#pragma once #include "CoreTypes.h" #include "TypeTraits/TypeTraits.h" #include "Templates/Utility.h" #include "Templates/TypeHash.h" #include "Memory/Allocator.h" #include "Memory/MemoryOperator.h" #include "Iterators/Utility.h" #include "Iterators/BasicIterator.h" #include "Iterators/Sentinel.h" #include "Iterators/ReverseIterator.h" #include "Ranges/Utility.h" #include "Ranges/Factory.h" #include "Miscellaneous/Compare.h" #include "Miscellaneous/AssertionMacros.h" NAMESPACE_REDCRAFT_BEGIN NAMESPACE_MODULE_BEGIN(Redcraft) NAMESPACE_MODULE_BEGIN(Utility) /** Dynamic array. The elements are stored contiguously, which means that elements can be accessed not only through iterators, but also using offsets to regular pointers to elements. */ template Allocator = FHeapAllocator> class TArray { private: template > class TIteratorImpl; public: using FElementType = T; using FAllocatorType = Allocator; using FReference = T&; using FConstReference = const T&; using FIterator = TIteratorImpl; using FConstIterator = TIteratorImpl; using FReverseIterator = TReverseIterator< FIterator>; using FConstReverseIterator = TReverseIterator; static_assert(CContiguousIterator< FIterator>); static_assert(CContiguousIterator); /** Default constructor. Constructs an empty container with a default-constructed allocator. */ FORCEINLINE TArray() : TArray(0) { } /** Constructs the container with 'Count' default instances of T. */ explicit TArray(size_t Count) requires (CDefaultConstructible) { Impl.ArrayNum = Count; Impl.ArrayMax = Impl->CalculateSlackReserve(Num()); Impl.Pointer = Impl->Allocate(Max()); Memory::DefaultConstruct(Impl.Pointer, Num()); } /** Constructs the container with 'Count' copies of elements with 'InValue'. */ FORCEINLINE explicit TArray(size_t Count, const FElementType& InValue) requires (CCopyConstructible) : TArray(Range::Repeat(InValue, Count)) { } /** Constructs the container with the contents of the range ['First', 'Last'). */ template S> requires (CConstructibleFrom> && CMovable) explicit TArray(I First, S Last) { if constexpr (CForwardIterator) { size_t Count = 0; if constexpr (CSizedSentinelFor) { checkf(First - Last <= 0, TEXT("Illegal range iterator. Please check First <= Last.")); Count = Last - First; } else for (I Iter = First; Iter != Last; ++Iter) ++Count; Impl.ArrayNum = Count; Impl.ArrayMax = Impl->CalculateSlackReserve(Num()); Impl.Pointer = Impl->Allocate(Max()); for (size_t Index = 0; Index != Count; ++Index) { new (Impl.Pointer + Index) FElementType(*First++); } } else { Impl.ArrayNum = 0; Impl.ArrayMax = Impl->CalculateSlackReserve(Num()); Impl.Pointer = Impl->Allocate(Max()); while (First != Last) { PushBack(*First); ++First; } } } /** Constructs the container with the contents of the range. */ template requires (!CSameAs, TArray> && CConstructibleFrom> && CMovable) FORCEINLINE explicit TArray(R&& Range) : TArray(Range::Begin(Range), Range::End(Range)) { } /** Copy constructor. Constructs the container with the copy of the contents of 'InValue'. */ TArray(const TArray& InValue) requires (CCopyConstructible) { Impl.ArrayNum = InValue.Num(); Impl.ArrayMax = Impl->CalculateSlackReserve(Num()); Impl.Pointer = Impl->Allocate(Max()); Memory::CopyConstruct(Impl.Pointer, InValue.Impl.Pointer, Num()); } /** Move