|
|
* to recover allocations including partial allocations.
|
|
*/
|
|
return rc;
|
|
}
|
|
|
|
static int skd_sg_io_copy_buffer(struct skd_device *skdev,
|
|
struct skd_sg_io *sksgio, int dxfer_dir)
|
|
{
|
|
struct skd_special_context *skspcl = sksgio->skspcl;
|
|
u32 iov_ix = 0;
|
|
struct sg_iovec curiov;
|
|
u32 sksg_ix = 0;
|
|
u8 *bufp = NULL;
|
|
u32 buf_len = 0;
|
|
u32 resid = sksgio->dxfer_len;
|
|
int rc;
|
|
|
|
curiov.iov_len = 0;
|
|
curiov.iov_base = NULL;
|
|
|
|
if (dxfer_dir != sksgio->sg.dxfer_direction) {
|
|
if (dxfer_dir != SG_DXFER_TO_DEV ||
|
|
sksgio->sg.dxfer_direction != SG_DXFER_TO_FROM_DEV)
|
|
return 0;
|
|
}
|
|
|
|
while (resid > 0) {
|
|
u32 nbytes = PAGE_SIZE;
|
|
|
|
if (curiov.iov_len == 0) {
|
|
curiov = sksgio->iov[iov_ix++];
|
|
continue;
|
|
}
|
|
|
|
if (buf_len == 0) {
|
|
struct page *page;
|
|
page = sg_page(&skspcl->req.sg[sksg_ix++]);
|
|
bufp = page_address(page);
|
|
buf_len = PAGE_SIZE;
|
|
}
|
|
|
|
nbytes = min_t(u32, nbytes, resid);
|
|
nbytes = min_t(u32, nbytes, curiov.iov_len);
|
|
nbytes = min_t(u32, nbytes, buf_len);
|
|
|
|
if (dxfer_dir == SG_DXFER_TO_DEV)
|
|
rc = __copy_from_user(bufp, curiov.iov_base, nbytes);
|
|
else
|
|
rc = __copy_to_user(curiov.iov_base, bufp, nbytes);
|
|
|
|
if (rc)
|
|
return -EFAULT;
|
|
|
|
resid -= nbytes;
|
|
curiov.iov_len -= nbytes;
|
|
curiov.iov_base += nbytes;
|
|
buf_len -= nbytes;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int skd_sg_io_send_fitmsg(struct skd_device *skdev,
|
|
struct skd_sg_io *sksgio)
|
|
{
|
|
struct skd_special_context *skspcl = sksgio->skspcl;
|
|
struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf;
|
|
struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1];
|
|
|
|
memset(skspcl->msg_buf, 0, SKD_N_SPECIAL_FITMSG_BYTES);
|
|
|
|
/* Initialize the FIT msg header */
|
|
fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
|
|
fmh->num_protocol_cmds_coalesced = 1;
|
|
|
|
/* Initialize the SCSI request */
|
|
if (sksgio->sg.dxfer_direction != SG_DXFER_NONE)
|
|
scsi_req->hdr.sg_list_dma_address =
|
|
cpu_to_be64(skspcl->req.sksg_dma_address);
|
|
scsi_req->hdr.tag = skspcl->req.id;
|
|
scsi_req->hdr.sg_list_len_bytes =
|
|
cpu_to_be32(skspcl->req.sg_byte_count);
|
|
memcpy(scsi_req->cdb, sksgio->cdb, sizeof(scsi_req->cdb));
|
|
|
|
skspcl->req.state = SKD_REQ_STATE_BUSY;
|
|
skd_send_special_fitmsg(skdev, skspcl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio)
|
|
{
|
|
unsigned long flags;
|
|
int rc;
|
|
|
|
rc = wait_event_interruptible_timeout(skdev->waitq,
|
|
(sksgio->skspcl->req.state !=
|
|
SKD_REQ_STATE_BUSY),
|
|
msecs_to_jiffies(sksgio->sg.
|
|
timeout));
|
|
|
|
spin_lock_irqsave(&skdev->lock, flags);
|
|
|
|
if (sksgio->skspcl->req.state == SKD_REQ_STATE_ABORTED) {
|
|
DPRINTK(skdev, "skspcl %p aborted\n", sksgio->skspcl);
|
|
|
|
/* Build check cond, sense and let command finish. */
|
|
/* For a timeout, we must fabricate completion and sense
|
|
* data to complete the command */
|
|
sksgio->skspcl->req.completion.status =
|
|
SAM_STAT_CHECK_CONDITION;
|
|
|
|
memset(&sksgio->skspcl->req.err_info, 0,
|
|
sizeof(sksgio->skspcl->req.err_info));
|
|
sksgio->skspcl->req.err_info.type = 0x70;
|
|
sksgio->skspcl->req.err_info.key = ABORTED_COMMAND;
|
|
sksgio->skspcl->req.err_info.code = 0x44;
|
|
sksgio->skspcl->req.err_info.qual = 0;
|
|
rc = 0;
|
|
} else if (sksgio->skspcl->req.state != SKD_REQ_STATE_BUSY)
|
|
/* No longer on the adapter. We finish. */
|
|
rc = 0;
|
|
else {
|
|
/* Something's gone wrong. Still busy. Timeout or
|
|
* user interrupted (control-C). Mark as an orphan
|
|
* so it will be disposed when completed. */
|
|
sksgio->skspcl->orphaned = 1;
|
|
sksgio->skspcl = NULL;
|
|
if (rc == 0) {
|
|
DPRINTK(skdev, "timed out %p (%u ms)\n", sksgio,
|
|
sksgio->sg.timeout);
|
|
rc = -ETIMEDOUT;
|
|
} else {
|
|
DPRINTK(skdev, "cntlc %p\n", sksgio);
|
|
rc = -EINTR;
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&skdev->lock, flags);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int skd_sg_io_put_status(struct skd_device *skdev,
|
|
struct skd_sg_io *sksgio)
|
|
{
|
|
struct sg_io_hdr *sgp = &sksgio->sg;
|
|
struct skd_special_context *skspcl = sksgio->skspcl;
|
|
int resid = 0;
|
|
|
|
u32 nb = be32_to_cpu(skspcl->req.completion.num_returned_bytes);
|
|
|
|
sgp->status = skspcl->req.completion.status;
|
|
resid = sksgio->dxfer_len - nb;
|
|
|
|
sgp->masked_status = sgp->status & STATUS_MASK;
|
|
sgp->msg_status = 0;
|
|
sgp->host_status = 0;
|
|
sgp->driver_status = 0;
|
|
sgp->resid = resid;
|
|
if (sgp->masked_status || sgp->host_status || sgp->driver_status)
|
|
sgp->info |= SG_INFO_CHECK;
|
|
|
|
DPRINTK(skdev, "status %x masked %x resid 0x%x\n", sgp->status,
|
|
sgp->masked_status, sgp->resid);
|
|
|
|
if (sgp->masked_status == SAM_STAT_CHECK_CONDITION) {
|
|
if (sgp->mx_sb_len > 0) {
|
|
struct fit_comp_error_info *ei = &skspcl->req.err_info;
|
|
u32 nbytes = sizeof(*ei);
|
|
|
|
nbytes = min_t(u32, nbytes, sgp->mx_sb_len);
|
|
|
|
sgp->sb_len_wr = nbytes;
|
|
|
|
if (__copy_to_user(sgp->sbp, ei, nbytes)) {
|
|
DPRINTK(skdev, "copy_to_user sense failed %p\n",
|
|
sgp->sbp);
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (__copy_to_user(sksgio->argp, sgp, sizeof(sg_io_hdr_t))) {
|
|
DPRINTK(skdev, "copy_to_user sg failed %p\n", sksgio->argp);
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int skd_sg_io_release_skspcl(struct skd_device *skdev,
|
|
struct skd_sg_io *sksgio)
|
|
{
|
|
struct skd_special_context *skspcl = sksgio->skspcl;
|
|
|
|
if (skspcl != NULL) {
|
|
ulong flags;
|
|
|
|
sksgio->skspcl = NULL;
|
|
|
|
spin_lock_irqsave(&skdev->lock, flags);
|
|
skd_release_special(skdev, skspcl);
|
|
spin_unlock_irqrestore(&skdev->lock, flags);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
*****************************************************************************
|
|
* INTERNAL REQUESTS -- generated by driver itself
|
|
*****************************************************************************
|
|
*/
|
|
|
|
static int skd_format_internal_skspcl(struct skd_device *skdev)
|
|
{
|
|
struct skd_special_context *skspcl = &skdev->internal_skspcl;
|
|
struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
|
|
struct fit_msg_hdr *fmh;
|
|
uint64_t dma_address;
|
|
struct skd_scsi_request *scsi;
|
|
|
|
fmh = (struct fit_msg_hdr *)&skspcl->msg_buf[0];
|
|
fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
|
|
fmh->num_protocol_cmds_coalesced = 1;
|
|
|
|
scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64];
|
|
memset(scsi, 0, sizeof(*scsi));
|
|
dma_address = skspcl->req.sksg_dma_address;
|
|
scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
|
|
sgd->control = FIT_SGD_CONTROL_LAST;
|
|
sgd->byte_count = 0;
|
|
sgd->host_side_addr = skspcl->db_dma_address;
|
|
sgd->dev_side_addr = 0;
|
|
sgd->next_desc_ptr = 0LL;
|
|
|
|
return 1;
|
|
}
|
|
|
|
#define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
|
|
|
|
static void skd_send_internal_skspcl(struct skd_device *skdev,
|
|
struct skd_special_context *skspcl,
|
|
u8 opcode)
|
|
{
|
|
struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
|
|
struct skd_scsi_request *scsi;
|
|
unsigned char *buf = skspcl->data_buf;
|
|
int i;
|
|
|
|
if (skspcl->req.state != SKD_REQ_STATE_IDLE)
|
|
/*
|
|
* A refresh is already in progress.
|
|
* Just wait for it to finish.
|
|
*/
|
|
return;
|
|
|
|
SKD_ASSERT((skspcl->req.id & SKD_ID_INCR) == 0);
|
|
skspcl->req.state = SKD_REQ_STATE_BUSY;
|
|
skspcl->req.id += SKD_ID_INCR;
|
|
|
|
scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64];
|
|
scsi->hdr.tag = skspcl->req.id;
|
|
|
|
memset(scsi->cdb, 0, sizeof(scsi->cdb));
|
|
|
|
switch (opcode) {
|
|
case TEST_UNIT_READY:
|
|
scsi->cdb[0] = TEST_UNIT_READY;
|
|
sgd->byte_count = 0;
|
|
scsi->hdr.sg_list_len_bytes = 0;
|
|
break;
|
|
|
|
case READ_CAPACITY:
|
|
scsi->cdb[0] = READ_CAPACITY;
|
|
sgd->byte_count = SKD_N_READ_CAP_BYTES;
|
|
scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
|
|
break;
|
|
|
|
case INQUIRY:
|
|
scsi->cdb[0] = INQUIRY;
|
|
scsi->cdb[1] = 0x01; /* evpd */
|
|
scsi->cdb[2] = 0x80; /* serial number page */
|
|
scsi->cdb[4] = 0x10;
|
|
sgd->byte_count = 16;
|
|
scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
|
|
break;
|
|
|
|
case SYNCHRONIZE_CACHE:
|
|
scsi->cdb[0] = SYNCHRONIZE_CACHE;
|
|
sgd->byte_count = 0;
|
|
scsi->hdr.sg_list_len_bytes = 0;
|
|
break;
|
|
|
|
case WRITE_BUFFER:
|
|
scsi->cdb[0] = WRITE_BUFFER;
|
|
scsi->cdb[1] = 0x02;
|
|
scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
|
|
scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
|
|
sgd->byte_count = WR_BUF_SIZE;
|
|
scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
|
|
/* fill incrementing byte pattern */
|
|
for (i = 0; i < sgd->byte_count; i++)
|
|
buf[i] = i & 0xFF;
|
|
break;
|
|
|
|
case READ_BUFFER:
|
|
scsi->cdb[0] = READ_BUFFER;
|
|
scsi->cdb[1] = 0x02;
|
|
scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
|
|
scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
|
|
sgd->byte_count = WR_BUF_SIZE;
|
|
scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
|
|
memset(skspcl->data_buf, 0, sgd->byte_count);
|
|
break;
|
|
|
|
default:
|
|
SKD_ASSERT("Don't know what to send");
|
|
return;
|
|
|
|
}
|
|
skd_send_special_fitmsg(skdev, skspcl);
|
|
}
|
|
|
|
static void skd_refresh_device_data(struct skd_device *skdev)
|
|
{
|
|
struct skd_special_context *skspcl = &skdev->internal_skspcl;
|
|
|
|
skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
|
|
}
|
|
|
|
static int skd_chk_read_buf(struct skd_device *skdev,
|
|
struct skd_special_context *skspcl)
|
|
{
|
|
unsigned char *buf = skspcl->data_buf;
|
|
int i;
|
|
|
|
/* check for incrementing byte pattern */
|
|
for (i = 0; i < WR_BUF_SIZE; i++)
|
|
if (buf[i] != (i & 0xFF))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
|
|
u8 code, u8 qual, u8 fruc)
|
|
{
|
|
/* If the check condition is of special interest, log a message */
|
|
if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
|
|
&& (code == 0x04) && (qual == 0x06)) {
|
|
pr_err("(%s): *** LOST_WRITE_DATA ERROR *** key/asc/"
|
|
"ascq/fruc %02x/%02x/%02x/%02x\n",
|
|
skd_name(skdev), key, code, qual, fruc);
|
|
}
|
|
}
|
|
|
|
static void skd_complete_internal(struct skd_device *skdev,
|
|
volatile struct fit_completion_entry_v1
|
|
*skcomp,
|
|
volatile struct fit_comp_error_info *skerr,
|
|
struct skd_special_context *skspcl)
|
|
{
|
|
u8 *buf = skspcl->data_buf;
|
|
u8 status;
|
|
int i;
|
|
struct skd_scsi_request *scsi =
|
|
(struct skd_scsi_request *)&skspcl->msg_buf[64];
|
|
|
|
SKD_ASSERT(skspcl == &skdev->internal_skspcl);
|
|
|
|
DPRINTK(skdev, "complete internal %x\n", scsi->cdb[0]);
|
|
|
|
skspcl->req.completion = *skcomp;
|
|
skspcl->req.state = SKD_REQ_STATE_IDLE;
|
|
skspcl->req.id += SKD_ID_INCR;
|
|
|
|
status = skspcl->req.completion.status;
|
|
|
|
skd_log_check_status(skdev, status, skerr->key, skerr->code,
|
|
skerr->qual, skerr->fruc);
|
|
|
|
switch (scsi->cdb[0]) {
|
|
case TEST_UNIT_READY:
|
|
if (status == SAM_STAT_GOOD)
|
|
skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
|
|
else if ((status == SAM_STAT_CHECK_CONDITION) &&
|
|
(skerr->key == MEDIUM_ERROR))
|
|
skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
|
|
else {
|
|
if (skdev->state == SKD_DRVR_STATE_STOPPING) {
|
|
VPRINTK(skdev, "TUR failed, don't send anymore"
|
|
"state 0x%x\n", skdev->state);
|
|
return;
|
|
}
|
|
DPRINTK(skdev, "**** TUR failed, retry skerr\n");
|
|
skd_send_internal_skspcl(skdev, skspcl, 0x00);
|
|
}
|
|
break;
|
|
|
|
case WRITE_BUFFER:
|
|
if (status == SAM_STAT_GOOD)
|
|
skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
|
|
else {
|
|
if (skdev->state == SKD_DRVR_STATE_STOPPING) {
|
|
VPRINTK(skdev, "write buffer failed, don't send"
|
|
" anymore state 0x%x\n", skdev->state);
|
|
return;
|
|
}
|
|
DPRINTK(skdev,
|
|
"**** write buffer failed, retry skerr\n");
|
|
skd_send_internal_skspcl(skdev, skspcl, 0x00);
|
|
}
|
|
break;
|
|
|
|
case READ_BUFFER:
|
|
if (status == SAM_STAT_GOOD) {
|
|
if (skd_chk_read_buf(skdev, skspcl) == 0)
|
|
skd_send_internal_skspcl(skdev, skspcl,
|
|
READ_CAPACITY);
|
|
else {
|
|
pr_err(
|
|
"(%s):*** W/R Buffer mismatch %d ***\n",
|
|
skd_name(skdev), skdev->connect_retries);
|
|
if (skdev->connect_retries <
|
|
SKD_MAX_CONNECT_RETRIES) {
|
|
skdev->connect_retries++;
|
|
skd_soft_reset(skdev);
|
|
} else {
|
|
pr_err(
|
|
"(%s): W/R Buffer Connect Error\n",
|
|
skd_name(skdev));
|
|
return;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
if (skdev->state == SKD_DRVR_STATE_STOPPING) {
|
|
VPRINTK(skdev,
|
|
"read buffer failed, don't send anymore"
|
|
"state 0x%x\n", skdev->state);
|
|
return;
|
|
}
|
|
DPRINTK(skdev,
|
|
"**** read buffer failed, retry skerr\n");
|
|
skd_send_internal_skspcl(skdev, skspcl, 0x00);
|
|
}
|
|
break;
|
|
|
|
case READ_CAPACITY:
|
|
skdev->read_cap_is_valid = 0;
|
|
if (status == SAM_STAT_GOOD) {
|
|
skdev->read_cap_last_lba =
|
|
(buf[0] << 24) | (buf[1] << 16) |
|
|
(buf[2] << 8) | buf[3];
|
|
skdev->read_cap_blocksize =
|
|
(buf[4] << 24) | (buf[5] << 16) |
|
|
(buf[6] << 8) | buf[7];
|
|
|
|
DPRINTK(skdev, "last lba %d, bs %d\n",
|
|
skdev->read_cap_last_lba,
|
|
skdev->read_cap_blocksize);
|
|
|
|
set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
|
|
|
|
skdev->read_cap_is_valid = 1;
|
|
|
|
skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
|
|
} else if ((status == SAM_STAT_CHECK_CONDITION) &&
|
|
(skerr->key == MEDIUM_ERROR)) {
|
|
skdev->read_cap_last_lba = ~0;
|
|
set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
|
|
DPRINTK(skdev,
|
|
"**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n");
|
|
skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
|
|
} else {
|
|
DPRINTK(skdev, "**** READCAP failed, retry TUR\n");
|
|
skd_send_internal_skspcl(skdev, skspcl,
|
|
TEST_UNIT_READY);
|
|
}
|
|
break;
|
|
|
|
case INQUIRY:
|
|
skdev->inquiry_is_valid = 0;
|
|
if (status == SAM_STAT_GOOD) {
|
|
skdev->inquiry_is_valid = 1;
|
|
|
|
for (i = 0; i < 12; i++)
|
|
skdev->inq_serial_num[i] = buf[i + 4];
|
|
skdev->inq_serial_num[12] = 0;
|
|
}
|
|
|
|
if (skd_unquiesce_dev(skdev) < 0)
|
|
DPRINTK(skdev, "**** failed, to ONLINE device\n");
|
|
/* connection is complete */
|
|
skdev->connect_retries = 0;
|
|
break;
|
|
|
|
case SYNCHRONIZE_CACHE:
|
|
if (status == SAM_STAT_GOOD)
|
|
skdev->sync_done = 1;
|
|
else
|
|
skdev->sync_done = -1;
|
|
wake_up_interruptible(&skdev->waitq);
|
|
break;
|
|
|
|
default:
|
|
SKD_ASSERT("we didn't send this");
|
|
}
|
|
}
|
|
|
|
/*
|
|
*****************************************************************************
|
|
* FIT MESSAGES
|
|
*****************************************************************************
|
|
*/
|
|
|
|
static void skd_send_fitmsg(struct skd_device *skdev,
|
|
struct skd_fitmsg_context *skmsg)
|
|
{
|
|
u64 qcmd;
|
|
struct fit_msg_hdr *fmh;
|
|
|
|
VPRINTK(skdev, "dma address 0x%llx, busy=%d\n",
|
|
skmsg->mb_dma_address, skdev->in_flight);
|
|
VPRINTK(skdev, "msg_buf 0x%p, offset %x\n",
|
|
skmsg->msg_buf, skmsg->offset);
|
|
|
|
qcmd = skmsg->mb_dma_address;
|
|
qcmd |= FIT_QCMD_QID_NORMAL;
|
|
|
|
fmh = (struct fit_msg_hdr *)skmsg->msg_buf;
|
|
skmsg->outstanding = fmh->num_protocol_cmds_coalesced;
|
|
|
|
if (unlikely(skdev->dbg_level > 1)) {
|
|
u8 *bp = (u8 *)skmsg->msg_buf;
|
|
int i;
|
|
for (i = 0; i < skmsg->length; i += 8) {
|
|
VPRINTK(skdev, " msg[%2d] %02x %02x %02x %02x "
|
|
"%02x %02x %02x %02x\n",
|
|
i, bp[i + 0], bp[i + 1], bp[i + 2],
|
|
bp[i + 3], bp[i + 4], bp[i + 5],
|
|
bp[i + 6], bp[i + 7]);
|
|
if (i == 0)
|
|
i = 64 - 8;
|
|
}
|
|
}
|
|
|
|
if (skmsg->length > 256)
|
|
qcmd |= FIT_QCMD_MSGSIZE_512;
|
|
else if (skmsg->length > 128)
|
|
qcmd |= FIT_QCMD_MSGSIZE_256;
|
|
else if (skmsg->length > 64)
|
|
qcmd |= FIT_QCMD_MSGSIZE_128;
|
|
else
|
|
/*
|
|
* This makes no sense because the FIT msg header is
|
|
* 64 bytes. If the msg is only 64 bytes long it has
|
|
* no payload.
