#pragma once #include "CoreTypes.h" #include "Memory/Memory.h" #include "Memory/Allocator.h" #include "Templates/Utility.h" #include "Templates/TypeHash.h" #include "Templates/Noncopyable.h" #include "TypeTraits/TypeTraits.h" #include "Miscellaneous/Compare.h" #include "Memory/MemoryOperator.h" #include "Miscellaneous/Iterator.h" #include "Miscellaneous/Container.h" #include "Miscellaneous/AssertionMacros.h" NAMESPACE_REDCRAFT_BEGIN NAMESPACE_MODULE_BEGIN(Redcraft) NAMESPACE_MODULE_BEGIN(Utility) template requires (!CSameAs) using TDefaultBitsetAllocator = TInlineAllocator<(40 - 3 * sizeof(size_t)) / sizeof(InBlockType)>; template Allocator = TDefaultBitsetAllocator> requires (!CSameAs) class TBitset { private: template class TIteratorImpl; public: using FBlockType = InBlockType; using FElementType = bool; using FAllocatorType = Allocator; class FReference; using FConstReference = bool; using FIterator = TIteratorImpl; using FConstIterator = TIteratorImpl; using FReverseIterator = TReverseIterator< FIterator>; using FConstReverseIterator = TReverseIterator; static_assert(CRandomAccessIterator< FIterator>); static_assert(CRandomAccessIterator); static constexpr size_t BlockWidth = sizeof(FBlockType) * 8; /** Default constructor. Constructs an empty bitset. */ FORCEINLINE TBitset() : TBitset(0) { } /** Constructs the bitset with 'Count' uninitialized bits. */ FORCEINLINE explicit TBitset(size_t InCount) { Impl.BitsetNum = InCount; Impl.BlocksMax = Impl->CalculateSlackReserve(NumBlocks()); Impl.Pointer = Impl->Allocate(MaxBlocks()); } /** Constructs a bitset from an integer. */ TBitset(size_t InCount, uint64 InValue) : TBitset(InCount > 64 ? InCount : 64) { static_assert(sizeof(FBlockType) <= sizeof(uint64), "The block width of TBitset is unexpected"); if constexpr (sizeof(FBlockType) == sizeof(uint8)) { Impl.Pointer[0] = static_cast(InValue >> 0); Impl.Pointer[1] = static_cast(InValue >> 8); Impl.Pointer[2] = static_cast(InValue >> 16); Impl.Pointer[3] = static_cast(InValue >> 24); Impl.Pointer[4] = static_cast(InValue >> 32); Impl.Pointer[5] = static_cast(InValue >> 40); Impl.Pointer[6] = static_cast(InValue >> 48); Impl.Pointer[7] = static_cast(InValue >> 56); } else if constexpr (sizeof(FBlockType) == sizeof(uint16)) { Impl.Pointer[0] = static_cast(InValue >> 0); Impl.Pointer[1] = static_cast(InValue >> 16); Impl.Pointer[2] = static_cast(InValue >> 32); Impl.Pointer[3] = static_cast(InValue >> 48); } else if constexpr (sizeof(FBlockType) == sizeof(uint32)) { Impl.Pointer[0] = static_cast(InValue >> 0); Impl.Pointer[1] = static_cast(InValue >> 32); } else if constexpr (sizeof(FBlockType) == sizeof(uint64)) { Impl.Pointer[0] = static_cast(InValue >> 0); } else check_no_entry(); size_t BlockInteger = sizeof(uint64) / sizeof(FBlockType); Memory::Memset(Impl.Pointer + BlockInteger, 0, (NumBlocks() - BlockInteger) * sizeof(FBlockType)); Impl.BitsetNum = InCount; } /** Constructs the bitset with the bits of the range ['First', 'Last'). */ template S> requires (CConstructibleFrom>) TBitset(I First, S Last) { if constexpr (CForwardIterator) { if constexpr (CSizedSentinelFor) { checkf(First - Last <= 0, TEXT("Illegal range iterator. Please check First <= Last.")); } const size_t InCount = Iteration::Distance(First, Last); new (this) TBitset(InCount); for (FReference Ref: *this) Ref = *First++; } else { new (this) TBitset(0); while (First != Last) { PushBack(*First); ++First; } } } /** Copy constructor. Constructs the bitset with the copy of the bits of 'InValue'. */ FORCEINLINE TBitset(const TBitset& InValue) { Impl.BitsetNum = InValue.Num(); Impl.BlocksMax = Impl->CalculateSlackReserve(NumBlocks()); Impl.Pointer = Impl->Allocate(MaxBlocks()); Memory::Memcpy(Impl.Pointer, InValue.Impl.Pointer, NumBlocks() * sizeof(FBlockType)); } /** Move constructor. After the move, 