constructor. After the move, 'InValue' is guaranteed to be empty. */ TArray(TArray&& InValue) requires (CMoveConstructible) { Impl.ArrayNum = InValue.Num(); if (InValue.Impl->IsTransferable(InValue.Impl.Pointer)) { Impl.ArrayMax = InValue.Max(); Impl.Pointer = InValue.Impl.Pointer; InValue.Impl.ArrayNum = 0; InValue.Impl.ArrayMax = InValue.Impl->CalculateSlackReserve(InValue.Num()); InValue.Impl.Pointer = InValue.Impl->Allocate(InValue.Max()); } else { Impl.ArrayMax = Impl->CalculateSlackReserve(Num()); Impl.Pointer = Impl->Allocate(Max()); Memory::MoveConstruct(Impl.Pointer, InValue.Impl.Pointer, Num()); } InValue.Reset(); } /** Constructs the container with the contents of the initializer list. */ FORCEINLINE TArray(initializer_list IL) requires (CCopyConstructible) : TArray(Range::Begin(IL), Range::End(IL)) { } /** Destructs the array. The destructors of the elements are called and the used storage is deallocated. */ ~TArray() { Memory::Destruct(Impl.Pointer,Num()); Impl->Deallocate(Impl.Pointer); } /** Copy assignment operator. Replaces the contents with a copy of the contents of 'InValue'. */ TArray& operator=(const TArray& InValue) requires (CCopyable) { if (&InValue == this) UNLIKELY return *this; size_t NumToAllocate = InValue.Num(); NumToAllocate = NumToAllocate > Max() ? Impl->CalculateSlackGrow(InValue.Num(), Max()) : NumToAllocate; NumToAllocate = NumToAllocate < Max() ? Impl->CalculateSlackShrink(InValue.Num(), Max()) : NumToAllocate; if (NumToAllocate != Max()) { Memory::Destruct(Impl.Pointer, Num()); Impl->Deallocate(Impl.Pointer); Impl.ArrayNum = InValue.Num(); Impl.ArrayMax = NumToAllocate; Impl.Pointer = Impl->Allocate(Max()); Memory::CopyConstruct(Impl.Pointer, InValue.Impl.Pointer, Num()); return *this; } if (InValue.Num() <= Num()) { Memory::CopyAssign(Impl.Pointer, InValue.Impl.Pointer, InValue.Num()); Memory::Destruct(Impl.Pointer + InValue.Num(), Num() - InValue.Num()); } else if (InValue.Num() <= Max()) { Memory::CopyAssign(Impl.Pointer, InValue.Impl.Pointer, Num()); Memory::CopyConstruct(Impl.Pointer + Num(), InValue.Impl.Pointer + Num(), InValue.Num() - Num()); } else check_no_entry(); Impl.ArrayNum = InValue.Num(); return *this; } /** Move assignment operator. After the move, 'InValue' is guaranteed to be empty. */ TArray& operator=(TArray&& InValue) requires (CMovable) { if (&InValue == this) UNLIKELY return *this; if (InValue.Impl->IsTransferable(InValue.Impl.Pointer)) { Memory::Destruct(Impl.Pointer, Num()); Impl->Deallocate(Impl.Pointer); Impl.ArrayNum = InValue.Num(); Impl.ArrayMax = InValue.Max(); Impl.Pointer = InValue.Impl.Pointer; InValue.Impl.ArrayNum = 0; InValue.Impl.ArrayMax = InValue.Impl->CalculateSlackReserve(InValue.Num()); InValue.Impl.Pointer = InValue.Impl->Allocate(InValue.Max()); return *this; } size_t NumToAllocate = InValue.Num(); NumToAllocate = NumToAllocate > Max() ? Impl->CalculateSlackGrow(InValue.Num(), Max()) : NumToAllocate; NumToAllocate = NumToAllocate < Max() ? Impl->CalculateSlackShrink(InValue.Num(), Max()) : NumToAllocate; if (NumToAllocate != Max()) { Memory::Destruct(Impl.Pointer, Num()); Impl->Deallocate(Impl.Pointer); Impl.ArrayNum = InValue.Num(); Impl.ArrayMax = NumToAllocate; Impl.Pointer = Impl->Allocate(Max()); Memory::MoveConstruct(Impl.Pointer, InValue.Impl.Pointer, Num()); InValue.Reset(); return *this; } if (InValue.Num() <= Num()) { Memory::MoveAssign(Impl.Pointer, InValue.Impl.Pointer, InValue.Num()); Memory::Destruct(Impl.Pointer + InValue.Num(), Num() - InValue.Num()); } else if (InValue.Num() <= Max()) { Memory::MoveAssign(Impl.Pointer, InValue.Impl.Pointer, Num()); Memory::MoveConstruct(Impl.Pointer + Num(), InValue.Impl.Pointer + Num(), InValue.Num() - Num()); } else check_no_entry(); Impl.ArrayNum = InValue.Num(); InValue.Reset(); return *this; } /** Replaces the contents with those identified by initializer list. */ TArray& operator=(initializer_list IL) requires (CCopyable) { size_t NumToAllocate = Range::Num(IL); NumToAllocate = NumToAllocate > Max() ? Impl->CalculateSlackGrow (Range::Num(IL), Max()) : NumToAllocate; NumToAllocate = NumToAllocate < Max() ? Impl->CalculateSlackShrink(Range::Num(IL), Max()) : NumToAllocate; if (NumToAllocate != Max()) { Memory::Destruct(Impl.Pointer, Num()); Impl->Deallocate(Impl.Pointer); Impl.ArrayNum = Range::Num(IL); Impl.ArrayMax = NumToAllocate; Impl.Pointer = Impl->Allocate(Max()); Memory::CopyConstruct(Impl.Pointer, Range::GetData(IL), Num()); return *this; } if (Range::Num(IL) <= Num()) { Memory::CopyAssign(Impl.Pointer, Range::GetData(IL), Range::Num(IL)); Memory::Destruct(Impl.Pointer + Range::Num(IL), Num() - Range::Num(IL)); } else if (Range::Num(IL) <= Max()) { Memory::CopyAssign(Impl.Pointer, Range::GetData(IL), Num()); Memory::CopyConstruct(Impl.Pointer + Num(), Range::GetData(IL) + Num(), Range::Num(IL) - Num()); } else check_no_entry(); Impl.ArrayNum = Range::Num(IL); return *this; } /** Compares the contents of two arrays. */ NODISCARD friend bool operator==(const TArray& LHS, const TArray& RHS) requires (CWeaklyEqualityComparable) { if (LHS.Num() != RHS.Num()) return false; for (size_t Index = 0; Index < LHS.Num(); ++Index) { if (LHS[Index] != RHS[Index]) return false; } return true; } /** Compares the contents of 'LHS' and 'RHS' lexicographically. */ NODISCARD friend auto operator<=>(const TArray& LHS, const TArray& RHS) requires (CSynthThreeWayComparable) { const size_t NumToCompare = LHS.Num() < RHS.Num() ? LHS.Num() : RHS.Num(); for (size_t Index = 0; Index < NumToCompare; ++Index) { if (const auto Result = SynthThreeWayCompare(LHS[Index], RHS[Index]); Result != 0) return Result; } return LHS.Num() <=> RHS.Num(); } /** Inserts 'InValue' before 'Iter' in the container. */ FIterator Insert(FConstIterator Iter, const FElementType& InValue) requires (CCopyable) { checkf(IsValidIterator(Iter), TEXT("Read access violation. Please check IsValidIterator().")); const size_t InsertIndex = Iter - Begin(); const size_t NumToAllocate = Num() + 1 > Max() ? Impl->CalculateSlackGrow(Num() + 1, Max()) : Max(); check(NumToAllocate >= Num() + 1); if (NumToAllocate != Max()) { FElementType* OldAllocation = Impl.Pointer; const size_t NumToDestruct = Num(); Impl.ArrayNum = Num() + 1; Impl.ArrayMax = NumToAllocate; Impl.Pointer = Impl->Allocate(Max()); Memory::MoveConstruct(Impl.Pointer, OldAllocation, InsertIndex); new (Impl.Pointer + InsertIndex) FElementType(InValue); Memory::MoveConstruct(Impl.Pointer + InsertIndex + 1, OldAllocation + InsertIndex, NumToDestruct - InsertIndex); Memory::Destruct(OldAllocation, NumToDestruct); Impl->Deallocate(OldAllocation); return FIterator(this, Impl.Pointer + InsertIndex); } if (InsertIndex != Num()) { new (Impl.Pointer + Num()) FElementType(MoveTemp(Impl.Pointer[Num() - 1])); for (size_t Index = Num() - 1; Index != InsertIndex; --Index) { Impl.Pointer[Index] = MoveTemp(Impl.Pointer[Index - 1]); } Impl.Pointer[InsertIndex] = InValue; } else new (Impl.Pointer + Num()) FElementType(InValue); Impl.ArrayNum = Num() + 1; return FIterator(this, Impl.Pointer + InsertIndex); } /** Inserts 'InValue' before 'Iter' in the container. */ FIterator Insert(FConstIterator Iter, FElementType&& InValue) requires (CMovable) { checkf(IsValidIterator(Iter), TEXT("Read access violation. Please check IsValidIterator().")); const size_t InsertIndex = Iter - Begin(); const size_t NumToAllocate = Num() + 1 > Max() ? Impl->CalculateSlackGrow(Num() + 1, Max()) : Max(); check(NumToAllocate >= Num() + 1); if (NumToAllocate != Max()) { FElementType* OldAllocation = Impl.Pointer; const size_t NumToDestruct = Num(); Impl.ArrayNum = Num() + 1; Impl.ArrayMax = NumToAllocate; Impl.Pointer = Impl->Allocate(Max()); Memory::MoveConstruct(Impl.Pointer, OldAllocation, InsertIndex); new (Impl.Pointer + InsertIndex) FElementType(MoveTemp(InValue)); Memory::MoveConstruct(Impl.Pointer + InsertIndex + 1, OldAllocation + InsertIndex, NumToDestruct - InsertIndex); Memory::Destruct(OldAllocation, NumToDestruct); Impl->Deallocate(OldAllocation); return FIterator(this, Impl.Pointer + InsertIndex); } if (InsertIndex != Num()) { new (Impl.Pointer + Num()) FElementType(MoveTemp(Impl.Pointer[Num() - 1])); for (size_t Index = Num() - 1; Index != InsertIndex; --Index) { Impl.Pointer[Index] = MoveTemp(Impl.Pointer[Index - 1]); } Impl.Pointer[InsertIndex] = MoveTemp(InValue); } else new (Impl.Pointer + Num()) FElementType(MoveTemp(InValue)); Impl.ArrayNum = Num() + 1; return FIterator(this, Impl.Pointer + InsertIndex); } /** Inserts 'Count' copies of the 'InValue' before 'Iter' in the container. */ FIterator Insert(FConstIterator Iter, size_t Count, const FElementType& InValue) requires (CCopyable) { checkf(IsValidIterator(Iter), TEXT("Read access violation. Please check IsValidIterator().")); return Insert(Iter, Range::Repeat(InValue, Count)); } /** Inserts elements from range ['First', 'Last') before 'Iter'. */ template S> requires (CConstructibleFrom> && CAssignableFrom> && CMovable) FIterator Insert(FConstIterator Iter, I First, S Last) { checkf(IsValidIterator(Iter), TEXT("Read access violation. Please check IsValidIterator().")); if constexpr (CForwardIterator) { const size_t InsertIndex = Iter - Begin(); size_t Count = 0; if constexpr (CSizedSentinelFor) { checkf(First - Last <= 0, TEXT("Illegal range iterator. Please check First <= Last.")); Count = Last - First; } else for (I Jter = First; Jter != Last; ++Jter) ++Count; if (Count == 0) return FIterator(this, Impl.Pointer + InsertIndex); const size_t NumToAllocate = Num() + Count > Max() ? Impl->CalculateSlackGrow(Num() + Count, Max()) : Max(); check(NumToAllocate >= Num() + Count); if (NumToAllocate != Max()) { FElementType* OldAllocation = Impl.Pointer; const size_t NumToDestruct = Num(); Impl.ArrayNum = Num() + Count; Impl.ArrayMax = NumToAllocate; Impl.Pointer = Impl->Allocate(Max()); Memory::MoveConstruct(Impl.Pointer, OldAllocation, InsertIndex); for (size_t Index = InsertIndex; Index != InsertIndex + Count; ++Index) { new (Impl.Pointer + Index) FElementType(*First++); } Memory::MoveConstruct(Impl.Pointer + InsertIndex + Count, OldAllocation + InsertIndex, NumToDestruct - InsertIndex); Memory::Destruct(OldAllocation, NumToDestruct); Impl->Deallocate(OldAllocation); return FIterator(this, Impl.Pointer + InsertIndex); } /* * NO(XA) - No Operation * IA(AB) - Insert Assignment * IC(BC) - Insert Construction * MA(CD) - Move Assignment * MC(DO) - Move Construction * * IR(AC) - Insert Range * UI(UO) - Uninitialized * * |X|-------------------| |-UI-|O| * |X|----|A|-IR-| C|-----------|O| * |X|-NO-|A|-IA-|BC|-MA-|D|-MC-|O| * * |X|-----------------| |-UI-|O| * |X|----------|A|-IR-| CD|----|O| * |X|----NO----|A|-IA-|BCD|-MC-|O| * * |X|-----------| |-----UI-----|O| * |X|----|A|----IR-----|C |----|O| * |X|-NO-|A|-IA-|B|-IC-|CD|-MC-|O| * * |X|----------------| |-UI-| O| * |X|----------------|A |-IR-|C O| * |X|-------NO-------|AB|-IC-|CDO| * * |X|-----------| |----UI----| O| * |X|----------------|A |-IR-|C O| * |X|-------NO-------|AB|-IC-|CDO| */ const size_t IndexA = InsertIndex; const size_t IndexC = InsertIndex + Count; const size_t IndexB = Num() > IndexA ? (Num() < IndexC ? Num() : IndexC) : IndexA; const size_t IndexD = Num() > IndexC ? Num() : IndexC; const size_t IndexO = Num() + Count; for (size_t TargetIndex = IndexO - 1; TargetIndex != IndexD - 1; --TargetIndex) { new (Impl.Pointer + TargetIndex) FElementType(MoveTemp(Impl.Pointer[TargetIndex - Count])); } for (size_t TargetIndex = IndexD - 1; TargetIndex != IndexC - 1; --TargetIndex) { Impl.Pointer[TargetIndex] = MoveTemp(Impl.Pointer[TargetIndex - Count]); } for (size_t TargetIndex = IndexA; TargetIndex != IndexB; ++TargetIndex) { Impl.Pointer[TargetIndex] = *First++; } for (size_t TargetIndex = IndexB; TargetIndex != IndexC; ++TargetIndex) { new (Impl.Pointer + TargetIndex) FElementType(*First++); } check(First == Last); Impl.ArrayNum = Num() + Count; return FIterator(this, Impl.Pointer + InsertIndex); } else { TArray Temp(MoveTemp(First), MoveTemp(Last)); return Insert(Iter, MakeMoveIterator(Temp.Begin()), MakeMoveSentinel(Temp.End())); } } /** Inserts elements from range before 'Iter'. */ template requires (CConstructibleFrom> && CAssignableFrom> && CMovable) FORCEINLINE FIterator Insert(FConstIterator Iter, R&& Range) { return Insert(Iter, Range::Begin(Range), Range::End(Range)); } /** Inserts elements from initializer list before 'Iter' in the container. */ FORCEINLINE FIterator Insert(FConstIterator Iter, initializer_list IL) requires (CCopyable) { return Insert(Iter, Range::Begin(IL), Range::End(IL)); } /** Inserts a new element into the container directly before 'Iter'. */ template requires (CConstructibleFrom && CMovable) FIterator Emplace(FConstIterator Iter, Ts&&... Args) { checkf(IsValidIterator(Iter), TEXT("Read access violation. Please check IsValidIterator().")); const size_t InsertIndex = Iter - Begin(); const size_t NumToAllocate = Num() + 1 > Max() ? Impl->CalculateSlackGrow(Num() + 1, Max()) : Max(); check(NumToAllocate >= Num() + 1); if (NumToAllocate != Max()) { FElementType* OldAllocation = Impl.Pointer; const size_t NumToDestruct = Num(); Impl.ArrayNum = Num() + 1; Impl.ArrayMax = NumToAllocate; Impl.Pointer = Impl->Allocate(Max()); Memory::MoveConstruct(Impl.Pointer, OldAllocation, InsertIndex); new (Impl.Pointer + InsertIndex) FElementType(Forward(Args)...); Memory::MoveConstruct(Impl.Pointer + InsertIndex + 1, OldAllocation + InsertIndex, NumToDestruct - InsertIndex); Memory::Destruct(OldAllocation, NumToDestruct); Impl->Deallocate(OldAllocation); return FIterator(this, Impl.Pointer + InsertIndex); } if (InsertIndex != Num()) { new (Impl.Pointer + Num()) FElementType(MoveTemp(Impl.Pointer[Num() - 1])); for (size_t Index = Num() - 1; Index != InsertIndex; --Index) { Impl.Pointer[Index] = MoveTemp(Impl.Pointer[Index - 1]); } Impl.Pointer[InsertIndex] = FElementType(Forward(Args)...); } else new (Impl.Pointer + Num()) FElementType(Forward(Args)...); Impl.ArrayNum = Num() + 1; return FIterator(this, Impl.Pointer + InsertIndex); } /** Removes the element at 'Iter' in the container. Without changing the order of elements. */ FORCEINLINE FIterator StableErase(FConstIterator Iter, bool bAllowShrinking = true) requires (CMovable) { checkf(IsValidIterator(Iter) && Iter != End(), TEXT("Read access violation. Please check IsValidIterator().")); return StableErase(Iter, Iter + 1, bAllowShrinking); } /** Removes the elements in the range ['First', 'Last') in the container. Without changing the order of elements. */ FIterator StableErase(FConstIterator First, FConstIterator Last, bool bAllowShrinking = true) requires (CMovable) { checkf(IsValidIterator(First) && IsValidIterator(Last) && First <= Last, TEXT("Read access violation. Please check IsValidIterator().")); const size_t EraseIndex = First - Begin(); const size_t EraseCount = Last - First; if (EraseCount == 0) return FIterator(this, Impl.Pointer + EraseIndex); const size_t NumToAllocate = bAllowShrinking ? Impl->CalculateSlackShrink(Num() - EraseCount, Max()) : Max(); if (NumToAllocate != Max()) { FElementType* OldAllocation = Impl.Pointer; const size_t NumToDestruct = Num(); Impl.ArrayNum = Num() - EraseCount; Impl.ArrayMax = NumToAllocate; Impl.Pointer = Impl->Allocate(Max()); Memory::MoveConstruct(Impl.Pointer, OldAllocation, EraseIndex); Memory::MoveConstruct(Impl.Pointer + EraseIndex, OldAllocation + EraseIndex + EraseCount, NumToDestruct - EraseIndex - EraseCount); Memory::Destruct(OldAllocation, NumToDestruct); Impl->Deallocate(OldAllocation); return FIterator(this, Impl.Pointer + EraseIndex); } for (size_t Index = EraseIndex + EraseCount; Index != Num(); ++Index) { Impl.Pointer[Index - EraseCount] = MoveTemp(Impl.Pointer[Index]); } Memory::Destruct(Impl.Pointer + Num() - EraseCount, EraseCount); Impl.ArrayNum = Num() - EraseCount; return FIterator(this, Impl.Pointer + EraseIndex); } /** Removes the element at 'Iter' in the container. But it may change the order of elements. */ FORCEINLINE FIterator Erase(FConstIterator Iter, bool bAllowShrinking = true) requires (CMovable) { checkf(IsValidIterator(Iter) && Iter != End(), TEXT("Read access violation. Please check IsValidIterator().")); return Erase(Iter, Iter + 1, bAllowShrinking); } /** Removes the elements in the range ['First', 'Last') in the container. But it may change the