|
|
*/
|
|
qcmd |= FIT_QCMD_MSGSIZE_64;
|
|
|
|
SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
|
|
|
|
}
|
|
|
|
static void skd_send_special_fitmsg(struct skd_device *skdev,
|
|
struct skd_special_context *skspcl)
|
|
{
|
|
u64 qcmd;
|
|
|
|
if (unlikely(skdev->dbg_level > 1)) {
|
|
u8 *bp = (u8 *)skspcl->msg_buf;
|
|
int i;
|
|
|
|
for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
|
|
VPRINTK(skdev,
|
|
" spcl[%2d] %02x %02x %02x %02x "
|
|
"%02x %02x %02x %02x\n", i,
|
|
bp[i + 0], bp[i + 1], bp[i + 2], bp[i + 3],
|
|
bp[i + 4], bp[i + 5], bp[i + 6], bp[i + 7]);
|
|
if (i == 0)
|
|
i = 64 - 8;
|
|
}
|
|
|
|
VPRINTK(skdev, "skspcl=%p id=%04x sksg_list=%p sksg_dma=%llx\n",
|
|
skspcl, skspcl->req.id, skspcl->req.sksg_list,
|
|
skspcl->req.sksg_dma_address);
|
|
for (i = 0; i < skspcl->req.n_sg; i++) {
|
|
struct fit_sg_descriptor *sgd =
|
|
&skspcl->req.sksg_list[i];
|
|
|
|
VPRINTK(skdev, " sg[%d] count=%u ctrl=0x%x "
|
|
"addr=0x%llx next=0x%llx\n",
|
|
i, sgd->byte_count, sgd->control,
|
|
sgd->host_side_addr, sgd->next_desc_ptr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
|
|
* and one 64-byte SSDI command.
|
|
*/
|
|
qcmd = skspcl->mb_dma_address;
|
|
qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
|
|
|
|
SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
|
|
}
|
|
|
|
/*
|
|
*****************************************************************************
|
|
* COMPLETION QUEUE
|
|
*****************************************************************************
|
|
*/
|
|
|
|
static void skd_complete_other(struct skd_device *skdev,
|
|
volatile struct fit_completion_entry_v1 *skcomp,
|
|
volatile struct fit_comp_error_info *skerr);
|
|
|
|
|
|
static void skd_requeue_request(struct skd_device *skdev,
|
|
struct skd_request_context *skreq);
|
|
|
|
struct sns_info {
|
|
u8 type;
|
|
u8 stat;
|
|
u8 key;
|
|
u8 asc;
|
|
u8 ascq;
|
|
u8 mask;
|
|
enum skd_check_status_action action;
|
|
};
|
|
|
|
static struct sns_info skd_chkstat_table[] = {
|
|
/* Good */
|
|
{ 0x70, 0x02, RECOVERED_ERROR, 0, 0, 0x1c,
|
|
SKD_CHECK_STATUS_REPORT_GOOD },
|
|
|
|
/* Smart alerts */
|
|
{ 0x70, 0x02, NO_SENSE, 0x0B, 0x00, 0x1E, /* warnings */
|
|
SKD_CHECK_STATUS_REPORT_SMART_ALERT },
|
|
{ 0x70, 0x02, NO_SENSE, 0x5D, 0x00, 0x1E, /* thresholds */
|
|
SKD_CHECK_STATUS_REPORT_SMART_ALERT },
|
|
{ 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F, /* temperature over trigger */
|
|
SKD_CHECK_STATUS_REPORT_SMART_ALERT },
|
|
|
|
/* Retry (with limits) */
|
|
{ 0x70, 0x02, 0x0B, 0, 0, 0x1C, /* This one is for DMA ERROR */
|
|
SKD_CHECK_STATUS_REQUEUE_REQUEST },
|
|
{ 0x70, 0x02, 0x06, 0x0B, 0x00, 0x1E, /* warnings */
|
|
SKD_CHECK_STATUS_REQUEUE_REQUEST },
|
|
{ 0x70, 0x02, 0x06, 0x5D, 0x00, 0x1E, /* thresholds */
|
|
SKD_CHECK_STATUS_REQUEUE_REQUEST },
|
|
{ 0x70, 0x02, 0x06, 0x80, 0x30, 0x1F, /* backup power */
|
|
SKD_CHECK_STATUS_REQUEUE_REQUEST },
|
|
|
|
/* Busy (or about to be) */
|
|
{ 0x70, 0x02, 0x06, 0x3f, 0x01, 0x1F, /* fw changed */
|
|
SKD_CHECK_STATUS_BUSY_IMMINENT },
|
|
};
|
|
|
|
/*
|
|
* Look up status and sense data to decide how to handle the error
|
|
* from the device.
|
|
* mask says which fields must match e.g., mask=0x18 means check
|
|
* type and stat, ignore key, asc, ascq.
|
|
*/
|
|
|
|
static enum skd_check_status_action skd_check_status(struct skd_device *skdev,
|
|
u8 cmp_status,
|
|
volatile struct fit_comp_error_info *skerr)
|
|
{
|
|
int i, n;
|
|
|
|
pr_err("(%s): key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
|
|
skd_name(skdev), skerr->key, skerr->code, skerr->qual,
|
|
skerr->fruc);
|
|
|
|
VPRINTK(skdev, "stat: t=%02x stat=%02x k=%02x c=%02x q=%02x "
|
|
"fruc=%02x\n", skerr->type, cmp_status, skerr->key,
|
|
skerr->code, skerr->qual, skerr->fruc);
|
|
|
|
/* Does the info match an entry in the good category? */
|
|
n = sizeof(skd_chkstat_table) / sizeof(skd_chkstat_table[0]);
|
|
for (i = 0; i < n; i++) {
|
|
struct sns_info *sns = &skd_chkstat_table[i];
|
|
|
|
if (sns->mask & 0x10)
|
|
if (skerr->type != sns->type)
|
|
continue;
|
|
|
|
if (sns->mask & 0x08)
|
|
if (cmp_status != sns->stat)
|
|
continue;
|
|
|
|
if (sns->mask & 0x04)
|
|
if (skerr->key != sns->key)
|
|
continue;
|
|
|
|
if (sns->mask & 0x02)
|
|
if (skerr->code != sns->asc)
|
|
continue;
|
|
|
|
if (sns->mask & 0x01)
|
|
if (skerr->qual != sns->ascq)
|
|
continue;
|
|
|
|
if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
|
|
pr_err("(%s): SMART Alert: sense key/asc/ascq "
|
|
"%02x/%02x/%02x\n",
|
|
skd_name(skdev), skerr->key,
|
|
skerr->code, skerr->qual);
|
|
}
|
|
return sns->action;
|
|
}
|
|
|
|
/* No other match, so nonzero status means error,
|
|
* zero status means good
|
|
*/
|
|
if (cmp_status) {
|
|
DPRINTK(skdev, "status check: error\n");
|
|
return SKD_CHECK_STATUS_REPORT_ERROR;
|
|
}
|
|
|
|
DPRINTK(skdev, "status check good default\n");
|
|
return SKD_CHECK_STATUS_REPORT_GOOD;
|
|
}
|
|
|
|
static void skd_resolve_req_exception(struct skd_device *skdev,
|
|
struct skd_request_context *skreq)
|
|
{
|
|
u8 cmp_status = skreq->completion.status;
|
|
|
|
switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
|
|
case SKD_CHECK_STATUS_REPORT_GOOD:
|
|
case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
|
|
skd_end_request(skdev, skreq, 0);
|
|
break;
|
|
|
|
case SKD_CHECK_STATUS_BUSY_IMMINENT:
|
|
skd_log_skreq(skdev, skreq, "retry(busy)");
|
|
skd_requeue_request(skdev, skreq);
|
|
pr_info("(%s) drive BUSY imminent\n", skd_name(skdev));
|
|
skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
|
|
skdev->timer_countdown = SKD_TIMER_MINUTES(20);
|
|
skd_quiesce_dev(skdev);
|
|
break;
|
|
|
|
case SKD_CHECK_STATUS_REQUEUE_REQUEST:
|
|
if (!skd_bio) {
|
|
if ((unsigned long) ++skreq->req->special <
|
|
SKD_MAX_RETRIES) {
|
|
skd_log_skreq(skdev, skreq, "retry");
|
|
skd_requeue_request(skdev, skreq);
|
|
break;
|
|
}
|
|
}
|
|
/* fall through to report error */
|
|
|
|
case SKD_CHECK_STATUS_REPORT_ERROR:
|
|
default:
|
|
skd_end_request(skdev, skreq, -EIO);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void skd_requeue_request(struct skd_device *skdev,
|
|
struct skd_request_context *skreq)
|
|
{
|
|
if (!skd_bio) {
|
|
blk_requeue_request(skdev->queue, skreq->req);
|
|
} else {
|
|
bio_list_add_head(&skdev->bio_queue, skreq->bio);
|
|
skreq->bio = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/* assume spinlock is already held */
|
|
static void skd_release_skreq(struct skd_device *skdev,
|
|
struct skd_request_context *skreq)
|
|
{
|
|
u32 msg_slot;
|
|
struct skd_fitmsg_context *skmsg;
|
|
|
|
u32 timo_slot;
|
|
|
|
/*
|
|
* Reclaim the FIT msg buffer if this is
|
|
* the first of the requests it carried to
|
|
* be completed. The FIT msg buffer used to
|
|
* send this request cannot be reused until
|
|
* we are sure the s1120 card has copied
|
|
* it to its memory. The FIT msg might have
|
|
* contained several requests. As soon as
|
|
* any of them are completed we know that
|
|
* the entire FIT msg was transferred.
|
|
* Only the first completed request will
|
|
* match the FIT msg buffer id. The FIT
|
|
* msg buffer id is immediately updated.
|
|
* When subsequent requests complete the FIT
|
|
* msg buffer id won't match, so we know
|
|
* quite cheaply that it is already done.
|
|
*/
|
|
msg_slot = skreq->fitmsg_id & SKD_ID_SLOT_MASK;
|
|
SKD_ASSERT(msg_slot < skdev->num_fitmsg_context);
|
|
|
|
skmsg = &skdev->skmsg_table[msg_slot];
|
|
if (skmsg->id == skreq->fitmsg_id) {
|
|
SKD_ASSERT(skmsg->state == SKD_MSG_STATE_BUSY);
|
|
SKD_ASSERT(skmsg->outstanding > 0);
|
|
skmsg->outstanding--;
|
|
if (skmsg->outstanding == 0) {
|
|
skmsg->state = SKD_MSG_STATE_IDLE;
|
|
skmsg->id += SKD_ID_INCR;
|
|
skmsg->next = skdev->skmsg_free_list;
|
|
skdev->skmsg_free_list = skmsg;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Decrease the number of active requests.
|
|
* Also decrements the count in the timeout slot.
|
|
*/
|
|
SKD_ASSERT(skdev->in_flight > 0);
|
|
skdev->in_flight -= 1;
|
|
|
|
timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
|
|
SKD_ASSERT(skdev->timeout_slot[timo_slot] > 0);
|
|
skdev->timeout_slot[timo_slot] -= 1;
|
|
|
|
/*
|
|
* Reset backpointer
|
|
*/
|
|
if (likely(!skd_bio))
|
|
skreq->req = NULL;
|
|
else
|
|
skreq->bio = NULL;
|
|
|
|
|
|
/*
|
|
* Reclaim the skd_request_context
|
|
*/
|
|
skreq->state = SKD_REQ_STATE_IDLE;
|
|
skreq->id += SKD_ID_INCR;
|
|
skreq->next = skdev->skreq_free_list;
|
|
skdev->skreq_free_list = skreq;
|
|
}
|
|
|
|
#define DRIVER_INQ_EVPD_PAGE_CODE 0xDA
|
|
|
|
static void skd_do_inq_page_00(struct skd_device *skdev,
|
|
volatile struct fit_completion_entry_v1 *skcomp,
|
|
volatile struct fit_comp_error_info *skerr,
|
|
uint8_t *cdb, uint8_t *buf)
|
|
{
|
|
uint16_t insert_pt, max_bytes, drive_pages, drive_bytes, new_size;
|
|
|
|
/* Caller requested "supported pages". The driver needs to insert
|
|
* its page.
|
|
*/
|
|
VPRINTK(skdev, "skd_do_driver_inquiry: modify supported pages.\n");
|
|
|
|
/* If the device rejected the request because the CDB was
|
|
* improperly formed, then just leave.
|
|
*/
|
|
if (skcomp->status == SAM_STAT_CHECK_CONDITION &&
|
|
skerr->key == ILLEGAL_REQUEST && skerr->code == 0x24)
|
|
return;
|
|
|
|
/* Get the amount of space the caller allocated */
|
|
max_bytes = (cdb[3] << 8) | cdb[4];
|
|
|
|
/* Get the number of pages actually returned by the device */
|
|
drive_pages = (buf[2] << 8) | buf[3];
|
|
drive_bytes = drive_pages + 4;
|
|
new_size = drive_pages + 1;
|
|
|
|
/* Supported pages must be in numerical order, so find where
|
|
* the driver page needs to be inserted into the list of
|
|
* pages returned by the device.