'InValue' is guaranteed to be empty. */ TBitset(TBitset&& InValue) { Impl.BitsetNum = InValue.Num(); if (InValue.Impl->IsTransferable(InValue.Impl.Pointer)) { Impl.BlocksMax = InValue.MaxBlocks(); Impl.Pointer = InValue.Impl.Pointer; InValue.Impl.BitsetNum = 0; InValue.Impl.BlocksMax = InValue.Impl->CalculateSlackReserve(InValue.NumBlocks()); InValue.Impl.Pointer = InValue.Impl->Allocate(InValue.MaxBlocks()); } else { Impl.BlocksMax = Impl->CalculateSlackReserve(NumBlocks()); Impl.Pointer = Impl->Allocate(MaxBlocks()); Memory::Memcpy(Impl.Pointer, InValue.Impl.Pointer, NumBlocks() * sizeof(FBlockType)); } } /** Constructs the bitset with the bits of the initializer list. */ FORCEINLINE TBitset(initializer_list IL) : TBitset(Iteration::Begin(IL), Iteration::End(IL)) { } /** Destructs the bitset. The storage is deallocated. */ ~TBitset() { Impl->Deallocate(Impl.Pointer); } /** Copy assignment operator. Replaces the bits with a copy of the bits of 'InValue'. */ TBitset& operator=(const TBitset& InValue) { if (&InValue == this) UNLIKELY return *this; size_t NumToAllocate = InValue.NumBlocks(); NumToAllocate = NumToAllocate > MaxBlocks() ? Impl->CalculateSlackGrow(InValue.NumBlocks(), MaxBlocks()) : NumToAllocate; NumToAllocate = NumToAllocate < MaxBlocks() ? Impl->CalculateSlackShrink(InValue.NumBlocks(), MaxBlocks()) : NumToAllocate; if (NumToAllocate != MaxBlocks()) { Impl->Deallocate(Impl.Pointer); Impl.BitsetNum = InValue.Num(); Impl.BlocksMax = NumToAllocate; Impl.Pointer = Impl->Allocate(MaxBlocks()); Memory::Memcpy(Impl.Pointer, InValue.Impl.Pointer, NumBlocks() * sizeof(FBlockType)); return *this; } check(InValue.Num() <= Max()); Impl.BitsetNum = InValue.Num(); Memory::Memcpy(Impl.Pointer, InValue.Impl.Pointer, NumBlocks() * sizeof(FBlockType)); return *this; } /** Move assignment operator. After the move, 'InValue' is guaranteed to be empty. */ TBitset& operator=(TBitset&& InValue) { if (&InValue == this) UNLIKELY return *this; if (InValue.Impl->IsTransferable(InValue.Impl.Pointer)) { Impl->Deallocate(Impl.Pointer); Impl.Pointer = InValue.Impl.Pointer; InValue.Impl.BitsetNum = 0; InValue.Impl.BlocksMax = InValue.Impl->CalculateSlackReserve(InValue.NumBlocks()); InValue.Impl.Pointer = InValue.Impl->Allocate(InValue.MaxBlocks()); return *this; } *this = InValue; InValue.Reset(); return *this; } /** Replaces the bits with those identified by initializer list. */ TBitset& operator=(initializer_list IL) { auto First = Iteration::Begin(IL); const size_t BlocksCount = (GetNum(IL) + BlockWidth - 1) / BlockWidth; size_t NumToAllocate = BlocksCount; NumToAllocate = NumToAllocate > MaxBlocks() ? Impl->CalculateSlackGrow(BlocksCount, MaxBlocks()) : NumToAllocate; NumToAllocate = NumToAllocate < MaxBlocks() ? Impl->CalculateSlackShrink(BlocksCount, MaxBlocks()) : NumToAllocate; if (NumToAllocate != MaxBlocks()) { Impl->Deallocate(Impl.Pointer); Impl.BitsetNum = GetNum(IL); Impl.BlocksMax = NumToAllocate; Impl.Pointer = Impl->Allocate(MaxBlocks()); for (FReference Ref : *this) Ref = *First++; return *this; } Impl.BitsetNum = GetNum(IL); for (FReference Ref : *this) Ref = *First++; return *this; } /** Compares the bits of two bitsets. */ NODISCARD friend bool operator==(const TBitset& LHS, const TBitset& RHS) { if (LHS.Num() != RHS.Num()) return false; if (LHS.NumBlocks() == 0) return true; for (size_t Index = 0; Index != LHS.NumBlocks() - 1; ++Index) { if (LHS.Impl.Pointer[Index] != RHS.Impl.Pointer[Index]) return false; } const FBlockType LastBlockBitmask = LHS.Num() % BlockWidth != 0 ? (1ull << LHS.Num() % BlockWidth) - 1 : -1; return (LHS.Impl.Pointer[LHS.NumBlocks() - 1] & LastBlockBitmask) == (RHS.Impl.Pointer[LHS.NumBlocks() - 1] & LastBlockBitmask); } /** Sets the bits to the result of binary AND on corresponding pairs of bits of *this and other. */ TBitset& operator&=(const TBitset& InValue) { if (&InValue == this) UNLIKELY return *this; if (Num() == 0) return *this; if (InValue.Num() == 0) return Set(false); if (Num() <= InValue.Num()) { for (size_t Index = 0; Index != NumBlocks(); ++Index) { Impl.Pointer[Index] &= InValue.Impl.Pointer[Index]; } } else { const size_t LastBlock = InValue.NumBlocks() - 1; for (size_t Index = 0; Index != LastBlock; ++Index) { Impl.Pointer[Index] &= InValue.Impl.Pointer[Index]; } const FBlockType LastBlockBitmask = InValue.Num() % BlockWidth != 0 ? (1ull << InValue.Num() % BlockWidth) - 1 : -1; Impl.Pointer[LastBlock] &= InValue.Impl.Pointer[LastBlock] & LastBlockBitmask; for (size_t Index = LastBlock + 1; Index != NumBlocks(); ++Index) { Impl.Pointer[Index] = 0; } } return *this; } /** Sets the bits to the result of binary OR on corresponding pairs of bits of *this and other. */ TBitset& operator|=(const TBitset& InValue) { if (&InValue == this) UNLIKELY return *this; if (Num() == 0) return *this; if (InValue.Num() == 0) return *this; if (Num() <= InValue.Num()) { for (size_t Index = 0; Index != NumBlocks(); ++Index) { Impl.Pointer[Index] |= InValue.Impl.Pointer[Index]; } } else { const size_t LastBlock = InValue.NumBlocks() - 1; for (size_t Index = 0; Index != LastBlock; ++Index) { Impl.Pointer[Index] |= InValue.Impl.Pointer[Index]; } const FBlockType LastBlockBitmask = InValue.Num() % BlockWidth != 0 ? (1ull << InValue.Num() % BlockWidth) - 1 : -1; Impl.Pointer[LastBlock] |= InValue.Impl.Pointer[LastBlock] & LastBlockBitmask; } return *this; } /** Sets the bits to the result of binary XOR on corresponding pairs of bits of *this and other. */ TBitset& operator^=(const TBitset& InValue) { if (&InValue == this) UNLIKELY return *this; if (Num() == 0) return *this; if (InValue.Num() == 0) return *this; if (Num() <= InValue.Num()) { for (size_t Index = 0; Index != NumBlocks(); ++Index) { Impl.Pointer[Index] ^= InValue.Impl.Pointer[Index]; } } else { const size_t LastBlock = InValue.NumBlocks() - 1; for (size_t Index = 0; Index != LastBlock; ++Index) { Impl.Pointer[Index] ^= InValue.Impl.Pointer[Index]; } const FBlockType LastBlockBitmask = InValue.Num() % BlockWidth != 0 ? (1ull << InValue.Num() % BlockWidth) - 1 : -1; Impl.Pointer[LastBlock] ^= InValue.Impl.Pointer[LastBlock] & LastBlockBitmask; } return *this; } NODISCARD friend FORCEINLINE TBitset operator&(const TBitset& LHS, const TBitset& RHS) { return LHS.Num() < RHS.Num() ? TBitset(RHS) &= LHS : TBitset(LHS) &= RHS; } NODISCARD friend FORCEINLINE TBitset operator|(const TBitset& LHS, const TBitset& RHS) { return LHS.Num() < RHS.Num() ? TBitset(RHS) |= LHS : TBitset(LHS) |= RHS; } NODISCARD friend FORCEINLINE TBitset operator^(const TBitset& LHS, const TBitset& RHS) { return LHS.Num() < RHS.Num() ? TBitset(RHS) ^= LHS : TBitset(LHS) ^= RHS; } /** @return The temporary copy of *this with all bits flipped (binary NOT). */ NODISCARD TBitset operator~() const { TBitset Result = *this; for (size_t Index = 0; Index != NumBlocks(); ++Index) { Result.Impl.Pointer[Index] = ~Result.Impl.Pointer[Index]; } return Result; } /** Performs binary shift left. */ TBitset& operator<<=(size_t Offset) { const size_t Blockshift = Offset / BlockWidth; const size_t Bitshift = Offset % BlockWidth; if (Num() == 0) return *this; if (Blockshift != 0) { for (size_t Index = NumBlocks() - 1; Index != -1; --Index) { Impl.Pointer[Index] = Index >= Blockshift ? Impl.Pointer[Index - Blockshift] : 0; } } if (Bitshift != 0) { for (size_t Index = NumBlocks() - 1; Index != 0; --Index) { Impl.Pointer[Index] = Impl.Pointer[Index] << Bitshift | Impl.Pointer[Index - 1] >> (BlockWidth - Bitshift); } Impl.Pointer[0] <<= Bitshift; } return *this; } /** Performs binary shift right. */ TBitset& operator>>=(size_t Offset) { const size_t Blockshift = Offset / BlockWidth; const