|
|
*/
|
|
for (insert_pt = 4; insert_pt < drive_bytes; insert_pt++) {
|
|
if (buf[insert_pt] == DRIVER_INQ_EVPD_PAGE_CODE)
|
|
return; /* Device using this page code. abort */
|
|
else if (buf[insert_pt] > DRIVER_INQ_EVPD_PAGE_CODE)
|
|
break;
|
|
}
|
|
|
|
if (insert_pt < max_bytes) {
|
|
uint16_t u;
|
|
|
|
/* Shift everything up one byte to make room. */
|
|
for (u = new_size + 3; u > insert_pt; u--)
|
|
buf[u] = buf[u - 1];
|
|
buf[insert_pt] = DRIVER_INQ_EVPD_PAGE_CODE;
|
|
|
|
/* SCSI byte order increment of num_returned_bytes by 1 */
|
|
skcomp->num_returned_bytes =
|
|
be32_to_cpu(skcomp->num_returned_bytes) + 1;
|
|
skcomp->num_returned_bytes =
|
|
be32_to_cpu(skcomp->num_returned_bytes);
|
|
}
|
|
|
|
/* update page length field to reflect the driver's page too */
|
|
buf[2] = (uint8_t)((new_size >> 8) & 0xFF);
|
|
buf[3] = (uint8_t)((new_size >> 0) & 0xFF);
|
|
}
|
|
|
|
static void skd_get_link_info(struct pci_dev *pdev, u8 *speed, u8 *width)
|
|
{
|
|
int pcie_reg;
|
|
u16 pci_bus_speed;
|
|
u8 pci_lanes;
|
|
|
|
pcie_reg = pci_find_capability(pdev, PCI_CAP_ID_EXP);
|
|
if (pcie_reg) {
|
|
u16 linksta;
|
|
pci_read_config_word(pdev, pcie_reg + PCI_EXP_LNKSTA, &linksta);
|
|
|
|
pci_bus_speed = linksta & 0xF;
|
|
pci_lanes = (linksta & 0x3F0) >> 4;
|
|
} else {
|
|
*speed = STEC_LINK_UNKNOWN;
|
|
*width = 0xFF;
|
|
return;
|
|
}
|
|
|
|
switch (pci_bus_speed) {
|
|
case 1:
|
|
*speed = STEC_LINK_2_5GTS;
|
|
break;
|
|
case 2:
|
|
*speed = STEC_LINK_5GTS;
|
|
break;
|
|
case 3:
|
|
*speed = STEC_LINK_8GTS;
|
|
break;
|
|
default:
|
|
*speed = STEC_LINK_UNKNOWN;
|
|
break;
|
|
}
|
|
|
|
if (pci_lanes <= 0x20)
|
|
*width = pci_lanes;
|
|
else
|
|
*width = 0xFF;
|
|
}
|
|
|
|
static void skd_do_inq_page_da(struct skd_device *skdev,
|
|
volatile struct fit_completion_entry_v1 *skcomp,
|
|
volatile struct fit_comp_error_info *skerr,
|
|
uint8_t *cdb, uint8_t *buf)
|
|
{
|
|
unsigned max_bytes;
|
|
struct driver_inquiry_data inq;
|
|
u16 val;
|
|
|
|
VPRINTK(skdev, "skd_do_driver_inquiry: return driver page\n");
|
|
|
|
memset(&inq, 0, sizeof(inq));
|
|
|
|
inq.page_code = DRIVER_INQ_EVPD_PAGE_CODE;
|
|
|
|
if (skdev->pdev && skdev->pdev->bus) {
|
|
skd_get_link_info(skdev->pdev,
|
|
&inq.pcie_link_speed, &inq.pcie_link_lanes);
|
|
inq.pcie_bus_number = cpu_to_be16(skdev->pdev->bus->number);
|
|
inq.pcie_device_number = PCI_SLOT(skdev->pdev->devfn);
|
|
inq.pcie_function_number = PCI_FUNC(skdev->pdev->devfn);
|
|
|
|
pci_read_config_word(skdev->pdev, PCI_VENDOR_ID, &val);
|
|
inq.pcie_vendor_id = cpu_to_be16(val);
|
|
|
|
pci_read_config_word(skdev->pdev, PCI_DEVICE_ID, &val);
|
|
inq.pcie_device_id = cpu_to_be16(val);
|
|
|
|
pci_read_config_word(skdev->pdev, PCI_SUBSYSTEM_VENDOR_ID,
|
|
&val);
|
|
inq.pcie_subsystem_vendor_id = cpu_to_be16(val);
|
|
|
|
pci_read_config_word(skdev->pdev, PCI_SUBSYSTEM_ID, &val);
|
|
inq.pcie_subsystem_device_id = cpu_to_be16(val);
|
|
} else {
|
|
inq.pcie_bus_number = 0xFFFF;
|
|
inq.pcie_device_number = 0xFF;
|
|
inq.pcie_function_number = 0xFF;
|
|
inq.pcie_link_speed = 0xFF;
|
|
inq.pcie_link_lanes = 0xFF;
|
|
inq.pcie_vendor_id = 0xFFFF;
|
|
inq.pcie_device_id = 0xFFFF;
|
|
inq.pcie_subsystem_vendor_id = 0xFFFF;
|
|
inq.pcie_subsystem_device_id = 0xFFFF;
|
|
}
|
|
|
|
/* Driver version, fixed lenth, padded with spaces on the right */
|
|
inq.driver_version_length = sizeof(inq.driver_version);
|
|
memset(&inq.driver_version, ' ', sizeof(inq.driver_version));
|
|
memcpy(inq.driver_version, DRV_VER_COMPL,
|
|
min(sizeof(inq.driver_version), strlen(DRV_VER_COMPL)));
|
|
|
|
inq.page_length = cpu_to_be16((sizeof(inq) - 4));
|
|
|
|
/* Clear the error set by the device */
|
|
skcomp->status = SAM_STAT_GOOD;
|
|
memset((void *)skerr, 0, sizeof(*skerr));
|
|
|
|
/* copy response into output buffer */
|
|
max_bytes = (cdb[3] << 8) | cdb[4];
|
|
memcpy(buf, &inq, min_t(unsigned, max_bytes, sizeof(inq)));
|
|
|
|
skcomp->num_returned_bytes =
|
|
be32_to_cpu(min_t(uint16_t, max_bytes, sizeof(inq)));
|
|
}
|
|
|
|
static void skd_do_driver_inq(struct skd_device *skdev,
|
|
volatile struct fit_completion_entry_v1 *skcomp,
|
|
volatile struct fit_comp_error_info *skerr,
|
|
uint8_t *cdb, uint8_t *buf)
|
|
{
|
|
if (!buf)
|
|
return;
|
|
else if (cdb[0] != INQUIRY)
|
|
return; /* Not an INQUIRY */
|
|
else if ((cdb[1] & 1) == 0)
|
|
return; /* EVPD not set */
|
|
else if (cdb[2] == 0)
|
|
/* Need to add driver's page to supported pages list */
|
|
skd_do_inq_page_00(skdev, skcomp, skerr, cdb, buf);
|
|
else if (cdb[2] == DRIVER_INQ_EVPD_PAGE_CODE)
|
|
/* Caller requested driver's page */
|
|
skd_do_inq_page_da(skdev, skcomp, skerr, cdb, buf);
|
|
}
|
|
|
|
static unsigned char *skd_sg_1st_page_ptr(struct scatterlist *sg)
|
|
{
|
|
if (!sg)
|
|
return NULL;
|
|
if (!sg_page(sg))
|
|
return NULL;
|
|
return sg_virt(sg);
|
|
}
|
|
|
|
static void skd_process_scsi_inq(struct skd_device *skdev,
|
|
volatile struct fit_completion_entry_v1
|
|
*skcomp,
|
|
volatile struct fit_comp_error_info *skerr,
|
|
struct skd_special_context *skspcl)
|
|
{
|
|
uint8_t *buf;
|
|
struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf;
|
|
struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1];
|
|
|
|
dma_sync_sg_for_cpu(skdev->class_dev, skspcl->req.sg, skspcl->req.n_sg,
|
|
skspcl->req.sg_data_dir);
|
|
buf = skd_sg_1st_page_ptr(skspcl->req.sg);
|
|
|
|
if (buf)
|
|
skd_do_driver_inq(skdev, skcomp, skerr, scsi_req->cdb, buf);
|
|
}
|
|
|
|
|
|
static int skd_isr_completion_posted(struct skd_device *skdev,
|
|
int limit, int *enqueued)
|
|
{
|
|
volatile struct fit_completion_entry_v1 *skcmp = NULL;
|
|
volatile struct fit_comp_error_info *skerr;
|
|
u16 req_id;
|
|
u32 req_slot;
|
|
struct skd_request_context *skreq;
|
|
u16 cmp_cntxt = 0;
|
|
u8 cmp_status = 0;
|
|
u8 cmp_cycle = 0;
|
|
u32 cmp_bytes = 0;
|
|
int rc = 0;
|
|
int processed = 0;
|
|
int ret;
|
|
|
|
|
|
for (;; ) {
|
|
SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
|
|
|
|
skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
|
|
cmp_cycle = skcmp->cycle;
|
|
cmp_cntxt = skcmp->tag;
|
|
cmp_status = skcmp->status;
|
|
cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
|
|
|
|
skerr = &skdev->skerr_table[skdev->skcomp_ix];
|
|
|
|
VPRINTK(skdev,
|
|
"cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d "
|
|
"busy=%d rbytes=0x%x proto=%d\n", skdev->skcomp_cycle,
|
|
skdev->skcomp_ix, cmp_cycle, cmp_cntxt, cmp_status,
|
|
skdev->in_flight, cmp_bytes, skdev->proto_ver);
|
|
|
|
if (cmp_cycle != skdev->skcomp_cycle) {
|
|
VPRINTK(skdev, "end of completions\n");
|
|
break;
|
|
}
|
|
/*
|
|
* Update the completion queue head index and possibly
|
|
* the completion cycle count. 8-bit wrap-around.
|
|
*/
|
|
skdev->skcomp_ix++;
|
|
if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
|
|
skdev->skcomp_ix = 0;
|
|
skdev->skcomp_cycle++;
|
|
}
|
|
|
|
/*
|
|
* The command context is a unique 32-bit ID. The low order
|
|
* bits help locate the request. The request is usually a
|
|
* r/w request (see skd_start() above) or a special request.
|
|
*/
|
|
req_id = cmp_cntxt;
|
|
req_slot = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
|
|
|
|
/* Is this other than a r/w request? */
|
|
if (req_slot >= skdev->num_req_context) {
|
|
/*
|
|
* This is not a completion for a r/w request.
|
|
*/
|
|
skd_complete_other(skdev, skcmp, skerr);
|
|
continue;
|
|
}
|
|
|
|
skreq = &skdev->skreq_table[req_slot];
|
|
|
|
/*
|
|
* Make sure the request ID for the slot matches.
|
|
*/
|
|
if (skreq->id != req_id) {
|
|
DPRINTK(skdev, "mismatch comp_id=0x%x req_id=0x%x\n",
|
|
req_id, skreq->id);
|
|
{
|
|
u16 new_id = cmp_cntxt;
|
|
pr_err("(%s): Completion mismatch "
|
|
"comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
|
|
skd_name(skdev), req_id,
|
|
skreq->id, new_id);
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
|
|
|
|
if (skreq->state == SKD_REQ_STATE_ABORTED) {
|
|
DPRINTK(skdev, "reclaim req %p id=%04x\n",
|
|
skreq, skreq->id);
|
|
/* a previously timed out command can
|
|
* now be cleaned up */
|
|
skd_release_skreq(skdev, skreq);
|
|
continue;
|
|
}
|
|
|
|
skreq->completion = *skcmp;
|
|
if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
|
|
skreq->err_info = *skerr;
|
|
skd_log_check_status(skdev, cmp_status, skerr->key,
|
|
skerr->code, skerr->qual,
|
|
skerr->fruc);
|
|
}
|
|
/* Release DMA resources for the request. */
|
|
if (skreq->n_sg > 0)
|
|
skd_postop_sg_list(skdev, skreq);
|
|
|
|
if (((!skd_bio) && !skreq->req) ||
|
|
((skd_bio) && !skreq->bio)) {
|
|
DPRINTK(skdev, "NULL backptr skdreq %p, "
|
|
"req=0x%x req_id=0x%x\n",
|
|
skreq, skreq->id, req_id);
|
|
} else {
|
|
/*
|
|
* Capture the outcome and post it back to the
|
|
* native request.
|
|
*/
|
|
if (likely(cmp_status == SAM_STAT_GOOD)) {
|
|
if (unlikely(skreq->flush_cmd)) {
|
|
if (skd_bio) {
|
|
/* if empty size bio, we are all done */
|
|
if (bio_sectors(skreq->bio) == 0) {
|
|
skd_end_request(skdev, skreq, 0);
|
|
} else {
|
|
ret = skd_flush_cmd_enqueue(skdev, (void *)skreq->bio);
|
|
if (ret != 0) {
|
|
pr_err("Failed to enqueue flush bio with Data. Err=%d.\n", ret);
|
|
skd_end_request(skdev, skreq, ret);
|
|
} else {
|
|
((*enqueued)++);
|
|
}
|
|
}
|
|
} else {
|
|
skd_end_request(skdev, skreq, 0);
|
|
}
|
|
} else {
|
|
skd_end_request(skdev, skreq, 0);
|
|
}
|
|
} else {
|
|
skd_resolve_req_exception(skdev, skreq);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Release the skreq, its FIT msg (if one), timeout slot,
|
|
* and queue depth.
|
|
*/
|
|
skd_release_skreq(skdev, skreq);
|
|
|
|
/* skd_isr_comp_limit equal zero means no limit */
|
|
if (limit) {
|
|
if (++processed >= limit) {
|
|
rc = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((skdev->state == SKD_DRVR_STATE_PAUSING)
|
|
&& (skdev->in_flight) == 0) {
|
|
skdev->state = SKD_DRVR_STATE_PAUSED;
|
|
wake_up_interruptible(&skdev->waitq);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void skd_complete_other(struct skd_device *skdev,
|
|
volatile struct fit_completion_entry_v1 *skcomp,
|
|
volatile struct fit_comp_error_info *skerr)
|
|
{
|
|
u32 req_id = 0;
|
|
u32 req_table;
|
|
u32 req_slot;
|
|
struct skd_special_context *skspcl;
|
|
|
|
req_id = skcomp->tag;
|
|
req_table = req_id & SKD_ID_TABLE_MASK;
|
|
req_slot = req_id & SKD_ID_SLOT_MASK;
|
|
|
|
DPRINTK(skdev, "table=0x%x id=0x%x slot=%d\n", req_table, req_id,
|
|
req_slot);
|
|
|
|
/*
|
|
* Based on the request id, determine how to dispatch this completion.
|
|
* This swich/case is finding the good cases and forwarding the
|
|
* completion entry. Errors are reported below the switch.
|
|
*/
|
|
switch (req_table) {
|
|
case SKD_ID_RW_REQUEST:
|
|
/*
|
|
* The caller, skd_completion_posted_isr() above,
|
|
* handles r/w requests. The only way we get here
|
|
* is if the req_slot is out of bounds.
|
|
*/
|
|
break;
|
|
|
|
case SKD_ID_SPECIAL_REQUEST:
|
|
/*
|
|
* Make sure the req_slot is in bounds and that the id
|
|
* matches.
|
|
*/
|
|
if (req_slot < skdev->n_special) {
|
|
skspcl = &skdev->skspcl_table[req_slot];
|
|
if (skspcl->req.id == req_id &&
|
|
skspcl->req.state == SKD_REQ_STATE_BUSY) {
|
|
skd_complete_special(skdev,
|
|
skcomp, skerr, skspcl);
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case SKD_ID_INTERNAL:
|
|
if (req_slot == 0) {
|
|
skspcl = &skdev->internal_skspcl;
|
|
if (skspcl->req.id == req_id &&
|
|
skspcl->req.state == SKD_REQ_STATE_BUSY) {
|
|
skd_complete_internal(skdev,
|
|
skcomp, skerr, skspcl);
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case SKD_ID_FIT_MSG:
|
|
/*
|
|
* These id's should never appear in a completion record.
|
|
*/
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* These id's should never appear anywhere;
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we get here it is a bad or stale id.
|
|
*/
|
|
}
|
|
|
|
static void skd_complete_special(struct skd_device *skdev,
|
|
volatile struct fit_completion_entry_v1
|
|
*skcomp,
|
|
volatile struct fit_comp_error_info *skerr,
|
|
struct skd_special_context *skspcl)
|
|
{
|
|
DPRINTK(skdev, " completing special request %p\n", skspcl);
|
|
if (skspcl->orphaned) {
|
|
/* Discard orphaned request */
|
|
/* ?: Can this release directly or does it need
|
|
* to use a worker? */
|
|
DPRINTK(skdev, "release orphaned %p\n", skspcl);
|
|
skd_release_special(skdev, skspcl);
|
|
return;
|
|
}
|
|
|
|
skd_process_scsi_inq(skdev, skcomp, skerr, skspcl);
|
|
|
|
skspcl->req.state = SKD_REQ_STATE_COMPLETED;
|
|
skspcl->req.completion = *skcomp;
|
|
skspcl->req.err_info = *skerr;
|
|
|
|
skd_log_check_status(skdev, skspcl->req.completion.status, skerr->key,
|
|
skerr->code, skerr->qual, skerr->fruc);
|
|
|
|
wake_up_interruptible(&skdev->waitq);
|
|
}
|
|
|
|
/* assume spinlock is already held */
|
|
static void skd_release_special(struct skd_device *skdev,
|
|
struct skd_special_context *skspcl)
|
|
{
|
|
int i, was_depleted;
|
|
|
|
for (i = 0; i < skspcl->req.n_sg; i++) {
|
|
|
|
struct page *page = sg_page(&skspcl->req.sg[i]);
|
|
__free_page(page);
|
|
}
|
|
|
|
was_depleted = (skdev->skspcl_free_list == NULL);
|
|
|
|
skspcl->req.state = SKD_REQ_STATE_IDLE;
|
|
skspcl->req.id += SKD_ID_INCR;
|
|
skspcl->req.next =
|
|
(struct skd_request_context *)skdev->skspcl_free_list;
|
|
skdev->skspcl_free_list = (struct skd_special_context *)skspcl;
|
|
|
|
if (was_depleted) {
|
|
DPRINTK(skdev, "skspcl was depleted\n");
|
|
/* Free list was depleted. Their might be waiters. */
|
|
wake_up_interruptible(&skdev->waitq);
|
|
}
|
|
}
|
|
|
|
static void skd_reset_skcomp(struct skd_device *skdev)
|
|
{
|
|
u32 nbytes;
|
|
struct fit_completion_entry_v1 *skcomp;
|
|
|
|
nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY;
|
|
nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
|
|
|
|
memset(skdev->skcomp_table, 0, nbytes);
|
|
|
|
skdev->skcomp_ix = 0;
|
|
skdev->skcomp_cycle = 1;
|
|
}
|
|
|
|
/*
|
|
*****************************************************************************
|
|
* INTERRUPTS
|
|
*****************************************************************************
|
|
*/
|
|
static void skd_completion_worker(struct work_struct *work)
|
|
{
|
|
struct skd_device *skdev =
|
|
container_of(work, struct skd_device, completion_worker);
|
|
unsigned long flags;
|
|
int flush_enqueued = 0;
|
|
|
|
spin_lock_irqsave(&skdev->lock, flags);
|
|
|
|
/*
|
|
* pass in limit=0, which means no limit..