size_t Bitshift = Offset % BlockWidth; if (Num() == 0) return *this; if (Num() % BlockWidth != 0) { Impl.Pointer[NumBlocks() - 1] &= (1ull << Num() % BlockWidth) - 1; } if (Blockshift != 0) { for (size_t Index = 0; Index != NumBlocks(); ++Index) { Impl.Pointer[Index] = Index < NumBlocks() - Blockshift ? Impl.Pointer[Index + Blockshift] : 0; } } if (Bitshift != 0) { for (size_t Index = 0; Index != NumBlocks() - 1; ++Index) { Impl.Pointer[Index] = Impl.Pointer[Index] >> Bitshift | Impl.Pointer[Index + 1] << (BlockWidth - Bitshift); } Impl.Pointer[NumBlocks() - 1] >>= Bitshift; } return *this; } NODISCARD FORCEINLINE TBitset operator<<(size_t Offset) const { return TBitset(*this) <<= Offset; } NODISCARD FORCEINLINE TBitset operator>>(size_t Offset) const { return TBitset(*this) >>= Offset; } /** @return true if all bits are set to true, otherwise false. */ NODISCARD bool All() const { if (Num() == 0) return true; for (size_t Index = 0; Index != NumBlocks() - 1; ++Index) { if (Impl.Pointer[Index] != -1) return false; } const FBlockType LastBlockBitmask = Num() % BlockWidth != 0 ? (1ull << Num() % BlockWidth) - 1 : -1; return (Impl.Pointer[NumBlocks() - 1] | ~LastBlockBitmask) == -1; } /** @return true if any of the bits are set to true, otherwise false. */ NODISCARD bool Any() const { if (Num() == 0) return false; for (size_t Index = 0; Index != NumBlocks() - 1; ++Index) { if (Impl.Pointer[Index] != 0) return true; } const FBlockType LastBlockBitmask = Num() % BlockWidth != 0 ? (1ull << Num() % BlockWidth) - 1 : -1; return (Impl.Pointer[NumBlocks() - 1] & LastBlockBitmask) != 0; } /** @return true if none of the bits are set to true, otherwise false. */ NODISCARD FORCEINLINE bool None() const { return !Any(); } /** @return The number of bits that are set to true. */ NODISCARD size_t Count() const { if (Num() == 0) return 0; size_t Result = 0; constexpr auto BlockCount = [](FBlockType Block) { static_assert(sizeof(FBlockType) <= sizeof(uint64), "The block width of TBitset is unexpected"); if constexpr (sizeof(FBlockType) == sizeof(uint8)) { Block = (Block & 0x55ull) + ((Block >> 1) & 0x55ull); Block = (Block & 0x33ull) + ((Block >> 2) & 0x33ull); Block = (Block & 0x0Full) + ((Block >> 4) & 0x0Full); } else if constexpr (sizeof(FBlockType) == sizeof(uint16)) { Block = (Block & 0x5555ull) + ((Block >> 1) & 0x5555ull); Block = (Block & 0x3333ull) + ((Block >> 2) & 0x3333ull); Block = (Block & 0x0F0Full) + ((Block >> 4) & 0x0F0Full); Block = (Block & 0x00FFull) + ((Block >> 8) & 0x00FFull); } else if constexpr (sizeof(FBlockType) == sizeof(uint32)) { Block = (Block & 0x55555555ull) + ((Block >> 1) & 0x55555555ull); Block = (Block & 0x33333333ull) + ((Block >> 2) & 0x33333333ull); Block = (Block & 0x0F0F0F0Full) + ((Block >> 4) & 0x0F0F0F0Full); Block = (Block & 0x00FF00FFull) + ((Block >> 8) & 0x00FF00FFull); Block = (Block & 0x0000FFFFull) + ((Block >> 16) & 0x0000FFFFull); } else if constexpr (sizeof(FBlockType) == sizeof(uint64)) { Block = (Block & 0x5555555555555555ull) + ((Block >> 1) & 0x5555555555555555ull); Block = (Block & 0x3333333333333333ull) + ((Block >> 2) & 0x3333333333333333ull); Block = (Block & 0x0F0F0F0F0F0F0F0Full) + ((Block >> 4) & 0x0F0F0F0F0F0F0F0Full); Block = (Block & 0x00FF00FF00FF00FFull) + ((Block >> 8) & 0x00FF00FF00FF00FFull); Block = (Block & 0x0000FFFF0000FFFFull) + ((Block >> 16) & 0x0000FFFF0000FFFFull); Block = (Block & 0x00000000FFFFFFFFull) + ((Block >> 32) & 0x00000000FFFFFFFFull); } else check_no_entry(); return Block; }; for (size_t Index = 0; Index != NumBlocks() - 1; ++Index) { Result += BlockCount(Impl.Pointer[Index]); } const FBlockType LastBlockBitmask = Num() % BlockWidth != 0 ? (1ull << Num() % BlockWidth) - 1 : -1; Result += BlockCount(Impl.Pointer[NumBlocks() - 1] & LastBlockBitmask); return Result; } /** Sets all bits to true. */ TBitset& Set(bool InValue = true) { Memory::Memset(Impl.Pointer, static_cast(InValue ? -1 : 0), NumBlocks() * sizeof(FBlockType)); return *this; } /** Flips all bits (like operator~, but in-place). */ TBitset& Flip() { for (size_t Index = 0; Index != NumBlocks(); ++Index) { Impl.Pointer[Index] = ~Impl.Pointer[Index]; } return *this; } /** Flips the bit at the position 'Index'. */ TBitset& Flip(size_t Index) { Impl.Pointer[Index / BlockWidth] ^= 1ull << Index % BlockWidth; return *this; } /** Converts the contents of the bitset to an uint64 integer. */ NODISCARD uint64 ToIntegral() { if (Num() > 64) { for (size_t Index = 64 / BlockWidth; Index < NumBlocks() - 1; ++Index) { checkf(Impl.Pointer[Index] != 0, TEXT("The bitset can not be represented in uint64. Please check Num().")); } const FBlockType LastBlockBitmask = Num() % BlockWidth != 0 ? (1ull << Num() % BlockWidth) - 1 : -1; const FBlockType LastBlock = Impl.Pointer[NumBlocks() - 1] & LastBlockBitmask; checkf(LastBlock != 0, TEXT("The bitset can not be represented in uint64. Please check Num().")); } uint64 Result = 0; static_assert(sizeof(FBlockType) <= sizeof(uint64), "The block width of TBitset is unexpected"); if constexpr (sizeof(FBlockType) == sizeof(uint8)) { Result |= static_cast(Impl.Pointer[0]) << 0; Result |= static_cast(Impl.Pointer[1]) << 8; Result |= static_cast(Impl.Pointer[2]) << 16; Result |= static_cast(Impl.Pointer[3]) << 24; Result |= static_cast(Impl.Pointer[4]) << 32; Result |= static_cast(Impl.Pointer[5]) << 40; Result |= static_cast(Impl.Pointer[6]) << 48; Result |= static_cast(Impl.Pointer[7]) << 56; } else if constexpr (sizeof(FBlockType) == sizeof(uint16)) { Result |= static_cast(Impl.Pointer[0]) << 0; Result |= static_cast(Impl.Pointer[1]) << 16; Result |= static_cast(Impl.Pointer[2]) << 32; Result |= static_cast(Impl.Pointer[3]) << 48; } else if constexpr (sizeof(FBlockType) == sizeof(uint32)) { Result |= static_cast(Impl.Pointer[0]) << 0; Result |= static_cast(Impl.Pointer[1]) << 32; } else if constexpr (sizeof(FBlockType) == sizeof(uint64)) { Result |= static_cast(Impl.Pointer[0]) << 0; } else check_no_entry(); const uint64 Mask = Num() < 64 ? (1ull << Num()) - 1 : -1; return Result & Mask; } /** Appends the given bit value to the end of the bitset. */ FORCEINLINE void PushBack(bool InValue) { SetNum(Num() + 1); Back() = InValue; } /** Removes the last bit of the bitset. The bitset cannot be empty. */ FORCEINLINE void PopBack(bool bAllowShrinking = true) { checkf(Num() != 0, TEXT("The bitset is empty. Please check Num().")); SetNum(Num() - 1, bAllowShrinking); } /** Resizes the bitset to contain 'InCount' bits. Additional uninitialized bits are appended. */ void SetNum(size_t InCount, bool bAllowShrinking = true) { const size_t BlocksCount = (InCount + BlockWidth - 1) / BlockWidth; size_t NumToAllocate = BlocksCount; NumToAllocate = NumToAllocate > MaxBlocks() ? Impl->CalculateSlackGrow(BlocksCount, MaxBlocks()) : NumToAllocate; NumToAllocate = NumToAllocate < MaxBlocks() ? (bAllowShrinking ? Impl->CalculateSlackShrink(BlocksCount, MaxBlocks()) : MaxBlocks()) : NumToAllocate; if (NumToAllocate != MaxBlocks()) { FBlockType* OldAllocation = Impl.Pointer; const size_t NumToDestruct = NumBlocks(); Impl.BitsetNum = InCount; Impl.BlocksMax = NumToAllocate; Impl.Pointer = Impl->Allocate(MaxBlocks()); if (NumToDestruct <= Num()) { Memory::Memcpy(Impl.Pointer, OldAllocation, NumToDestruct * sizeof(FBlockType)); } else { Memory::Memcpy(Impl.Pointer, OldAllocation, BlocksCount * sizeof(FBlockType)); } Impl->Deallocate(OldAllocation); return; } check(InCount <= Max()); Impl.BitsetNum = InCount; } /** Resizes the bitset to contain 'InCount' elements. Additional copies of 'InValue' are appended. */ void SetNum(size_t InCount, bool InValue, bool bAllowShrinking /*= true*/) { const