|
|
* process everything in compq
|
|
*/
|
|
skd_isr_completion_posted(skdev, 0, &flush_enqueued);
|
|
skd_request_fn(skdev->queue);
|
|
|
|
spin_unlock_irqrestore(&skdev->lock, flags);
|
|
}
|
|
|
|
static void skd_isr_msg_from_dev(struct skd_device *skdev);
|
|
|
|
irqreturn_t
|
|
static skd_isr(int irq, void *ptr)
|
|
{
|
|
struct skd_device *skdev;
|
|
u32 intstat;
|
|
u32 ack;
|
|
int rc = 0;
|
|
int deferred = 0;
|
|
int flush_enqueued = 0;
|
|
|
|
skdev = (struct skd_device *)ptr;
|
|
spin_lock(&skdev->lock);
|
|
|
|
for (;; ) {
|
|
intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
|
|
|
|
ack = FIT_INT_DEF_MASK;
|
|
ack &= intstat;
|
|
|
|
VPRINTK(skdev, "intstat=0x%x ack=0x%x\n", intstat, ack);
|
|
|
|
/* As long as there is an int pending on device, keep
|
|
* running loop. When none, get out, but if we've never
|
|
* done any processing, call completion handler?
|
|
*/
|
|
if (ack == 0) {
|
|
/* No interrupts on device, but run the completion
|
|
* processor anyway?
|
|
*/
|
|
if (rc == 0)
|
|
if (likely (skdev->state
|
|
== SKD_DRVR_STATE_ONLINE))
|
|
deferred = 1;
|
|
break;
|
|
}
|
|
|
|
rc = IRQ_HANDLED;
|
|
|
|
SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
|
|
|
|
if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
|
|
(skdev->state != SKD_DRVR_STATE_STOPPING))) {
|
|
if (intstat & FIT_ISH_COMPLETION_POSTED) {
|
|
/*
|
|
* If we have already deferred completion
|
|
* processing, don't bother running it again
|
|
*/
|
|
if (deferred == 0)
|
|
deferred =
|
|
skd_isr_completion_posted(skdev,
|
|
skd_isr_comp_limit, &flush_enqueued);
|
|
}
|
|
|
|
if (intstat & FIT_ISH_FW_STATE_CHANGE) {
|
|
skd_isr_fwstate(skdev);
|
|
if (skdev->state == SKD_DRVR_STATE_FAULT ||
|
|
skdev->state ==
|
|
SKD_DRVR_STATE_DISAPPEARED) {
|
|
spin_unlock(&skdev->lock);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
if (intstat & FIT_ISH_MSG_FROM_DEV)
|
|
skd_isr_msg_from_dev(skdev);
|
|
}
|
|
}
|
|
|
|
if (unlikely(flush_enqueued))
|
|
skd_request_fn(skdev->queue);
|
|
|
|
if (deferred)
|
|
schedule_work(&skdev->completion_worker);
|
|
else if (!flush_enqueued)
|
|
skd_request_fn(skdev->queue);
|
|
|
|
spin_unlock(&skdev->lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
static void skd_drive_fault(struct skd_device *skdev)
|
|
{
|
|
skdev->state = SKD_DRVR_STATE_FAULT;
|
|
pr_err("(%s): Drive FAULT\n", skd_name(skdev));
|
|
}
|
|
|
|
static void skd_drive_disappeared(struct skd_device *skdev)
|
|
{
|
|
skdev->state = SKD_DRVR_STATE_DISAPPEARED;
|
|
pr_err("(%s): Drive DISAPPEARED\n", skd_name(skdev));
|
|
}
|
|
|
|
static void skd_isr_fwstate(struct skd_device *skdev)
|
|
{
|
|
u32 sense;
|
|
u32 state;
|
|
u32 mtd;
|
|
int prev_driver_state = skdev->state;
|
|
|
|
sense = SKD_READL(skdev, FIT_STATUS);
|
|
state = sense & FIT_SR_DRIVE_STATE_MASK;
|
|
|
|
pr_err("(%s): s1120 state %s(%d)=>%s(%d)\n",
|
|
skd_name(skdev),
|
|
skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
|
|
skd_drive_state_to_str(state), state);
|
|
|
|
skdev->drive_state = state;
|
|
|
|
switch (skdev->drive_state) {
|
|
case FIT_SR_DRIVE_INIT:
|
|
if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
|
|
skd_disable_interrupts(skdev);
|
|
break;
|
|
}
|
|
if (skdev->state == SKD_DRVR_STATE_RESTARTING)
|
|
skd_recover_requests(skdev, 0);
|
|
if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
|
|
skdev->timer_countdown = SKD_STARTING_TIMO;
|
|
skdev->state = SKD_DRVR_STATE_STARTING;
|
|
skd_soft_reset(skdev);
|
|
break;
|
|
}
|
|
mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
|
|
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
|
|
skdev->last_mtd = mtd;
|
|
break;
|
|
|
|
case FIT_SR_DRIVE_ONLINE:
|
|
skdev->cur_max_queue_depth = skd_max_queue_depth;
|
|
if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
|
|
skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
|
|
|
|
skdev->queue_low_water_mark =
|
|
skdev->cur_max_queue_depth * 2 / 3 + 1;
|
|
if (skdev->queue_low_water_mark < 1)
|
|
skdev->queue_low_water_mark = 1;
|
|
pr_info(
|
|
"(%s): Queue depth limit=%d dev=%d lowat=%d\n",
|
|
skd_name(skdev),
|
|
skdev->cur_max_queue_depth,
|
|
skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
|
|
|
|
skd_refresh_device_data(skdev);
|
|
break;
|
|
|
|
case FIT_SR_DRIVE_BUSY:
|
|
skdev->state = SKD_DRVR_STATE_BUSY;
|
|
skdev->timer_countdown = SKD_BUSY_TIMO;
|
|
skd_quiesce_dev(skdev);
|
|
break;
|
|
case FIT_SR_DRIVE_BUSY_SANITIZE:
|
|
/* set timer for 3 seconds, we'll abort any unfinished
|
|
* commands after that expires
|
|
*/
|
|
skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
|
|
skdev->timer_countdown = SKD_TIMER_SECONDS(3);
|
|
skd_start_queue(skdev);
|
|
break;
|
|
case FIT_SR_DRIVE_BUSY_ERASE:
|
|
skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
|
|
skdev->timer_countdown = SKD_BUSY_TIMO;
|
|
break;
|
|
case FIT_SR_DRIVE_OFFLINE:
|
|
skdev->state = SKD_DRVR_STATE_IDLE;
|
|
break;
|
|
case FIT_SR_DRIVE_SOFT_RESET:
|
|
switch (skdev->state) {
|
|
case SKD_DRVR_STATE_STARTING:
|
|
case SKD_DRVR_STATE_RESTARTING:
|
|
/* Expected by a caller of skd_soft_reset() */
|
|
break;
|
|
default:
|
|
skdev->state = SKD_DRVR_STATE_RESTARTING;
|
|
break;
|
|
}
|
|
break;
|
|
case FIT_SR_DRIVE_FW_BOOTING:
|
|
VPRINTK(skdev, "ISR FIT_SR_DRIVE_FW_BOOTING %s\n", skdev->name);
|
|
skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
|
|
skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
|
|
break;
|
|
|
|
case FIT_SR_DRIVE_DEGRADED:
|
|
case FIT_SR_PCIE_LINK_DOWN:
|
|
case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
|
|
break;
|
|
|
|
case FIT_SR_DRIVE_FAULT:
|
|
skd_drive_fault(skdev);
|
|
skd_recover_requests(skdev, 0);
|
|
skd_start_queue(skdev);
|
|
break;
|
|
|
|
/* PCIe bus returned all Fs? */
|
|
case 0xFF:
|
|
pr_info("(%s): state=0x%x sense=0x%x\n",
|
|
skd_name(skdev), state, sense);
|
|
skd_drive_disappeared(skdev);
|
|
skd_recover_requests(skdev, 0);
|
|
skd_start_queue(skdev);
|
|
break;
|
|
default:
|
|
/*
|
|
* Uknown FW State. Wait for a state we recognize.
|
|
*/
|
|
break;
|
|
}
|
|
pr_err("(%s): Driver state %s(%d)=>%s(%d)\n",
|
|
skd_name(skdev),
|
|
skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
|
|
skd_skdev_state_to_str(skdev->state), skdev->state);
|
|
}
|
|
|
|
static void skd_recover_requests(struct skd_device *skdev, int requeue)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < skdev->num_req_context; i++) {
|
|
struct skd_request_context *skreq = &skdev->skreq_table[i];
|
|
|
|
if (skreq->state == SKD_REQ_STATE_BUSY) {
|
|
skd_log_skreq(skdev, skreq, "recover");
|
|
|
|
SKD_ASSERT((skreq->id & SKD_ID_INCR) != 0);
|
|
if (!skd_bio)
|
|
SKD_ASSERT(skreq->req != NULL);
|
|
else
|
|
SKD_ASSERT(skreq->bio != NULL);
|
|
|
|
/* Release DMA resources for the request. */
|
|
if (skreq->n_sg > 0)
|
|
skd_postop_sg_list(skdev, skreq);
|
|
|
|
if (!skd_bio) {
|
|
if (requeue &&
|
|
(unsigned long) ++skreq->req->special <
|
|
SKD_MAX_RETRIES)
|
|
skd_requeue_request(skdev, skreq);
|
|
else
|
|
skd_end_request(skdev, skreq, -EIO);
|
|
} else
|
|
skd_end_request(skdev, skreq, -EIO);
|
|
|
|
if (!skd_bio)
|
|
skreq->req = NULL;
|
|
else
|
|
skreq->bio = NULL;
|
|
|
|
skreq->state = SKD_REQ_STATE_IDLE;
|
|
skreq->id += SKD_ID_INCR;
|
|
|
|
|
|
}
|
|
if (i > 0)
|
|
skreq[-1].next = skreq;
|
|
skreq->next = NULL;
|
|
}
|
|
skdev->skreq_free_list = skdev->skreq_table;
|
|
|
|
for (i = 0; i < skdev->num_fitmsg_context; i++) {
|
|
struct skd_fitmsg_context *skmsg = &skdev->skmsg_table[i];
|
|
|
|
if (skmsg->state == SKD_MSG_STATE_BUSY) {
|
|
skd_log_skmsg(skdev, skmsg, "salvaged");
|
|
SKD_ASSERT((skmsg->id & SKD_ID_INCR) != 0);
|
|
skmsg->state = SKD_MSG_STATE_IDLE;
|
|
skmsg->id += SKD_ID_INCR;
|
|
}
|
|
if (i > 0)
|
|
skmsg[-1].next = skmsg;
|
|
skmsg->next = NULL;
|
|
}
|
|
skdev->skmsg_free_list = skdev->skmsg_table;
|
|
|
|
for (i = 0; i < skdev->n_special; i++) {
|
|
struct skd_special_context *skspcl = &skdev->skspcl_table[i];
|
|
|
|
/* If orphaned, reclaim it because it has already been reported
|
|
* to the process as an error (it was just waiting for
|
|
* a completion that didn't come, and now it will never come)
|
|
* If busy, change to a state that will cause it to error
|
|
* out in the wait routine and let it do the normal
|
|
* reporting and reclaiming
|
|
*/
|
|
if (skspcl->req.state == SKD_REQ_STATE_BUSY) {
|
|
if (skspcl->orphaned) {
|
|
DPRINTK(skdev, "orphaned %p\n", skspcl);
|
|
skd_release_special(skdev, skspcl);
|
|
} else {
|
|
DPRINTK(skdev, "not orphaned %p\n", skspcl);
|
|
skspcl->req.state = SKD_REQ_STATE_ABORTED;
|
|
}
|
|
}
|
|
}
|
|
skdev->skspcl_free_list = skdev->skspcl_table;
|
|
|
|
for (i = 0; i < SKD_N_TIMEOUT_SLOT; i++)
|
|
skdev->timeout_slot[i] = 0;
|
|
|
|
skdev->in_flight = 0;
|
|
}
|
|
|
|
static void skd_isr_msg_from_dev(struct skd_device *skdev)
|
|
{
|
|
u32 mfd;
|
|
u32 mtd;
|
|
u32 data;
|
|
|
|
mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
|
|
|
|
DPRINTK(skdev, "mfd=0x%x last_mtd=0x%x\n", mfd, skdev->last_mtd);
|
|
|
|
/* ignore any mtd that is an ack for something we didn't send */
|
|
if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
|
|
return;
|
|
|
|
switch (FIT_MXD_TYPE(mfd)) {
|
|
case FIT_MTD_FITFW_INIT:
|
|
skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
|
|
|
|
if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
|
|
pr_err("(%s): protocol mismatch\n",
|
|
skdev->name);
|
|
pr_err("(%s): got=%d support=%d\n",
|
|
skdev->name, skdev->proto_ver,
|
|
FIT_PROTOCOL_VERSION_1);
|
|
pr_err("(%s): please upgrade driver\n",
|
|
skdev->name);
|
|
skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
|
|
skd_soft_reset(skdev);
|
|
break;
|
|
}
|
|
mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
|
|
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
|
|
skdev->last_mtd = mtd;
|
|
break;
|
|
|
|
case FIT_MTD_GET_CMDQ_DEPTH:
|
|
skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
|
|
mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
|
|
SKD_N_COMPLETION_ENTRY);
|
|
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
|
|
skdev->last_mtd = mtd;
|
|
break;
|
|
|
|
case FIT_MTD_SET_COMPQ_DEPTH:
|
|
SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
|
|
mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
|
|
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
|
|
skdev->last_mtd = mtd;
|
|
break;
|
|
|
|
case FIT_MTD_SET_COMPQ_ADDR:
|
|
skd_reset_skcomp(skdev);
|
|
mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
|
|
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
|
|
skdev->last_mtd = mtd;
|
|
break;
|
|
|
|
case FIT_MTD_CMD_LOG_HOST_ID:
|
|
skdev->connect_time_stamp = get_seconds();
|
|
data = skdev->connect_time_stamp & 0xFFFF;
|
|
mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
|
|
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
|
|
skdev->last_mtd = mtd;
|
|
break;
|
|
|
|
case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
|
|
skdev->drive_jiffies = FIT_MXD_DATA(mfd);
|
|
data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
|
|
mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
|
|
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
|
|
skdev->last_mtd = mtd;
|
|
break;
|
|
|
|
case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
|
|
skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
|
|
mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
|
|
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
|
|
skdev->last_mtd = mtd;
|
|
|
|
pr_err("(%s): Time sync driver=0x%x device=0x%x\n",
|
|
skd_name(skdev),
|
|
skdev->connect_time_stamp, skdev->drive_jiffies);
|
|
break;
|
|
|
|
case FIT_MTD_ARM_QUEUE:
|
|
skdev->last_mtd = 0;
|
|
/*
|
|
* State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
|
|
*/
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void skd_disable_interrupts(struct skd_device *skdev)
|
|
{
|
|
u32 sense;
|
|
|
|
sense = SKD_READL(skdev, FIT_CONTROL);
|
|
sense &= ~FIT_CR_ENABLE_INTERRUPTS;
|
|
SKD_WRITEL(skdev, sense, FIT_CONTROL);
|
|
DPRINTK(skdev, "sense 0x%x\n", sense);
|
|
|
|
/* Note that the 1s is written. A 1-bit means
|
|
* disable, a 0 means enable.
|
|
*/
|
|
SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
|
|
}
|
|
|
|
static void skd_enable_interrupts(struct skd_device *skdev)
|
|
{
|
|
u32 val;
|
|
|
|
/* unmask interrupts first */
|
|
val = FIT_ISH_FW_STATE_CHANGE +
|
|
FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
|
|
|
|
/* Note that the compliment of mask is written. A 1-bit means
|
|
* disable, a 0 means enable. */
|
|
SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
|
|
DPRINTK(skdev, "interrupt mask=0x%x\n", ~val);
|
|
|
|
val = SKD_READL(skdev, FIT_CONTROL);
|
|
val |= FIT_CR_ENABLE_INTERRUPTS;
|
|
DPRINTK(skdev, "control=0x%x\n", val);
|
|
SKD_WRITEL(skdev, val, FIT_CONTROL);
|
|
}
|
|
|
|
/*
|
|
*****************************************************************************
|
|
* START, STOP, RESTART, QUIESCE, UNQUIESCE
|
|
*****************************************************************************
|
|
*/
|
|
|
|
static void skd_soft_reset(struct skd_device *skdev)
|
|
{
|
|
u32 val;
|
|
|
|
val = SKD_READL(skdev, FIT_CONTROL);
|
|
val |= (FIT_CR_SOFT_RESET);
|
|
DPRINTK(skdev, "control=0x%x\n", val);
|
|
SKD_WRITEL(skdev, val, FIT_CONTROL);
|
|
}
|
|
|
|
static void skd_start_device(struct skd_device *skdev)
|
|
{
|
|
unsigned long flags;
|
|
u32 sense;
|
|
u32 state;
|
|
|
|
spin_lock_irqsave(&skdev->lock, flags);
|
|
|
|
/* ack all ghost interrupts */
|
|
SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
|
|
|
|
sense = SKD_READL(skdev, FIT_STATUS);
|
|
|
|
DPRINTK(skdev, "initial status=0x%x\n", sense);
|
|
|
|
state = sense & FIT_SR_DRIVE_STATE_MASK;
|
|
skdev->drive_state = state;
|
|
skdev->last_mtd = 0;
|
|
|
|
skdev->state = SKD_DRVR_STATE_STARTING;
|
|
skdev->timer_countdown = SKD_STARTING_TIMO;
|
|
|
|
skd_enable_interrupts(skdev);
|
|
|
|
switch (skdev->drive_state) {
|
|
case FIT_SR_DRIVE_OFFLINE:
|
|
pr_err("(%s): Drive offline...\n", skd_name(skdev));
|
|
break;
|
|
|
|
case FIT_SR_DRIVE_FW_BOOTING:
|
|
VPRINTK(skdev, "FIT_SR_DRIVE_FW_BOOTING %s\n", skdev->name);
|
|
skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
|
|
skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
|
|
break;
|
|
|
|
case FIT_SR_DRIVE_BUSY_SANITIZE:
|
|
pr_info("(%s): Start: BUSY_SANITIZE\n",
|
|
skd_name(skdev));
|
|
skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
|
|
skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
|
|
break;
|
|
|
|
case FIT_SR_DRIVE_BUSY_ERASE:
|
|
pr_info("(%s): Start: BUSY_ERASE\n", skd_name(skdev));
|
|
skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
|
|
skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
|
|
break;
|
|
|
|
case FIT_SR_DRIVE_INIT:
|
|
case FIT_SR_DRIVE_ONLINE:
|
|
skd_soft_reset(skdev);
|
|
break;
|
|
|
|
case FIT_SR_DRIVE_BUSY:
|
|
pr_err("(%s): Drive Busy...\n", skd_name(skdev));
|
|
skdev->state = SKD_DRVR_STATE_BUSY;
|
|
skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
|
|
break;
|
|
|
|
case FIT_SR_DRIVE_SOFT_RESET:
|
|
pr_err("(%s) drive soft reset in prog\n",
|
|
skd_name(skdev));
|
|
break;
|
|
|
|
case FIT_SR_DRIVE_FAULT:
|
|
/* Fault state is bad...soft reset won't do it...
|
|
* Hard reset, maybe, but does it work on device?
|
|
* For now, just fault so the system doesn't hang.
|
|
*/
|
|
skd_drive_fault(skdev);
|
|
/*start the queue so we can respond with error to requests */
|
|
VPRINTK(skdev, "starting %s queue\n", skdev->name);
|
|
skd_start_queue(skdev);
|
|
skdev->gendisk_on = -1;
|
|
wake_up_interruptible(&skdev->waitq);
|
|
break;
|
|
|
|
case 0xFF:
|
|
/* Most likely the device isn't there or isn't responding
|
|
* to the BAR1 addresses. */
|
|
skd_drive_disappeared(skdev);
|
|
/*start the queue so we can respond with error to requests */
|
|
VPRINTK(skdev, "starting %s queue to error-out reqs\n",
|
|
skdev->name);
|
|
skd_start_queue(skdev);
|
|
skdev->gendisk_on = -1;
|
|
wake_up_interruptible(&skdev->waitq);
|
|
break;
|
|
|
|
default:
|
|
pr_err("(%s) Start: unknown state %x\n",
|
|
skd_name(skdev), skdev->drive_state);
|
|
break;
|
|
}
|
|
|
|
state = SKD_READL(skdev, FIT_CONTROL);
|
|
DPRINTK(skdev, "FIT Control Status=0x%x\n", state);
|
|
|
|
state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
|
|
DPRINTK(skdev, "Intr Status=0x%x\n", state);
|
|
|
|
state = SKD_READL(skdev, FIT_INT_MASK_HOST);
|
|
DPRINTK(skdev, "Intr Mask=0x%x\n", state);
|
|
|
|
state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
|
|
DPRINTK(skdev, "Msg from Dev=0x%x\n", state);
|
|
|
|
state = SKD_READL(skdev, FIT_HW_VERSION);
|
|
DPRINTK(skdev, "HW version=0x%x\n", state);
|
|
|
|
spin_unlock_irqrestore(&skdev->lock, flags);
|
|
}
|
|
|
|
static void skd_stop_device(struct skd_device *skdev)
|
|
{
|
|
unsigned long flags;
|
|
struct skd_special_context *skspcl = &skdev->internal_skspcl;
|
|
u32 dev_state;
|
|
int i;
|
|
|
|
spin_lock_irqsave(&skdev->lock, flags);
|
|
|
|
if (skdev->state != SKD_DRVR_STATE_ONLINE) {
|
|
pr_err("(%s): skd_stop_device not online no sync\n",
|
|
skd_name(skdev));
|
|
goto stop_out;
|
|
}
|
|
|
|
if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
|
|
pr_err("(%s): skd_stop_device no special\n",
|
|
skd_name(skdev));
|
|
goto stop_out;
|
|
}
|
|
|
|
skdev->state = SKD_DRVR_STATE_SYNCING;
|
|
skdev->sync_done = 0;
|
|
|
|
skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
|
|
|
|
spin_unlock_irqrestore(&skdev->lock, flags);
|
|
|
|
wait_event_interruptible_timeout(skdev->waitq,
|
|
(skdev->sync_done), (10 * HZ));
|
|
|
|
spin_lock_irqsave(&skdev->lock, flags);
|
|
|
|
switch (skdev->sync_done) {
|
|
case 0:
|
|
pr_err("(%s): skd_stop_device no sync\n",
|
|
skd_name(skdev));
|
|
break;
|
|
case 1:
|
|
pr_err("(%s): skd_stop_device sync done\n",
|
|
skd_name(skdev));
|
|
break;
|
|
default:
|
|
pr_err("(%s): skd_stop_device sync error\n",
|
|
skd_name(skdev));
|
|
}
|
|
|
|
stop_out:
|
|
skdev->state = SKD_DRVR_STATE_STOPPING;
|
|
spin_unlock_irqrestore(&skdev->lock, flags);
|
|
|
|
skd_kill_timer(skdev);
|
|
|
|
spin_lock_irqsave(&skdev->lock, flags);
|
|
skd_disable_interrupts(skdev);
|
|
|
|
/* ensure all ints on device are cleared */
|
|
/* soft reset the device to unload with a clean slate */
|
|
SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
|
|
SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
|
|
|
|
spin_unlock_irqrestore(&skdev->lock, flags);
|
|
|
|
/* poll every 100ms, 1 second timeout */
|
|
for (i = 0; i < 10; i++) {
|
|
dev_state =
|
|
SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
|
|
if (dev_state == FIT_SR_DRIVE_INIT)
|
|
break;
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule_timeout(msecs_to_jiffies(100));
|
|
}
|
|
|
|
if (dev_state != FIT_SR_DRIVE_INIT)
|
|
pr_err("(%s): skd_stop_device state error 0x%02x\n",
|
|
skd_name(skdev), dev_state);
|
|
}
|
|
|
|
/* assume spinlock is held */
|
|
static void skd_restart_device(struct skd_device *skdev)
|
|
{
|
|
u32 state;
|
|
|
|
/* ack all ghost interrupts */
|
|
SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
|
|
|
|
state = SKD_READL(skdev, FIT_STATUS);
|
|
|
|
DPRINTK(skdev, "drive status=0x%x\n", state);
|
|
|
|
state &= FIT_SR_DRIVE_STATE_MASK;
|
|
skdev->drive_state = state;
|
|
skdev->last_mtd = 0;
|
|
|
|
skdev->state = SKD_DRVR_STATE_RESTARTING;
|
|
skdev->timer_countdown = SKD_RESTARTING_TIMO;
|
|
|
|
skd_soft_reset(skdev);
|
|
}
|
|
|
|
/* assume spinlock is held */
|
|
static int skd_quiesce_dev(struct skd_device *skdev)
|
|
{
|
|
int rc = 0;
|
|
|
|
switch (skdev->state) {
|
|
case SKD_DRVR_STATE_BUSY:
|
|
case SKD_DRVR_STATE_BUSY_IMMINENT:
|
|
VPRINTK(skdev, "stopping %s queue\n", skdev->name);
|
|
skd_stop_queue(skdev);
|
|
break;
|
|
case SKD_DRVR_STATE_ONLINE:
|
|
case SKD_DRVR_STATE_STOPPING:
|
|
case SKD_DRVR_STATE_SYNCING:
|
|
case SKD_DRVR_STATE_PAUSING:
|
|
case SKD_DRVR_STATE_PAUSED:
|
|
case SKD_DRVR_STATE_STARTING:
|
|
case SKD_DRVR_STATE_RESTARTING:
|
|
case SKD_DRVR_STATE_RESUMING:
|
|
default:
|
|
rc = -EINVAL;
|
|
VPRINTK(skdev, "state [%d] not implemented\n", skdev->state);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* assume spinlock is held */
|
|
static int skd_unquiesce_dev(struct skd_device *skdev)
|
|
{
|
|
int prev_driver_state = skdev->state;
|
|
|
|
skd_log_skdev(skdev, "unquiesce");
|
|
if (skdev->state == SKD_DRVR_STATE_ONLINE) {
|
|
DPRINTK(skdev, "**** device already ONLINE\n");
|
|
return 0;
|
|
}
|
|
if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
|
|
/*
|
|
* If there has been an state change to other than
|
|
* ONLINE, we will rely on controller state change
|
|
* to come back online and restart the queue.
|
|
* The BUSY state means that driver is ready to
|
|
* continue normal processing but waiting for controller
|
|
* to become available.
|
|
*/
|
|
skdev->state = SKD_DRVR_STATE_BUSY;
|
|
DPRINTK(skdev, "drive BUSY state\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Drive has just come online, driver is either in startup,
|
|
* paused performing a task, or bust waiting for hardware.
|
|
*/
|
|
switch (skdev->state) {
|
|
case SKD_DRVR_STATE_PAUSED:
|
|
case SKD_DRVR_STATE_BUSY:
|
|
case SKD_DRVR_STATE_BUSY_IMMINENT:
|
|
case SKD_DRVR_STATE_BUSY_ERASE:
|
|
case SKD_DRVR_STATE_STARTING:
|
|
case SKD_DRVR_STATE_RESTARTING:
|
|
case SKD_DRVR_STATE_FAULT:
|
|
case SKD_DRVR_STATE_IDLE:
|
|
case SKD_DRVR_STATE_LOAD:
|
|
skdev->state = SKD_DRVR_STATE_ONLINE;
|
|
pr_err("(%s): Driver state %s(%d)=>%s(%d)\n",
|
|
skd_name(skdev),
|
|
skd_skdev_state_to_str(prev_driver_state),
|
|
prev_driver_state, skd_skdev_state_to_str(skdev->state),
|
|
skdev->state);
|
|
DPRINTK(skdev, "**** device ONLINE...starting block queue\n");
|
|
VPRINTK(skdev, "starting %s queue\n", skdev->name);
|
|
pr_info("(%s): STEC s1120 ONLINE\n", skd_name(skdev));
|
|
skd_start_queue(skdev);
|
|
skdev->gendisk_on = 1;
|
|
wake_up_interruptible(&skdev->waitq);
|
|
break;
|
|
|
|
case SKD_DRVR_STATE_DISAPPEARED:
|
|
default:
|
|
DPRINTK(skdev, "**** driver state %d, not implemented \n",
|
|
skdev->state);
|
|
return -EBUSY;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
*****************************************************************************
|
|
* PCIe MSI/MSI-X INTERRUPT HANDLERS
|
|
*****************************************************************************
|
|
*/
|
|
|
|
static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
|
|
{
|
|
struct skd_device *skdev = skd_host_data;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&skdev->lock, flags);
|
|
VPRINTK(skdev, "MSIX = 0x%x\n", SKD_READL(skdev, FIT_INT_STATUS_HOST));
|
|
pr_err("(%s): MSIX reserved irq %d = 0x%x\n", skd_name(skdev),
|
|
irq, SKD_READL(skdev, FIT_INT_STATUS_HOST));
|
|
SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
|
|
spin_unlock_irqrestore(&skdev->lock, flags);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
|
|
{
|
|
struct skd_device *skdev = skd_host_data;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&skdev->lock, flags);
|
|
VPRINTK(skdev, "MSIX = 0x%x\n", SKD_READL(skdev, FIT_INT_STATUS_HOST));
|
|
SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
|
|
skd_isr_fwstate(skdev);
|
|
spin_unlock_irqrestore(&skdev->lock, flags);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
|
|
{
|
|
struct skd_device *skdev = skd_host_data;
|
|
unsigned long flags;
|
|
int flush_enqueued = 0;
|
|
int deferred;
|
|
|
|
spin_lock_irqsave(&skdev->lock, flags);
|
|
VPRINTK(skdev, "MSIX = 0x%x\n", SKD_READL(skdev, FIT_INT_STATUS_HOST));
|
|
SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
|
|
deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
|
|
&flush_enqueued);
|
|
|
|
if (flush_enqueued)
|
|
skd_request_fn(skdev->queue);
|
|
|
|
if (deferred)
|
|
schedule_work(&skdev->completion_worker);
|
|
else if (!flush_enqueued)
|
|
skd_request_fn(skdev->queue);
|
|
|
|
spin_unlock_irqrestore(&skdev->lock, flags);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
|
|
{
|
|
struct skd_device *skdev = skd_host_data;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&skdev->lock, flags);
|
|
VPRINTK(skdev, "MSIX = 0x%x\n", SKD_READL(skdev, FIT_INT_STATUS_HOST));
|
|
SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
|
|
skd_isr_msg_from_dev(skdev);
|
|
spin_unlock_irqrestore(&skdev->lock, flags);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
|
|
{
|
|
struct skd_device *skdev = skd_host_data;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&skdev->lock, flags);
|
|
VPRINTK(skdev, "MSIX = 0x%x\n", SKD_READL(skdev, FIT_INT_STATUS_HOST));
|
|
SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
|
|
spin_unlock_irqrestore(&skdev->lock, flags);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
*****************************************************************************
|
|
* PCIe MSI/MSI-X SETUP
|
|
*****************************************************************************
|
|
*/
|
|
|
|
struct skd_msix_entry {
|
|
int have_irq;
|
|
u32 vector;
|
|
u32 entry;
|
|
struct skd_device *rsp;
|
|
char isr_name[30];
|
|
};
|
|
|
|
struct skd_init_msix_entry {
|
|
const char *name;
|
|
irq_handler_t handler;
|
|
};
|
|
|
|
#define SKD_MAX_MSIX_COUNT 13
|
|
#define SKD_MIN_MSIX_COUNT 7
|
|
#define SKD_BASE_MSIX_IRQ 4
|
|
|
|
static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
|
|
{ "(DMA 0)", skd_reserved_isr },
|
|
{ "(DMA 1)", skd_reserved_isr },
|
|
{ "(DMA 2)", skd_reserved_isr },
|
|
{ "(DMA 3)", skd_reserved_isr },
|
|
{ "(State Change)", skd_statec_isr },
|
|
{ "(COMPL_Q)", skd_comp_q },
|
|
{ "(MSG)", skd_msg_isr },
|
|
{ "(Reserved)", skd_reserved_isr },
|
|
{ "(Reserved)", skd_reserved_isr },
|
|
{ "(Queue Full 0)", skd_qfull_isr },
|
|
{ "(Queue Full 1)", skd_qfull_isr },
|
|
{ "(Queue Full 2)", skd_qfull_isr },
|
|
{ "(Queue Full 3)", skd_qfull_isr },
|
|
};
|
|
|
|
static void skd_release_msix(struct skd_device *skdev)
|
|
{
|
|
struct skd_msix_entry *qentry;
|
|
int i;
|
|
|
|
if (skdev->msix_entries == NULL)
|
|
return;
|
|
for (i = 0; i < skdev->msix_count; i++) {
|
|
qentry = &skdev->msix_entries[i];
|
|
skdev = qentry->rsp;
|
|
|
|
if (qentry->have_irq)
|
|
devm_free_irq(&skdev->pdev->dev,
|
|
qentry->vector, qentry->rsp);
|
|
}
|
|
pci_disable_msix(skdev->pdev);
|
|
kfree(skdev->msix_entries);
|
|
skdev->msix_count = 0;
|
|
skdev->msix_entries = NULL;
|
|
}
|
|
|
|
static int skd_acquire_msix(struct skd_device *skdev)
|
|
{
|
|
int i, rc;
|
|
struct pci_dev *pdev;
|
|
struct msix_entry *entries = NULL;
|
|
struct skd_msix_entry *qentry;
|
|
|
|
pdev = skdev->pdev;
|
|
skdev->msix_count = SKD_MAX_MSIX_COUNT;
|
|
entries = kzalloc(sizeof(struct msix_entry) * SKD_MAX_MSIX_COUNT,
|
|
GFP_KERNEL);
|
|
if (!entries)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < SKD_MAX_MSIX_COUNT; i++)
|
|
entries[i].entry = i;
|
|
|
|
rc = pci_enable_msix(pdev, entries, SKD_MAX_MSIX_COUNT);
|
|
if (rc < 0)
|
|
goto msix_out;
|
|
if (rc) {
|
|
if (rc < SKD_MIN_MSIX_COUNT) {
|
|
pr_err("(%s): failed to enable MSI-X %d\n",
|
|
skd_name(skdev), rc);
|
|
goto msix_out;
|
|
}
|
|
DPRINTK(skdev, "%s: <%s> allocated %d MSI-X vectors\n",
|
|
pci_name(pdev), skdev->name, rc);
|
|
|
|
skdev->msix_count = rc;
|
|
rc = pci_enable_msix(pdev, entries, skdev->msix_count);
|
|
if (rc) {
|
|