size_t BlocksCount = (InCount + BlockWidth - 1) / BlockWidth; size_t NumToAllocate = BlocksCount; NumToAllocate = NumToAllocate > MaxBlocks() ? Impl->CalculateSlackGrow(BlocksCount, MaxBlocks()) : NumToAllocate; NumToAllocate = NumToAllocate < MaxBlocks() ? (bAllowShrinking ? Impl->CalculateSlackShrink(BlocksCount, MaxBlocks()) : MaxBlocks()) : NumToAllocate; const FBlockType LastBlockBitmask = Num() % BlockWidth != 0 ? (1ull << Num() % BlockWidth) - 1 : -1; const FBlockType BlocksValueToSet = static_cast(InValue ? -1 : 0); if (NumToAllocate != MaxBlocks()) { FBlockType* OldAllocation = Impl.Pointer; const size_t NumToDestruct = NumBlocks(); Impl.BitsetNum = InCount; Impl.BlocksMax = NumToAllocate; Impl.Pointer = Impl->Allocate(MaxBlocks()); if (NumToDestruct <= NumBlocks()) { if (NumToDestruct != 0) { Memory::Memcpy(Impl.Pointer, OldAllocation, (NumToDestruct - 1) * sizeof(FBlockType)); Impl.Pointer[NumToDestruct - 1] = OldAllocation[NumToDestruct - 1] & LastBlockBitmask | BlocksValueToSet & ~LastBlockBitmask; } Memory::Memset(Impl.Pointer + NumToDestruct, static_cast(BlocksValueToSet), (BlocksCount - NumToDestruct) * sizeof(FBlockType)); } else { Memory::Memcpy(Impl.Pointer, OldAllocation, BlocksCount * sizeof(FBlockType)); } Impl->Deallocate(OldAllocation); return; } check(InCount <= Max()); if (InCount > Num()) { if (NumBlocks() != 0) { Impl.Pointer[NumBlocks() - 1] = Impl.Pointer[NumBlocks() - 1] & LastBlockBitmask | BlocksValueToSet & ~LastBlockBitmask; } Memory::Memset(Impl.Pointer + NumBlocks(), static_cast(BlocksValueToSet), (BlocksCount - NumBlocks()) * sizeof(FBlockType)); } Impl.BitsetNum = InCount; } /** Increase the max capacity of the bitset to a value that's greater or equal to 'InCount'. */ void Reserve(size_t InCount) { if (InCount <= Max()) return; const size_t BlocksCount = (InCount + BlockWidth - 1) / BlockWidth; const size_t NumToAllocate = Impl->CalculateSlackReserve(BlocksCount); FBlockType* OldAllocation = Impl.Pointer; check(NumToAllocate > MaxBlocks()); Impl.BlocksMax = NumToAllocate; Impl.Pointer = Impl->Allocate(MaxBlocks()); Memory::Memcpy(Impl.Pointer, OldAllocation, NumBlocks() * sizeof(FBlockType)); Impl->Deallocate(OldAllocation); } /** Requests the removal of unused capacity. */ void Shrink() { size_t NumToAllocate = Impl->CalculateSlackReserve(NumBlocks()); check(NumToAllocate <= MaxBlocks()); if (NumToAllocate == MaxBlocks()) return; FBlockType* OldAllocation = Impl.Pointer; Impl.BitsetNum = NumToAllocate * BlockWidth; Impl.Pointer = Impl->Allocate(MaxBlocks()); Memory::Memcpy(Impl.Pointer, OldAllocation, NumBlocks() * sizeof(FBlockType)); Impl->Deallocate(OldAllocation); } /** @return The pointer to the underlying element storage. */ NODISCARD FORCEINLINE FBlockType* GetData() { return Impl.Pointer; } NODISCARD FORCEINLINE const FBlockType* GetData() const { return Impl.Pointer; } /** @return The iterator to the first or end bit. */ NODISCARD FORCEINLINE FIterator Begin() { return FIterator(this, Impl.Pointer, 0); } NODISCARD FORCEINLINE FConstIterator Begin() const { return FConstIterator(this, Impl.Pointer, 0); } NODISCARD FORCEINLINE FIterator End() { return FIterator(this, Impl.Pointer, Num()); } NODISCARD FORCEINLINE FConstIterator End() const { return FConstIterator(this, Impl.Pointer, Num()); } /** @return The reverse iterator to the first or end bit. */ NODISCARD FORCEINLINE FReverseIterator RBegin() { return FReverseIterator(End()); } NODISCARD FORCEINLINE FConstReverseIterator RBegin() const { return FConstReverseIterator(End()); } NODISCARD FORCEINLINE FReverseIterator REnd() { return FReverseIterator(Begin()); } NODISCARD FORCEINLINE FConstReverseIterator REnd() const { return FConstReverseIterator(Begin()); } /** @return The number of bits in the bitset. */ NODISCARD FORCEINLINE size_t Num() const { return