pr_err("(%s): failed to enable MSI-X "
|
|
"support (%d) %d\n",
|
|
skd_name(skdev), skdev->msix_count, rc);
|
|
goto msix_out;
|
|
}
|
|
}
|
|
skdev->msix_entries = kzalloc(sizeof(struct skd_msix_entry) *
|
|
skdev->msix_count, GFP_KERNEL);
|
|
if (!skdev->msix_entries) {
|
|
rc = -ENOMEM;
|
|
skdev->msix_count = 0;
|
|
pr_err("(%s): msix table allocation error\n",
|
|
skd_name(skdev));
|
|
goto msix_out;
|
|
}
|
|
|
|
qentry = skdev->msix_entries;
|
|
for (i = 0; i < skdev->msix_count; i++) {
|
|
qentry->vector = entries[i].vector;
|
|
qentry->entry = entries[i].entry;
|
|
qentry->rsp = NULL;
|
|
qentry->have_irq = 0;
|
|
DPRINTK(skdev, "%s: <%s> msix (%d) vec %d, entry %x\n",
|
|
pci_name(pdev), skdev->name,
|
|
i, qentry->vector, qentry->entry);
|
|
qentry++;
|
|
}
|
|
|
|
/* Enable MSI-X vectors for the base queue */
|
|
for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
|
|
qentry = &skdev->msix_entries[i];
|
|
snprintf(qentry->isr_name, sizeof(qentry->isr_name),
|
|
"%s%d-msix %s", DRV_NAME, skdev->devno,
|
|
msix_entries[i].name);
|
|
rc = devm_request_irq(&skdev->pdev->dev, qentry->vector,
|
|
msix_entries[i].handler, 0,
|
|
qentry->isr_name, skdev);
|
|
if (rc) {
|
|
pr_err("(%s): Unable to register(%d) MSI-X "
|
|
"handler %d: %s\n",
|
|
skd_name(skdev), rc, i, qentry->isr_name);
|
|
goto msix_out;
|
|
} else {
|
|
qentry->have_irq = 1;
|
|
qentry->rsp = skdev;
|
|
}
|
|
}
|
|
DPRINTK(skdev, "%s: <%s> msix %d irq(s) enabled\n",
|
|
pci_name(pdev), skdev->name, skdev->msix_count);
|
|
return 0;
|
|
|
|
msix_out:
|
|
if (entries)
|
|
kfree(entries);
|
|
skd_release_msix(skdev);
|
|
return rc;
|
|
}
|
|
|
|
static int skd_acquire_irq(struct skd_device *skdev)
|
|
{
|
|
int rc;
|
|
struct pci_dev *pdev;
|
|
|
|
pdev = skdev->pdev;
|
|
skdev->msix_count = 0;
|
|
|
|
RETRY_IRQ_TYPE:
|
|
switch (skdev->irq_type) {
|
|
case SKD_IRQ_MSIX:
|
|
rc = skd_acquire_msix(skdev);
|
|
if (!rc)
|
|
pr_info("(%s): MSI-X %d irqs enabled\n",
|
|
skd_name(skdev), skdev->msix_count);
|
|
else {
|
|
pr_err(
|
|
"(%s): failed to enable MSI-X, re-trying with MSI %d\n",
|
|
skd_name(skdev), rc);
|
|
skdev->irq_type = SKD_IRQ_MSI;
|
|
goto RETRY_IRQ_TYPE;
|
|
}
|
|
break;
|
|
case SKD_IRQ_MSI:
|
|
snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d-msi",
|
|
DRV_NAME, skdev->devno);
|
|
rc = pci_enable_msi(pdev);
|
|
if (!rc) {
|
|
rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr, 0,
|
|
skdev->isr_name, skdev);
|
|
if (rc) {
|
|
pci_disable_msi(pdev);
|
|
pr_err(
|
|
"(%s): failed to allocate the MSI interrupt %d\n",
|
|
skd_name(skdev), rc);
|
|
goto RETRY_IRQ_LEGACY;
|
|
}
|
|
pr_info("(%s): MSI irq %d enabled\n",
|
|
skd_name(skdev), pdev->irq);
|
|
} else {
|
|
RETRY_IRQ_LEGACY:
|
|
pr_err(
|
|
"(%s): failed to enable MSI, re-trying with LEGACY %d\n",
|
|
skd_name(skdev), rc);
|
|
skdev->irq_type = SKD_IRQ_LEGACY;
|
|
goto RETRY_IRQ_TYPE;
|
|
}
|
|
break;
|
|
case SKD_IRQ_LEGACY:
|
|
snprintf(skdev->isr_name, sizeof(skdev->isr_name),
|
|
"%s%d-legacy", DRV_NAME, skdev->devno);
|
|
rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
|
|
IRQF_SHARED, skdev->isr_name, skdev);
|
|
if (!rc)
|
|
pr_info("(%s): LEGACY irq %d enabled\n",
|
|
skd_name(skdev), pdev->irq);
|
|
else
|
|
pr_err("(%s): request LEGACY irq error %d\n",
|
|
skd_name(skdev), rc);
|
|
break;
|
|
default:
|
|
pr_info("(%s): irq_type %d invalid, re-set to %d\n",
|
|
skd_name(skdev), skdev->irq_type, SKD_IRQ_DEFAULT);
|
|
skdev->irq_type = SKD_IRQ_LEGACY;
|
|
goto RETRY_IRQ_TYPE;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static void skd_release_irq(struct skd_device *skdev)
|
|
{
|
|
switch (skdev->irq_type) {
|
|
case SKD_IRQ_MSIX:
|
|
skd_release_msix(skdev);
|
|
break;
|
|
case SKD_IRQ_MSI:
|
|
devm_free_irq(&skdev->pdev->dev, skdev->pdev->irq, skdev);
|
|
pci_disable_msi(skdev->pdev);
|
|
break;
|
|
case SKD_IRQ_LEGACY:
|
|
devm_free_irq(&skdev->pdev->dev, skdev->pdev->irq, skdev);
|
|
break;
|
|
default:
|
|
pr_err("(%s): wrong irq type %d!",
|
|
skd_name(skdev), skdev->irq_type);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
*****************************************************************************
|
|
* CONSTRUCT
|
|
*****************************************************************************
|
|
*/
|
|
|
|
static int skd_cons_skcomp(struct skd_device *skdev);
|
|
static int skd_cons_skmsg(struct skd_device *skdev);
|
|
static int skd_cons_skreq(struct skd_device *skdev);
|
|
static int skd_cons_skspcl(struct skd_device *skdev);
|
|
static int skd_cons_sksb(struct skd_device *skdev);
|
|
static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
|
|
u32 n_sg,
|
|
dma_addr_t *ret_dma_addr);
|
|
static int skd_cons_disk(struct skd_device *skdev);
|
|
|
|
#define SKD_N_DEV_TABLE 16u
|
|
static u32 skd_next_devno;
|
|
|
|
static struct skd_device *skd_construct(struct pci_dev *pdev)
|
|
{
|
|
struct skd_device *skdev;
|
|
int blk_major = skd_major;
|
|
int rc;
|
|
|
|
skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
|
|
|
|
if (!skdev) {
|
|
pr_err(PFX "(%s): memory alloc failure\n",
|
|
pci_name(pdev));
|
|
return NULL;
|
|
}
|
|
|
|
skdev->state = SKD_DRVR_STATE_LOAD;
|
|
skdev->pdev = pdev;
|
|
skdev->devno = skd_next_devno++;
|
|
skdev->major = blk_major;
|
|
skdev->irq_type = skd_isr_type;
|
|
sprintf(skdev->name, DRV_NAME "%d", skdev->devno);
|
|
skdev->dev_max_queue_depth = 0;
|
|
|
|
skdev->num_req_context = skd_max_queue_depth;
|
|
skdev->num_fitmsg_context = skd_max_queue_depth;
|
|
skdev->n_special = skd_max_pass_thru;
|
|
skdev->cur_max_queue_depth = 1;
|
|
skdev->queue_low_water_mark = 1;
|
|
skdev->proto_ver = 99;
|
|
skdev->sgs_per_request = skd_sgs_per_request;
|
|
skdev->dbg_level = skd_dbg_level;
|
|
|
|
if (skd_bio)
|
|
bio_list_init(&skdev->bio_queue);
|
|
|
|
|
|
atomic_set(&skdev->device_count, 0);
|
|
|
|
spin_lock_init(&skdev->lock);
|
|
|
|
INIT_WORK(&skdev->completion_worker, skd_completion_worker);
|
|
INIT_LIST_HEAD(&skdev->flush_list);
|
|
|
|
VPRINTK(skdev, "skcomp\n");
|
|
rc = skd_cons_skcomp(skdev);
|
|
if (rc < 0)
|
|
goto err_out;
|
|
|
|
VPRINTK(skdev, "skmsg\n");
|
|
rc = skd_cons_skmsg(skdev);
|
|
if (rc < 0)
|
|
goto err_out;
|
|
|
|
VPRINTK(skdev, "skreq\n");
|
|
rc = skd_cons_skreq(skdev);
|
|
if (rc < 0)
|
|
goto err_out;
|
|
|
|
VPRINTK(skdev, "skspcl\n");
|
|
rc = skd_cons_skspcl(skdev);
|
|
if (rc < 0)
|
|
goto err_out;
|
|
|
|
VPRINTK(skdev, "sksb\n");
|
|
rc = skd_cons_sksb(skdev);
|
|
if (rc < 0)
|
|
goto err_out;
|
|
|
|
VPRINTK(skdev, "disk\n");
|
|
rc = skd_cons_disk(skdev);
|
|
if (rc < 0)
|
|
goto err_out;
|
|
|
|
|
|
|
|
DPRINTK(skdev, "VICTORY\n");
|
|
return skdev;
|
|
|
|
err_out:
|
|
DPRINTK(skdev, "construct failed\n");
|
|
skd_destruct(skdev);
|
|
return NULL;
|
|
}
|
|
|
|
static int skd_cons_skcomp(struct skd_device *skdev)
|
|
{
|
|
int rc = 0;
|
|
struct fit_completion_entry_v1 *skcomp;
|
|
u32 nbytes;
|
|
|
|
nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY;
|
|
nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
|
|
|
|
VPRINTK(skdev, "comp pci_alloc, total bytes %d entries %d\n", nbytes,
|
|
SKD_N_COMPLETION_ENTRY);
|
|
|
|
skcomp = pci_alloc_consistent(skdev->pdev, nbytes,
|
|
&skdev->cq_dma_address);
|
|
|
|
if (skcomp == NULL) {
|
|
rc = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
memset(skcomp, 0, nbytes);
|
|
|
|
skdev->skcomp_table = skcomp;
|
|
skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
|
|
sizeof(*skcomp) *
|
|
SKD_N_COMPLETION_ENTRY);
|
|
|
|
err_out:
|
|
return rc;
|
|
}
|
|
|
|
static int skd_cons_skmsg(struct skd_device *skdev)
|
|
{
|
|
int rc = 0;
|
|
u32 i;
|
|
|
|
VPRINTK(skdev, "skmsg_table kzalloc, struct %lu, count %u total %lu\n",
|
|
sizeof(struct skd_fitmsg_context),
|
|
skdev->num_fitmsg_context,
|
|
sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
|
|
|
|
skdev->skmsg_table = kzalloc(sizeof(struct skd_fitmsg_context)
|
|
*skdev->num_fitmsg_context, GFP_KERNEL);
|
|
if (skdev->skmsg_table == NULL) {
|
|
rc = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
for (i = 0; i < skdev->num_fitmsg_context; i++) {
|
|
struct skd_fitmsg_context *skmsg;
|
|
|
|
skmsg = &skdev->skmsg_table[i];
|
|
|
|
skmsg->id = i + SKD_ID_FIT_MSG;
|
|
|
|
skmsg->state = SKD_MSG_STATE_IDLE;
|
|
skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
|
|
SKD_N_FITMSG_BYTES + 64,
|
|
&skmsg->mb_dma_address);
|
|
|
|
if (skmsg->msg_buf == NULL) {
|
|
rc = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
skmsg->offset = (u32)((u64)skmsg->msg_buf &
|
|
(~FIT_QCMD_BASE_ADDRESS_MASK));
|
|
skmsg->msg_buf += ~FIT_QCMD_BASE_ADDRESS_MASK;
|
|
skmsg->msg_buf = (u8 *)((u64)skmsg->msg_buf &
|
|
FIT_QCMD_BASE_ADDRESS_MASK);
|
|
skmsg->mb_dma_address += ~FIT_QCMD_BASE_ADDRESS_MASK;
|
|
skmsg->mb_dma_address &= FIT_QCMD_BASE_ADDRESS_MASK;
|
|
memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
|
|
|
|
skmsg->next = &skmsg[1];
|
|
}
|
|
|
|
/* Free list is in order starting with the 0th entry. */
|
|
skdev->skmsg_table[i - 1].next = NULL;
|
|
skdev->skmsg_free_list = skdev->skmsg_table;
|
|
|
|
err_out:
|
|
return rc;
|
|
}
|
|
|
|
static int skd_cons_skreq(struct skd_device *skdev)
|
|
{
|
|
int rc = 0;
|
|
u32 i;
|
|
|
|
VPRINTK(skdev, "skreq_table kzalloc, struct %lu, count %u total %lu\n",
|
|
sizeof(struct skd_request_context),
|
|
skdev->num_req_context,
|
|
sizeof(struct skd_request_context) * skdev->num_req_context);
|
|
|
|
skdev->skreq_table = kzalloc(sizeof(struct skd_request_context)
|
|
* skdev->num_req_context, GFP_KERNEL);
|
|
if (skdev->skreq_table == NULL) {
|
|
rc = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
VPRINTK(skdev, "alloc sg_table sg_per_req %u scatlist %lu total %lu\n",
|
|
skdev->sgs_per_request, sizeof(struct scatterlist),
|
|
skdev->sgs_per_request * sizeof(struct scatterlist));
|
|
|
|
for (i = 0; i < skdev->num_req_context; i++) {
|
|
struct skd_request_context *skreq;
|
|
|
|
skreq = &skdev->skreq_table[i];
|
|
|
|
skreq->id = i + SKD_ID_RW_REQUEST;
|
|
skreq->state = SKD_REQ_STATE_IDLE;
|
|
|
|
skreq->sg = kzalloc(sizeof(struct scatterlist) *
|
|
skdev->sgs_per_request, GFP_KERNEL);
|
|
if (skreq->sg == NULL) {
|
|
rc = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
sg_init_table(skreq->sg, skdev->sgs_per_request);
|
|
|
|
skreq->sksg_list = skd_cons_sg_list(skdev,
|
|
skdev->sgs_per_request,
|
|
&skreq->sksg_dma_address);
|
|
|
|
if (skreq->sksg_list == NULL) {
|
|
rc = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
skreq->next = &skreq[1];
|
|
}
|
|
|
|
/* Free list is in order starting with the 0th entry. */
|
|
skdev->skreq_table[i - 1].next = NULL;
|
|
skdev->skreq_free_list = skdev->skreq_table;
|
|
|
|
err_out:
|
|
return rc;
|
|
}
|
|
|
|
static int skd_cons_skspcl(struct skd_device *skdev)
|
|
{
|
|
int rc = 0;
|
|
u32 i, nbytes;
|
|
|
|
VPRINTK(skdev, "skspcl_table kzalloc, struct %lu, count %u total %lu\n",
|
|
sizeof(struct skd_special_context),
|
|
skdev->n_special,
|
|
sizeof(struct skd_special_context) * skdev->n_special);
|
|
|
|
skdev->skspcl_table = kzalloc(sizeof(struct skd_special_context)
|
|
* skdev->n_special, GFP_KERNEL);
|
|
if (skdev->skspcl_table == NULL) {
|
|
rc = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
for (i = 0; i < skdev->n_special; i++) {
|
|
struct skd_special_context *skspcl;
|
|
|
|
skspcl = &skdev->skspcl_table[i];
|
|
|
|
skspcl->req.id = i + SKD_ID_SPECIAL_REQUEST;
|
|
skspcl->req.state = SKD_REQ_STATE_IDLE;
|
|
|
|
skspcl->req.next = &skspcl[1].req;
|
|
|
|
nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
|
|
|
|
skspcl->msg_buf = pci_alloc_consistent(skdev->pdev, nbytes,
|
|
&skspcl->mb_dma_address);
|
|
if (skspcl->msg_buf == NULL) {
|
|
rc = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
memset(skspcl->msg_buf, 0, nbytes);
|
|
|
|
skspcl->req.sg = kzalloc(sizeof(struct scatterlist) *
|
|
SKD_N_SG_PER_SPECIAL, GFP_KERNEL);
|
|
if (skspcl->req.sg == NULL) {
|
|
rc = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
skspcl->req.sksg_list = skd_cons_sg_list(skdev,
|
|
SKD_N_SG_PER_SPECIAL,
|
|
&skspcl->req.
|
|
sksg_dma_address);
|
|
if (skspcl->req.sksg_list == NULL) {
|
|
rc = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
}
|
|
|
|
/* Free list is in order starting with the 0th entry. */
|
|
skdev->skspcl_table[i - 1].req.next = NULL;
|
|
skdev->skspcl_free_list = skdev->skspcl_table;
|
|
|
|
return rc;
|
|
|
|
err_out:
|
|
return rc;
|
|
}
|
|
|
|
static int skd_cons_sksb(struct skd_device *skdev)
|
|
{
|
|
int rc = 0;
|
|
struct skd_special_context *skspcl;
|
|
u32 nbytes;
|
|
|
|
skspcl = &skdev->internal_skspcl;
|
|
|
|
skspcl->req.id = 0 + SKD_ID_INTERNAL;
|
|
skspcl->req.state = SKD_REQ_STATE_IDLE;
|
|
|
|
nbytes = SKD_N_INTERNAL_BYTES;
|
|
|
|
skspcl->data_buf = pci_alloc_consistent(skdev->pdev, nbytes,
|
|
&skspcl->db_dma_address);
|
|
if (skspcl->data_buf == NULL) {
|
|
rc = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
memset(skspcl->data_buf, 0, nbytes);
|
|
|
|
nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
|
|
skspcl->msg_buf = pci_alloc_consistent(skdev->pdev, nbytes,
|
|
&skspcl->mb_dma_address);
|
|
if (skspcl->msg_buf == NULL) {
|
|
rc = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
memset(skspcl->msg_buf, 0, nbytes);
|
|
|
|
skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
|
|
&skspcl->req.sksg_dma_address);
|
|
if (skspcl->req.sksg_list == NULL) {
|
|
rc = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
if (!skd_format_internal_skspcl(skdev)) {
|
|
rc = -EINVAL;
|
|
goto err_out;
|
|
}
|
|
|
|
err_out:
|
|
return rc;
|
|
}
|
|
|
|
static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
|
|
u32 n_sg,
|
|
dma_addr_t *ret_dma_addr)
|
|
{
|
|
struct fit_sg_descriptor *sg_list;
|
|
u32 nbytes;
|
|
|
|
nbytes = sizeof(*sg_list) * n_sg;
|
|
|
|
sg_list = pci_alloc_consistent(skdev->pdev, nbytes, ret_dma_addr);
|
|
|
|
if (sg_list != NULL) {
|
|
uint64_t dma_address = *ret_dma_addr;
|
|
u32 i;
|
|
|
|
memset(sg_list, 0, nbytes);
|
|
|
|
for (i = 0; i < n_sg - 1; i++) {
|
|
uint64_t ndp_off;
|
|
ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
|
|
|
|
sg_list[i].next_desc_ptr = dma_address + ndp_off;
|
|
}
|
|
sg_list[i].next_desc_ptr = 0LL;
|
|
}
|
|
|
|
return sg_list;
|
|
}
|
|
|
|
static int skd_cons_disk(struct skd_device *skdev)
|
|
{
|
|
int rc = 0;
|
|
struct gendisk *disk;
|
|
struct request_queue *q;
|
|
unsigned long flags;
|
|
|
|
disk = alloc_disk(SKD_MINORS_PER_DEVICE);
|
|
if (!disk) {
|
|
rc = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
skdev->disk = disk;
|
|
sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
|
|
|
|
disk->major = skdev->major;
|
|
disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
|
|
disk->fops = &skd_blockdev_ops;
|
|
disk->private_data = skdev;
|
|
|
|
if (!skd_bio) {
|
|
q = blk_init_queue(skd_request_fn, &skdev->lock);
|
|
} else {
|
|
q = blk_alloc_queue(GFP_KERNEL);
|
|
q->queue_flags = QUEUE_FLAG_IO_STAT | QUEUE_FLAG_STACKABLE;
|
|
}
|
|
|
|
if (!q) {
|
|
rc = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
skdev->queue = q;
|
|
disk->queue = q;
|
|
q->queuedata = skdev;
|
|
|
|
if (skd_bio) {
|
|
q->queue_lock = &skdev->lock;
|
|
blk_queue_make_request(q, skd_make_request);
|
|
}
|
|
|
|
blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
|
|
blk_queue_max_segments(q, skdev->sgs_per_request);
|
|
blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
|
|
|
|
/* set sysfs ptimal_io_size to 8K */
|
|
blk_queue_io_opt(q, 8192);
|
|
|
|
/* DISCARD Flag initialization. */
|
|
q->limits.discard_granularity = 8192;
|
|
q->limits.discard_alignment = 0;
|
|
q->limits.max_discard_sectors = UINT_MAX >> 9;
|
|
q->limits.discard_zeroes_data = 1;
|
|
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
|
|
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
|
|
|
|
spin_lock_irqsave(&skdev->lock, flags);
|
|
VPRINTK(skdev, "stopping %s queue\n", skdev->name);
|
|
skd_stop_queue(skdev);
|
|
spin_unlock_irqrestore(&skdev->lock, flags);
|
|
|
|
err_out:
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
*****************************************************************************
|
|
* DESTRUCT (FREE)
|
|
*****************************************************************************
|
|
*/
|
|
|
|
static void skd_free_skcomp(struct skd_device *skdev);
|
|
static void skd_free_skmsg(struct skd_device *skdev);
|
|
static void skd_free_skreq(struct skd_device *skdev);
|
|
static void skd_free_skspcl(struct skd_device *skdev);
|
|
static void skd_free_sksb(struct skd_device *skdev);
|
|
static void skd_free_sg_list(struct skd_device *skdev,
|
|
struct fit_sg_descriptor *sg_list,
|
|
u32 n_sg, dma_addr_t dma_addr);
|
|
static void skd_free_disk(struct skd_device *skdev);
|
|
|
|
static void skd_destruct(struct skd_device *skdev)
|
|
{
|
|
if (skdev == NULL)
|
|
return;
|
|
|
|
|
|
VPRINTK(skdev, "disk\n");
|
|
skd_free_disk(skdev);
|
|
|
|
VPRINTK(skdev, "sksb\n");
|
|
skd_free_sksb(skdev);
|
|
|
|
VPRINTK(skdev, "skspcl\n");
|
|
skd_free_skspcl(skdev);
|
|
|
|
VPRINTK(skdev, "skreq\n");
|
|
skd_free_skreq(skdev);
|
|
|
|
VPRINTK(skdev, "skmsg\n");
|
|
skd_free_skmsg(skdev);
|
|
|
|
VPRINTK(skdev, "skcomp\n");
|
|
skd_free_skcomp(skdev);
|
|
|
|
VPRINTK(skdev, "skdev\n");
|
|
kfree(skdev);
|
|
}
|
|
|
|
static void skd_free_skcomp(struct skd_device *skdev)
|
|
{
|
|
if (skdev->skcomp_table != NULL) {
|
|
u32 nbytes;
|
|
|
|
nbytes = sizeof(skdev->skcomp_table[0]) *
|
|
SKD_N_COMPLETION_ENTRY;
|
|
pci_free_consistent(skdev->pdev, nbytes,
|
|
skdev->skcomp_table, skdev->cq_dma_address);
|
|
}
|
|
|
|
skdev->skcomp_table = NULL;
|
|
skdev->cq_dma_address = 0;
|
|
}
|
|
|
|
static void skd_free_skmsg(struct skd_device *skdev)
|
|
{
|
|
u32 i;
|
|
|
|
if (skdev->skmsg_table == NULL)
|
|
return;
|
|
|
|
for (i = 0; i < skdev->num_fitmsg_context; i++) {
|
|
struct skd_fitmsg_context *skmsg;
|
|
|
|
skmsg = &skdev->skmsg_table[i];
|
|
|
|
if (skmsg->msg_buf != NULL) {
|
|
skmsg->msg_buf += skmsg->offset;
|
|
skmsg->mb_dma_address += skmsg->offset;
|
|
pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
|
|
skmsg->msg_buf,
|
|
skmsg->mb_dma_address);
|
|
}
|
|
skmsg->msg_buf = NULL;
|
|
skmsg->mb_dma_address = 0;
|
|
}
|
|
|
|
kfree(skdev->skmsg_table);
|
|
skdev->skmsg_table = NULL;
|
|
}
|
|
|
|
static void skd_free_skreq(struct skd_device *skdev)
|
|
{
|
|
u32 i;
|
|
|
|
if (skdev->skreq_table == NULL)
|
|
return;
|
|
|
|
for (i = 0; i < skdev->num_req_context; i++) {
|
|
struct skd_request_context *skreq;
|
|
|
|
skreq = &skdev->skreq_table[i];
|
|
|
|
skd_free_sg_list(skdev, skreq->sksg_list,
|
|
skdev->sgs_per_request,
|
|
skreq->sksg_dma_address);
|
|
|
|
skreq->sksg_list = NULL;
|
|
skreq->sksg_dma_address = 0;
|
|
|
|
kfree(skreq->sg);
|
|
}
|
|
|
|
kfree(skdev->skreq_table);
|
|
skdev->skreq_table = NULL;
|
|
}
|
|
|
|
static void skd_free_skspcl(struct skd_device *skdev)
|
|
{
|
|
u32 i;
|
|
u32 nbytes;
|
|
|
|
if (skdev->skspcl_table == NULL)
|
|
return;
|
|
|
|
for (i = 0; i < skdev->n_special; i++) {
|
|
struct skd_special_context *skspcl;
|
|
|
|
skspcl = &skdev->skspcl_table[i];
|
|
|
|
if (skspcl->msg_buf != NULL) {
|
|
nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
|
|
pci_free_consistent(skdev->pdev, nbytes,
|
|
skspcl->msg_buf,
|
|
skspcl->mb_dma_address);
|
|
}
|
|
|
|
skspcl->msg_buf = NULL;
|
|
skspcl->mb_dma_address = 0;
|
|
|
|
skd_free_sg_list(skdev, skspcl->req.sksg_list,
|
|
SKD_N_SG_PER_SPECIAL,
|
|
skspcl->req.sksg_dma_address);
|
|
|
|
skspcl->req.sksg_list = NULL;
|
|
skspcl->req.sksg_dma_address = 0;
|
|
|
|
kfree(skspcl->req.sg);
|
|
}
|
|
|
|
kfree(skdev->skspcl_table);
|
|
skdev->skspcl_table = NULL;
|
|
}
|
|
|
|
static void skd_free_sksb(struct skd_device *skdev)
|
|
{
|
|
struct skd_special_context *skspcl;
|
|
u32 nbytes;
|
|
|
|
skspcl = &skdev->internal_skspcl;
|
|
|
|
if (skspcl->data_buf != NULL) {
|
|
nbytes = SKD_N_INTERNAL_BYTES;
|
|
|
|
pci_free_consistent(skdev->pdev, nbytes,
|
|
skspcl->data_buf, skspcl->db_dma_address);
|
|
}
|
|
|
|
skspcl->data_buf = NULL;
|
|
skspcl->db_dma_address = 0;
|
|
|
|
if (skspcl->msg_buf != NULL) {
|
|
nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
|
|
pci_free_consistent(skdev->pdev, nbytes,
|
|
skspcl->msg_buf, skspcl->mb_dma_address);
|
|
}
|
|
|
|
skspcl->msg_buf = NULL;
|
|
skspcl->mb_dma_address = 0;
|
|
|
|
skd_free_sg_list(skdev, skspcl->req.sksg_list, 1,
|
|
skspcl->req.sksg_dma_address);
|
|
|
|
skspcl->req.sksg_list = NULL;
|
|
skspcl->req.sksg_dma_address = 0;
|
|
}
|
|
|
|
static void skd_free_sg_list(struct skd_device *skdev,
|
|
struct fit_sg_descriptor *sg_list,
|
|
u32 n_sg, dma_addr_t dma_addr)
|
|
{
|
|
if (sg_list != NULL) {
|
|
u32 nbytes;
|
|
|
|
nbytes = sizeof(*sg_list) * n_sg;
|
|
|
|
pci_free_consistent(skdev->pdev, nbytes, sg_list, dma_addr);
|
|
}
|
|
}
|
|
|
|
static void skd_free_disk(struct skd_device *skdev)
|
|
{
|
|
struct gendisk *disk = skdev->disk;
|
|
|
|
if (disk != NULL) {
|
|
struct request_queue *q = disk->queue;
|
|
|
|
if (disk->flags & GENHD_FL_UP)
|
|
del_gendisk(disk);
|
|
if (q)
|
|
blk_cleanup_queue(q);
|
|
put_disk(disk);
|
|
}
|
|
skdev->disk = NULL;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
*****************************************************************************
|
|
* BLOCK DEVICE (BDEV) GLUE
|
|
*****************************************************************************
|
|
*/
|
|
|
|
static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
|
|
{
|
|
struct skd_device *skdev;
|
|
u64 capacity;
|
|
|
|
skdev = bdev->bd_disk->private_data;
|
|
|
|
DPRINTK(skdev, "%s: CMD[%s] getgeo device\n",
|
|
bdev->bd_disk->disk_name, current->comm);
|
|
|
|
if (skdev->read_cap_is_valid) {
|
|
capacity = get_capacity(skdev->disk);
|
|
geo->heads = 64;
|
|
geo->sectors = 255;
|
|
geo->cylinders = (capacity) / (255 * 64);
|
|
|
|
return 0;
|
|
}
|
|
return -EIO;
|
|
}
|
|
|
|
static int skd_bdev_attach(struct skd_device *skdev)
|
|
{
|
|
DPRINTK(skdev, "add_disk\n");
|
|
add_disk(skdev->disk);
|
|
return 0;
|
|
}
|
|
|
|
static const struct block_device_operations skd_blockdev_ops = {
|
|
.owner = THIS_MODULE,
|
|
.ioctl = skd_bdev_ioctl,
|
|
.getgeo = skd_bdev_getgeo,
|
|
};
|
|
|
|
|
|
/*
|
|
*****************************************************************************
|
|
* PCIe DRIVER GLUE
|
|
*****************************************************************************
|
|
*/
|
|
|
|
static DEFINE_PCI_DEVICE_TABLE(skd_pci_tbl) = {
|
|
{ PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
|
|
{ 0 } /* terminate list */
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
|
|
|
|
static char *skd_pci_info(struct skd_device *skdev, char *str)
|
|
{
|
|
int pcie_reg;
|
|
|
|
strcpy(str, "PCIe (");
|
|
pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
|
|
|
|
if (pcie_reg) {
|
|
|
|
char lwstr[6];
|
|
uint16_t pcie_lstat, lspeed, lwidth;
|
|
|
|
pcie_reg += 0x12;
|
|
pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
|
|
lspeed = pcie_lstat & (0xF);
|
|
lwidth = (pcie_lstat & 0x3F0) >> 4;
|
|
|
|
if (lspeed == 1)
|
|
strcat(str, "2.5GT/s ");
|
|
else if (lspeed == 2)
|
|
strcat(str, "5.0GT/s ");
|
|
else
|
|
strcat(str, "<unknown> ");
|
|
snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
|
|
strcat(str, lwstr);
|
|
}
|
|
return str;
|
|
}
|
|
|
|
static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
|
|
{
|
|
int i;
|
|
int rc = 0;
|
|
char pci_str[32];
|
|
struct skd_device *skdev;
|
|
|
|
pr_info("STEC s1120 Driver(%s) version %s-b%s\n",
|
|
DRV_NAME, DRV_VERSION, DRV_BUILD_ID);
|
|
pr_info("(skd?:??:[%s]): vendor=%04X device=%04x\n",
|
|
pci_name(pdev), pdev->vendor, pdev->device);
|
|
|
|
rc = pci_enable_device(pdev);
|
|
if (rc)
|
|
return rc;
|
|
rc = pci_request_regions(pdev, DRV_NAME);
|
|
if (rc)
|
|
goto err_out;
|
|
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
|
|
if (!rc) {
|
|
if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
|
|
|
|
pr_err("(%s): consistent DMA mask error %d\n",
|
|
pci_name(pdev), rc);
|
|
}
|
|
} else {
|
|
(rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)));
|
|
if (rc) {
|
|
|
|
pr_err("(%s): DMA mask error %d\n",
|
|
pci_name(pdev), rc);
|
|
goto err_out_regions;
|
|
}
|
|
}
|
|
|
|
skdev = skd_construct(pdev);
|
|
if (skdev == NULL)
|
|
goto err_out_regions;
|
|
|
|
skd_pci_info(skdev, pci_str);
|
|
pr_info("(%s): %s 64bit\n", skd_name(skdev), pci_str);
|
|
|
|
pci_set_master(pdev);
|
|
rc = pci_enable_pcie_error_reporting(pdev);
|
|
if (rc) {
|
|
pr_err(
|
|
"(%s): bad enable of PCIe error reporting rc=%d\n",
|
|
skd_name(skdev), rc);
|
|
skdev->pcie_error_reporting_is_enabled = 0;
|
|
} else
|
|
skdev->pcie_error_reporting_is_enabled = 1;
|
|
|
|
|
|
pci_set_drvdata(pdev, skdev);
|
|
skdev->pdev = pdev;
|
|
skdev->disk->driverfs_dev = &pdev->dev;
|
|
|
|
for (i = 0; i < SKD_MAX_BARS; i++) {
|
|
skdev->mem_phys[i] = pci_resource_start(pdev, i);
|
|
skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
|
|
skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
|
|
skdev->mem_size[i]);
|
|
if (!skdev->mem_map[i]) {
|
|
pr_err("(%s): Unable to map adapter memory!\n",
|
|
skd_name(skdev));
|
|
rc = -ENODEV;
|
|
goto err_out_iounmap;
|
|
}
|
|
DPRINTK(skdev, "mem_map=%p, phyd=%016llx, size=%d\n",
|
|
skdev->mem_map[i],
|
|
(uint64_t)skdev->mem_phys[i], skdev->mem_size[i]);
|
|
}
|
|
|
|
rc = skd_acquire_irq(skdev);
|
|
if (rc) {
|
|
pr_err("(%s): interrupt resource error %d\n",
|
|
skd_name(skdev), rc);
|
|
goto err_out_iounmap;
|
|
}
|
|
|
|
rc = skd_start_timer(skdev);
|
|
if (rc)
|
|
goto err_out_timer;
|
|
|
|
init_waitqueue_head(&skdev->waitq);
|
|
|
|
skd_start_device(skdev);
|
|
|
|
rc = wait_event_interruptible_timeout(skdev->waitq,
|
|
(skdev->gendisk_on),
|
|
(SKD_START_WAIT_SECONDS * HZ));
|
|
if (skdev->gendisk_on > 0) {
|
|
/* device came on-line after reset */
|
|
skd_bdev_attach(skdev);
|
|
rc = 0;
|
|
} else {
|
|
/* we timed out, something is wrong with the device,
|
|
don't add the disk structure */
|
|
pr_err(
|
|
"(%s): error: waiting for s1120 timed out %d!\n",
|
|
skd_name(skdev), rc);
|
|
/* in case of no error; we timeout with ENXIO */
|
|
if (!rc)
|
|
rc = -ENXIO;
|
|
goto err_out_timer;
|
|
}
|
|
|
|
|
|
#ifdef SKD_VMK_POLL_HANDLER
|
|
if (skdev->irq_type == SKD_IRQ_MSIX) {
|
|
/* MSIX completion handler is being used for coredump */
|
|