Impl.BitsetNum; } /** @return The number of bits that can be held in currently allocated storage. */ NODISCARD FORCEINLINE size_t Max() const { return MaxBlocks() * BlockWidth; } /** @return The number of blocks in the bitset. */ NODISCARD FORCEINLINE size_t NumBlocks() const { return (Num() + BlockWidth - 1) / BlockWidth; } /** @return The number of blocks that can be held in currently allocated storage. */ NODISCARD FORCEINLINE size_t MaxBlocks() const { return Impl.BlocksMax; } /** @return true if the bitset is empty, false otherwise. */ NODISCARD FORCEINLINE bool IsEmpty() const { return Num() == 0; } /** @return true if the iterator is valid, false otherwise. */ NODISCARD FORCEINLINE bool IsValidIterator(FConstIterator Iter) const { return Begin() <= Iter && Iter <= End(); } /** @return The reference to the requested bit. */ NODISCARD FORCEINLINE FReference operator[](size_t Index) { checkf(Index < Num(), TEXT("Read access violation. Please check IsValidIterator().")); return *(Begin() + Index); } NODISCARD FORCEINLINE FConstReference operator[](size_t Index) const { checkf(Index < Num(), TEXT("Read access violation. Please check IsValidIterator().")); return *(Begin() + Index); } /** @return The reference to the first or last bit. */ NODISCARD FORCEINLINE FReference Front() { return *Begin(); } NODISCARD FORCEINLINE FConstReference Front() const { return *Begin(); } NODISCARD FORCEINLINE FReference Back() { return *(End() - 1); } NODISCARD FORCEINLINE FConstReference Back() const { return *(End() - 1); } /** Erases all bits from the bitset. After this call, Num() returns zero. */ void Reset(bool bAllowShrinking = true) { const size_t NumToAllocate = Impl->CalculateSlackReserve(0); if (bAllowShrinking && NumToAllocate != MaxBlocks()) { Impl->Deallocate(Impl.Pointer); Impl.BitsetNum = 0; Impl.BlocksMax = Impl->CalculateSlackReserve(NumBlocks()); Impl.Pointer = Impl->Allocate(MaxBlocks()); return; } Impl.BitsetNum = 0; } /** Overloads the GetTypeHash algorithm for TBitset. */ NODISCARD friend FORCEINLINE size_t GetTypeHash(const TBitset& A) { if (A.NumBlocks() == 0) return 855406835; size_t Result = 0; for (size_t Index = 0; Index != A.NumBlocks() - 1; ++Index) { Result = HashCombine(Result, GetTypeHash(A.Impl.Pointer[Index])); } const FBlockType LastBlockBitmask = A.Num() % BlockWidth != 0 ? (1ull << A.Num() % BlockWidth) - 1 : -1; return HashCombine(Result, GetTypeHash(A.Impl.Pointer[A.NumBlocks() - 1] & LastBlockBitmask)); } /** Overloads the Swap algorithm for TBitset. */ friend void Swap(TBitset& A, TBitset& B) { const bool bIsTransferable = A.Impl->IsTransferable(A.Impl.Pointer) && B.Impl->IsTransferable(B.Impl.Pointer); if (bIsTransferable) { Swap(A.Impl.BitsetNum, B.Impl.BitsetNum); Swap(A.Impl.BlocksMax, B.Impl.BlocksMax); Swap(A.Impl.Pointer, B.Impl.Pointer); return; } TBitset Temp = MoveTemp(A); A = MoveTemp(B); B = MoveTemp(Temp); } ENABLE_RANGE_BASED_FOR_LOOP_SUPPORT private: ALLOCATOR_WRAPPER_BEGIN(FAllocatorType, FBlockType, Impl) { size_t BitsetNum; size_t BlocksMax; FBlockType* Pointer; } ALLOCATOR_WRAPPER_END(FAllocatorType, FBlockType, Impl) public: class FReference final : private FSingleton { public: FORCEINLINE FReference& operator=(bool InValue) { Data = (Data & ~Mask) | (InValue ? Mask : 0); return *this; } FORCEINLINE FReference& operator=(const FReference& InValue) { *this = static_cast(InValue); return *this; } FORCEINLINE FReference& operator&=(bool InValue) { Data &= InValue ? -1 : ~Mask; return *this; } FORCEINLINE FReference& operator|=(bool InValue) { Data |= InValue ? Mask : 0; return *this; } FORCEINLINE FReference& operator^=(bool InValue) { *this = InValue ^ *this; return *this; } FORCEINLINE bool operator~() const { return !