vmklnx_scsi_register_poll_handler(skdev->scsi_host,
|
|
skdev->msix_entries[5].vector,
|
|
skd_comp_q, skdev);
|
|
} else {
|
|
vmklnx_scsi_register_poll_handler(skdev->scsi_host,
|
|
skdev->pdev->irq, skd_isr,
|
|
skdev);
|
|
}
|
|
#endif /* SKD_VMK_POLL_HANDLER */
|
|
|
|
return rc;
|
|
|
|
err_out_timer:
|
|
skd_stop_device(skdev);
|
|
skd_release_irq(skdev);
|
|
|
|
err_out_iounmap:
|
|
for (i = 0; i < SKD_MAX_BARS; i++)
|
|
if (skdev->mem_map[i])
|
|
iounmap(skdev->mem_map[i]);
|
|
|
|
if (skdev->pcie_error_reporting_is_enabled)
|
|
pci_disable_pcie_error_reporting(pdev);
|
|
|
|
skd_destruct(skdev);
|
|
|
|
err_out_regions:
|
|
pci_release_regions(pdev);
|
|
|
|
err_out:
|
|
pci_disable_device(pdev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
return rc;
|
|
}
|
|
|
|
static void skd_pci_remove(struct pci_dev *pdev)
|
|
{
|
|
int i;
|
|
struct skd_device *skdev;
|
|
|
|
skdev = pci_get_drvdata(pdev);
|
|
if (!skdev) {
|
|
pr_err("%s: no device data for PCI\n", pci_name(pdev));
|
|
return;
|
|
}
|
|
skd_stop_device(skdev);
|
|
skd_release_irq(skdev);
|
|
|
|
for (i = 0; i < SKD_MAX_BARS; i++)
|
|
if (skdev->mem_map[i])
|
|
iounmap((u32 *)skdev->mem_map[i]);
|
|
|
|
if (skdev->pcie_error_reporting_is_enabled)
|
|
pci_disable_pcie_error_reporting(pdev);
|
|
|
|
skd_destruct(skdev);
|
|
|
|
pci_release_regions(pdev);
|
|
pci_disable_device(pdev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
|
|
return;
|
|
}
|
|
|
|
static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
|
|
{
|
|
int i;
|
|
struct skd_device *skdev;
|
|
|
|
skdev = pci_get_drvdata(pdev);
|
|
if (!skdev) {
|
|
pr_err("%s: no device data for PCI\n", pci_name(pdev));
|
|
return -EIO;
|
|
}
|
|
|
|
skd_stop_device(skdev);
|
|
|
|
skd_release_irq(skdev);
|
|
|
|
for (i = 0; i < SKD_MAX_BARS; i++)
|
|
if (skdev->mem_map[i])
|
|
iounmap((u32 *)skdev->mem_map[i]);
|
|
|
|
if (skdev->pcie_error_reporting_is_enabled)
|
|
pci_disable_pcie_error_reporting(pdev);
|
|
|
|
pci_release_regions(pdev);
|
|
pci_save_state(pdev);
|
|
pci_disable_device(pdev);
|
|
pci_set_power_state(pdev, pci_choose_state(pdev, state));
|
|
return 0;
|
|
}
|
|
|
|
static int skd_pci_resume(struct pci_dev *pdev)
|
|
{
|
|
int i;
|
|
int rc = 0;
|
|
struct skd_device *skdev;
|
|
|
|
skdev = pci_get_drvdata(pdev);
|
|
if (!skdev) {
|
|
pr_err("%s: no device data for PCI\n", pci_name(pdev));
|
|
return -1;
|
|
}
|
|
|
|
pci_set_power_state(pdev, PCI_D0);
|
|
pci_enable_wake(pdev, PCI_D0, 0);
|
|
pci_restore_state(pdev);
|
|
|
|
rc = pci_enable_device(pdev);
|
|
if (rc)
|
|
return rc;
|
|
rc = pci_request_regions(pdev, DRV_NAME);
|
|
if (rc)
|
|
goto err_out;
|
|
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
|
|
if (!rc) {
|
|
if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
|
|
|
|
pr_err("(%s): consistent DMA mask error %d\n",
|
|
pci_name(pdev), rc);
|
|
}
|
|
} else {
|
|
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
|
|
if (rc) {
|
|
|
|
pr_err("(%s): DMA mask error %d\n",
|
|
pci_name(pdev), rc);
|
|
goto err_out_regions;
|
|
}
|
|
}
|
|
|
|
pci_set_master(pdev);
|
|
rc = pci_enable_pcie_error_reporting(pdev);
|
|
if (rc) {
|
|
pr_err("(%s): bad enable of PCIe error reporting rc=%d\n",
|
|
skdev->name, rc);
|
|
skdev->pcie_error_reporting_is_enabled = 0;
|
|
} else
|
|
skdev->pcie_error_reporting_is_enabled = 1;
|
|
|
|
for (i = 0; i < SKD_MAX_BARS; i++) {
|
|
|
|
skdev->mem_phys[i] = pci_resource_start(pdev, i);
|
|
skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
|
|
skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
|
|
skdev->mem_size[i]);
|
|
if (!skdev->mem_map[i]) {
|
|
pr_err("(%s): Unable to map adapter memory!\n",
|
|
skd_name(skdev));
|
|
rc = -ENODEV;
|
|
goto err_out_iounmap;
|
|
}
|
|
DPRINTK(skdev, "mem_map=%p, phyd=%016llx, size=%d\n",
|
|
skdev->mem_map[i],
|
|
(uint64_t)skdev->mem_phys[i], skdev->mem_size[i]);
|
|
}
|
|
rc = skd_acquire_irq(skdev);
|
|
if (rc) {
|
|
|
|
pr_err("(%s): interrupt resource error %d\n",
|
|
pci_name(pdev), rc);
|
|
goto err_out_iounmap;
|
|
}
|
|
|
|
rc = skd_start_timer(skdev);
|
|
if (rc)
|
|
goto err_out_timer;
|
|
|
|
init_waitqueue_head(&skdev->waitq);
|
|
|
|
skd_start_device(skdev);
|
|
|
|
return rc;
|
|
|
|
err_out_timer:
|
|
skd_stop_device(skdev);
|
|
skd_release_irq(skdev);
|
|
|
|
err_out_iounmap:
|
|
for (i = 0; i < SKD_MAX_BARS; i++)
|
|
if (skdev->mem_map[i])
|
|
iounmap(skdev->mem_map[i]);
|
|
|
|
if (skdev->pcie_error_reporting_is_enabled)
|
|
pci_disable_pcie_error_reporting(pdev);
|
|
|
|
err_out_regions:
|
|
pci_release_regions(pdev);
|
|
|
|
err_out:
|
|
pci_disable_device(pdev);
|
|
return rc;
|
|
}
|
|
|
|
static void skd_pci_shutdown(struct pci_dev *pdev)
|
|
{
|
|
struct skd_device *skdev;
|
|
|
|
pr_err("skd_pci_shutdown called\n");
|
|
|
|
skdev = pci_get_drvdata(pdev);
|
|
if (!skdev) {
|
|
pr_err("%s: no device data for PCI\n", pci_name(pdev));
|
|
return;
|
|
}
|
|
|
|
pr_err("%s: calling stop\n", skd_name(skdev));
|
|
skd_stop_device(skdev);
|
|
}
|
|
|
|
static struct pci_driver skd_driver = {
|
|
.name = DRV_NAME,
|
|
.id_table = skd_pci_tbl,
|
|
.probe = skd_pci_probe,
|
|
.remove = skd_pci_remove,
|
|
.suspend = skd_pci_suspend,
|
|
.resume = skd_pci_resume,
|
|
.shutdown = skd_pci_shutdown,
|
|
};
|
|
|
|
/*
|
|
*****************************************************************************
|
|
* LOGGING SUPPORT
|
|
*****************************************************************************
|
|
*/
|
|
|
|
static const char *skd_name(struct skd_device *skdev)
|
|
{
|
|
memset(skdev->id_str, 0, sizeof(skdev->id_str));
|
|
|
|
if (skdev->inquiry_is_valid)
|
|
snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:%s:[%s]",
|
|
skdev->name, skdev->inq_serial_num,
|
|
pci_name(skdev->pdev));
|
|
else
|
|
snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:??:[%s]",
|
|
skdev->name, pci_name(skdev->pdev));
|
|
|
|
return skdev->id_str;
|
|
}
|
|
|
|
const char *skd_drive_state_to_str(int state)
|
|
{
|
|
switch (state) {
|
|
case FIT_SR_DRIVE_OFFLINE:
|
|
return "OFFLINE";
|
|
case FIT_SR_DRIVE_INIT:
|
|
return "INIT";
|
|
case FIT_SR_DRIVE_ONLINE:
|
|
return "ONLINE";
|
|
case FIT_SR_DRIVE_BUSY:
|
|
return "BUSY";
|
|
case FIT_SR_DRIVE_FAULT:
|
|
return "FAULT";
|
|
case FIT_SR_DRIVE_DEGRADED:
|
|
return "DEGRADED";
|
|
case FIT_SR_PCIE_LINK_DOWN:
|
|
return "INK_DOWN";
|
|
case FIT_SR_DRIVE_SOFT_RESET:
|
|
return "SOFT_RESET";
|
|
case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
|
|
return "NEED_FW";
|
|
case FIT_SR_DRIVE_INIT_FAULT:
|
|
return "INIT_FAULT";
|
|
case FIT_SR_DRIVE_BUSY_SANITIZE:
|
|
return "BUSY_SANITIZE";
|
|
case FIT_SR_DRIVE_BUSY_ERASE:
|
|
return "BUSY_ERASE";
|
|
case FIT_SR_DRIVE_FW_BOOTING:
|
|
return "FW_BOOTING";
|
|
default:
|
|
return "???";
|
|
}
|
|
}
|
|
|
|
const char *skd_skdev_state_to_str(enum skd_drvr_state state)
|
|
{
|
|
switch (state) {
|
|
case SKD_DRVR_STATE_LOAD:
|
|
return "LOAD";
|
|
case SKD_DRVR_STATE_IDLE:
|
|
return "IDLE";
|
|
case SKD_DRVR_STATE_BUSY:
|
|
return "BUSY";
|
|
case SKD_DRVR_STATE_STARTING:
|
|
return "STARTING";
|
|
case SKD_DRVR_STATE_ONLINE:
|
|
return "ONLINE";
|
|
case SKD_DRVR_STATE_PAUSING:
|
|
return "PAUSING";
|
|
case SKD_DRVR_STATE_PAUSED:
|
|
return "PAUSED";
|
|
case SKD_DRVR_STATE_DRAINING_TIMEOUT:
|
|
return "DRAINING_TIMEOUT";
|
|
case SKD_DRVR_STATE_RESTARTING:
|
|
return "RESTARTING";
|
|
case SKD_DRVR_STATE_RESUMING:
|
|
return "RESUMING";
|
|
case SKD_DRVR_STATE_STOPPING:
|
|
return "STOPPING";
|
|
case SKD_DRVR_STATE_SYNCING:
|
|
return "SYNCING";
|
|
case SKD_DRVR_STATE_FAULT:
|
|
return "FAULT";
|
|
case SKD_DRVR_STATE_DISAPPEARED:
|
|
return "DISAPPEARED";
|
|
case SKD_DRVR_STATE_BUSY_ERASE:
|
|
return "BUSY_ERASE";
|
|
case SKD_DRVR_STATE_BUSY_SANITIZE:
|
|
return "BUSY_SANITIZE";
|
|
case SKD_DRVR_STATE_BUSY_IMMINENT:
|
|
return "BUSY_IMMINENT";
|
|
case SKD_DRVR_STATE_WAIT_BOOT:
|
|
return "WAIT_BOOT";
|
|
|
|
default:
|
|
return "???";
|
|
}
|
|
}
|
|
|
|
const char *skd_skmsg_state_to_str(enum skd_fit_msg_state state)
|
|
{
|
|
switch (state) {
|
|
case SKD_MSG_STATE_IDLE:
|
|
return "IDLE";
|
|
case SKD_MSG_STATE_BUSY:
|
|
return "BUSY";
|
|
default:
|
|
return "???";
|
|
}
|
|
}
|
|
|
|
const char *skd_skreq_state_to_str(enum skd_req_state state)
|
|
{
|
|
switch (state) {
|
|
case SKD_REQ_STATE_IDLE:
|
|
return "IDLE";
|
|
case SKD_REQ_STATE_SETUP:
|
|
return "SETUP";
|
|
case SKD_REQ_STATE_BUSY:
|
|
return "BUSY";
|
|
case SKD_REQ_STATE_COMPLETED:
|
|
return "COMPLETED";
|
|
case SKD_REQ_STATE_TIMEOUT:
|
|
return "TIMEOUT";
|
|
case SKD_REQ_STATE_ABORTED:
|
|
return "ABORTED";
|
|
default:
|
|
return "???";
|
|
}
|
|
}
|
|
|
|
static void skd_log_skdev(struct skd_device *skdev, const char *event)
|
|
{
|
|
DPRINTK(skdev, "(%s) skdev=%p event='%s'\n", skdev->name, skdev, event);
|
|
DPRINTK(skdev, " drive_state=%s(%d) driver_state=%s(%d)\n",
|
|
skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
|
|
skd_skdev_state_to_str(skdev->state), skdev->state);
|
|
DPRINTK(skdev, " busy=%d limit=%d dev=%d lowat=%d\n",
|
|
skdev->in_flight, skdev->cur_max_queue_depth,
|
|
skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
|
|
DPRINTK(skdev, " timestamp=0x%x cycle=%d cycle_ix=%d\n",
|
|
skdev->timeout_stamp, skdev->skcomp_cycle, skdev->skcomp_ix);
|
|
}
|
|
|
|
static void skd_log_skmsg(struct skd_device *skdev,
|
|
struct skd_fitmsg_context *skmsg, const char *event)
|
|
{
|
|
DPRINTK(skdev, "(%s) skmsg=%p event='%s'\n", skdev->name, skmsg, event);
|
|
DPRINTK(skdev, " state=%s(%d) id=0x%04x length=%d\n",
|
|
skd_skmsg_state_to_str(skmsg->state), skmsg->state,
|
|
skmsg->id, skmsg->length);
|
|
}
|
|
|
|
static void skd_log_skreq(struct skd_device *skdev,
|
|
struct skd_request_context *skreq, const char *event)
|
|
{
|
|
DPRINTK(skdev, "(%s) skreq=%p event='%s'\n", skdev->name, skreq, event);
|
|
DPRINTK(skdev, " state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
|
|
skd_skreq_state_to_str(skreq->state), skreq->state,
|
|
skreq->id, skreq->fitmsg_id);
|
|
DPRINTK(skdev, " timo=0x%x sg_dir=%d n_sg=%d\n",
|
|
skreq->timeout_stamp, skreq->sg_data_dir, skreq->n_sg);
|
|
|
|
if (!skd_bio) {
|
|
if (skreq->req != NULL) {
|
|
struct request *req = skreq->req;
|
|
u32 lba = (u32)blk_rq_pos(req);
|
|
u32 count = blk_rq_sectors(req);
|
|
|
|
DPRINTK(skdev,
|
|
" req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n",
|
|
req, lba, lba, count, count,
|
|
(int)rq_data_dir(req));
|
|
} else
|
|
DPRINTK(skdev, " req=NULL\n");
|
|
} else {
|
|
if (skreq->bio != NULL) {
|
|
struct bio *bio = skreq->bio;
|
|
u32 lba = (u32)bio->bi_sector;
|
|
u32 count = bio_sectors(bio);
|
|
|
|
DPRINTK(skdev,
|
|
" bio=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n",
|
|
bio, lba, lba, count, count,
|
|
(int)bio_data_dir(bio));
|
|
} else
|
|
DPRINTK(skdev, " req=NULL\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
*****************************************************************************
|
|
* MODULE GLUE
|
|
*****************************************************************************
|
|
*/
|
|
|
|
static int __init skd_init(void)
|
|
{
|
|
int rc = 0;
|
|
|
|
pr_info(PFX " v%s-b%s loaded\n", DRV_VERSION, DRV_BUILD_ID);
|
|
|
|
switch (skd_isr_type) {
|
|
case SKD_IRQ_LEGACY:
|
|
case SKD_IRQ_MSI:
|
|
case SKD_IRQ_MSIX:
|
|
break;
|
|
default:
|
|
pr_info("skd_isr_type %d invalid, re-set to %d\n",
|
|
skd_isr_type, SKD_IRQ_DEFAULT);
|
|
skd_isr_type = SKD_IRQ_DEFAULT;
|
|
}
|
|
|
|
skd_flush_slab = kmem_cache_create(SKD_FLUSH_JOB,
|
|
sizeof(struct skd_flush_cmd),
|
|
0, 0, NULL);
|
|
|
|
if (!skd_flush_slab) {
|
|
pr_err("failed to allocated flush slab.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (skd_max_queue_depth < 1
|
|
|| skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
|
|
pr_info(
|
|
"skd_max_queue_depth %d invalid, re-set to %d\n",
|
|
skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
|
|
skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
|
|
}
|
|
|
|
if (skd_max_req_per_msg < 1 || skd_max_req_per_msg > 14) {
|
|
pr_info(
|
|
"skd_max_req_per_msg %d invalid, re-set to %d\n",
|
|
skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
|
|
skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
|
|
}
|
|
|
|
if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
|
|
pr_info(
|
|
"skd_sg_per_request %d invalid, re-set to %d\n",
|
|
skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
|
|
skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
|
|
}
|
|
|
|
if (skd_dbg_level < 0 || skd_dbg_level > 2) {
|
|
pr_info("skd_dbg_level %d invalid, re-set to %d\n",
|
|
skd_dbg_level, 0);
|
|
skd_dbg_level = 0;
|
|
}
|
|
|
|
if (skd_isr_comp_limit < 0) {
|
|
pr_info("skd_isr_comp_limit %d invalid, set to %d\n",
|
|
skd_isr_comp_limit, 0);
|
|
skd_isr_comp_limit = 0;
|
|
}
|
|
|
|
if (skd_max_pass_thru < 1 || skd_max_pass_thru > 50) {
|
|
pr_info("skd_max_pass_thru %d invalid, re-set to %d\n",
|
|
skd_max_pass_thru, SKD_N_SPECIAL_CONTEXT);
|
|
skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT;
|
|
}
|
|
|
|
/* Obtain major device number. */
|
|
rc = register_blkdev(0, DRV_NAME);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
skd_major = rc;
|
|
|
|
return pci_register_driver(&skd_driver);
|
|
|
|
}
|
|
|
|
static void __exit skd_exit(void)
|
|
{
|
|
pr_info(PFX " v%s-b%s unloading\n", DRV_VERSION, DRV_BUILD_ID);
|
|
|
|
unregister_blkdev(skd_major, DRV_NAME);
|
|
pci_unregister_driver(&skd_driver);
|
|
|
|
kmem_cache_destroy(skd_flush_slab);
|
|
}
|
|
|
|
static int
|
|
skd_flush_cmd_enqueue(struct skd_device *skdev, void *cmd)
|
|
{
|
|
struct skd_flush_cmd *item;
|
|
|
|
item = kmem_cache_zalloc(skd_flush_slab, GFP_ATOMIC);
|
|
if (!item) {
|
|
pr_err("skd_flush_cmd_enqueue: Failed to allocated item.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
item->cmd = cmd;
|
|
list_add_tail(&item->flist, &skdev->flush_list);
|
|
return 0;
|
|
}
|
|
|
|
static void *
|
|
skd_flush_cmd_dequeue(struct skd_device *skdev)
|
|
{
|
|
void *cmd;
|
|
struct skd_flush_cmd *item;
|
|
|
|
item = list_entry(skdev->flush_list.next, struct skd_flush_cmd, flist);
|
|
list_del_init(&item->flist);
|
|
cmd = item->cmd;
|
|
kmem_cache_free(skd_flush_slab, item);
|
|
return cmd;
|
|
}
|
|
|
|
module_init(skd_init);
|
|
module_exit(skd_exit);
|