*this; } FORCEINLINE operator bool() const { return (Data & Mask) != 0; } private: FORCEINLINE FReference(FBlockType& InData, FBlockType InMask) : Data(InData), Mask(InMask) { } FBlockType& Data; FBlockType Mask; friend FIterator; }; private: template class TIteratorImpl final { public: using FElementType = bool; FORCEINLINE TIteratorImpl() = default; # if DO_CHECK FORCEINLINE TIteratorImpl(const TIteratorImpl& InValue) requires (bConst) : Owner(InValue.Owner), Pointer(InValue.Pointer), BitOffset(InValue.BitOffset) { } # else FORCEINLINE TIteratorImpl(const TIteratorImpl& InValue) requires (bConst) : Pointer(InValue.Pointer), BitOffset(InValue.BitOffset) { } # endif FORCEINLINE TIteratorImpl(const TIteratorImpl&) = default; FORCEINLINE TIteratorImpl(TIteratorImpl&&) = default; FORCEINLINE TIteratorImpl& operator=(const TIteratorImpl&) = default; FORCEINLINE TIteratorImpl& operator=(TIteratorImpl&&) = default; NODISCARD friend FORCEINLINE bool operator==(const TIteratorImpl& LHS, const TIteratorImpl& RHS) { check(LHS.Pointer == RHS.Pointer); return LHS.BitOffset == RHS.BitOffset; } NODISCARD friend FORCEINLINE strong_ordering operator<=>(const TIteratorImpl& LHS, const TIteratorImpl& RHS) { check(LHS.Pointer == RHS.Pointer); return LHS.BitOffset <=> RHS.BitOffset; } NODISCARD FORCEINLINE FReference operator*() const requires (!bConst) { CheckThis(true); return FReference(*(Pointer + BitOffset / BlockWidth), 1ull << BitOffset % BlockWidth); } NODISCARD FORCEINLINE FConstReference operator*() const requires ( bConst) { CheckThis(true); return (*(Pointer + BitOffset / BlockWidth) & (1ull << BitOffset % BlockWidth)); } NODISCARD FORCEINLINE auto operator[](ptrdiff Index) const { TIteratorImpl Temp = *this + Index; return *Temp; } FORCEINLINE TIteratorImpl& operator++() { ++BitOffset; CheckThis(); return *this; } FORCEINLINE TIteratorImpl& operator--() { --BitOffset; CheckThis(); return *this; } FORCEINLINE TIteratorImpl operator++(int) { TIteratorImpl Temp = *this; ++*this; return Temp; } FORCEINLINE TIteratorImpl operator--(int) { TIteratorImpl Temp = *this; --*this; return Temp; } FORCEINLINE TIteratorImpl& operator+=(ptrdiff Offset) { BitOffset += Offset; CheckThis(); return *this; } FORCEINLINE TIteratorImpl& operator-=(ptrdiff Offset) { BitOffset -= Offset; CheckThis(); return *this; } NODISCARD friend FORCEINLINE TIteratorImpl operator+(TIteratorImpl Iter, ptrdiff Offset) { TIteratorImpl Temp = Iter; Temp += Offset; return Temp; } NODISCARD friend FORCEINLINE TIteratorImpl operator+(ptrdiff Offset, TIteratorImpl Iter) { TIteratorImpl Temp = Iter; Temp += Offset; return Temp; } NODISCARD FORCEINLINE TIteratorImpl operator-(ptrdiff Offset) const { TIteratorImpl Temp = *this; Temp -= Offset; return Temp; } NODISCARD friend FORCEINLINE ptrdiff operator-(const TIteratorImpl& LHS, const TIteratorImpl& RHS) { check(LHS.Pointer == RHS.Pointer); return LHS.BitOffset - RHS.BitOffset; } private: # if DO_CHECK const TBitset* Owner = nullptr; # endif using FBlockPtr = TConditional; FBlockPtr Pointer = nullptr; size_t BitOffset = 0; # if DO_CHECK FORCEINLINE TIteratorImpl(const TBitset* InContainer, FBlockPtr InPointer, size_t Offset) : Owner(InContainer), Pointer(InPointer), BitOffset(Offset) { } # else FORCEINLINE TIteratorImpl(const TBitset* InContainer, FBlockPtr InPointer, size_t Offset) : Pointer(InPointer), BitOffset(Offset) { } # endif FORCEINLINE void CheckThis(bool bExceptEnd = false) const { checkf(Owner && Owner->IsValidIterator(*this), TEXT("Read access violation. Please check IsValidIterator().")); checkf(!(bExceptEnd && Owner->End() == *this), TEXT("Read access violation. Please check IsValidIterator().")); } template friend class TIteratorImpl; friend TBitset; }; }; using FBitset = TBitset; static_assert(sizeof(FBitset) == 40, "The byte size of FBitset is unexpected"); NAMESPACE_MODULE_END(Utility) NAMESPACE_MODULE_END(Redcraft) NAMESPACE_REDCRAFT_END