order of elements. */ FIterator Erase(FConstIterator First, FConstIterator Last, bool bAllowShrinking = true) requires (CMovable) { checkf(IsValidIterator(First) && IsValidIterator(Last) && First <= Last, TEXT("Read access violation. Please check IsValidIterator().")); const size_t EraseIndex = First - Begin(); const size_t EraseCount = Last - First; if (EraseCount == 0) return FIterator(this, Impl.Pointer + EraseIndex); const size_t NumToAllocate = bAllowShrinking ? Impl->CalculateSlackShrink(Num() - EraseCount, Max()) : Max(); if (NumToAllocate != Max()) { FElementType* OldAllocation = Impl.Pointer; const size_t NumToDestruct = Num(); Impl.ArrayNum = Num() - EraseCount; Impl.ArrayMax = NumToAllocate; Impl.Pointer = Impl->Allocate(Max()); Memory::MoveConstruct(Impl.Pointer, OldAllocation, EraseIndex); Memory::MoveConstruct(Impl.Pointer + EraseIndex, OldAllocation + EraseIndex + EraseCount, NumToDestruct - EraseIndex - EraseCount); Memory::Destruct(OldAllocation, NumToDestruct); Impl->Deallocate(OldAllocation); return FIterator(this, Impl.Pointer + EraseIndex); } for (size_t Index = 0; Index != EraseCount; ++Index) { if (EraseIndex + Index >= Num() - EraseCount) break; Impl.Pointer[EraseIndex + Index] = MoveTemp(Impl.Pointer[Num() - Index - 1]); } Memory::Destruct(Impl.Pointer + Num() - EraseCount, EraseCount); Impl.ArrayNum = Num() - EraseCount; return FIterator(this, Impl.Pointer + EraseIndex); } /** Appends the given element value to the end of the container. */ FORCEINLINE void PushBack(const FElementType& InValue) requires (CCopyable) { EmplaceBack(InValue); } /** Appends the given element value to the end of the container. */ FORCEINLINE void PushBack(FElementType&& InValue) requires (CMovable) { EmplaceBack(MoveTemp(InValue)); } /** Appends a new element to the end of the container. */ template requires (CConstructibleFrom && CMovable) FElementType& EmplaceBack(Ts&&... Args) { const size_t NumToAllocate = Num() + 1 > Max() ? Impl->CalculateSlackGrow(Num() + 1, Max()) : Max(); check(NumToAllocate >= Num() + 1); if (NumToAllocate != Max()) { FElementType* OldAllocation = Impl.Pointer; const size_t NumToDestruct = Num(); Impl.ArrayNum = Num() + 1; Impl.ArrayMax = NumToAllocate; Impl.Pointer = Impl->Allocate(Max()); Memory::MoveConstruct(Impl.Pointer, OldAllocation, Num() - 1); new (Impl.Pointer + Num() - 1) FElementType(Forward(Args)...); Memory::Destruct(OldAllocation, NumToDestruct); Impl->Deallocate(OldAllocation); return Impl.Pointer[Num() - 1]; } new (Impl.Pointer + Num()) FElementType(Forward(Args)...); Impl.ArrayNum = Num() + 1; return Impl.Pointer[Num() - 1]; } /** Removes the last element of the container. The array cannot be empty. */ FORCEINLINE void PopBack(bool bAllowShrinking = true) requires (CMovable) { Erase(End() - 1, bAllowShrinking); } /** Resizes the container to contain 'Count' elements. Additional default elements are appended. */ void SetNum(size_t Count, bool bAllowShrinking = true) requires (CDefaultConstructible && CMovable) { size_t NumToAllocate = Count; NumToAllocate = NumToAllocate > Max() ? Impl->CalculateSlackGrow(Count, Max()) : NumToAllocate; NumToAllocate = NumToAllocate < Max() ? (bAllowShrinking ? Impl->CalculateSlackShrink(Count, Max()) : Max()) : NumToAllocate; if (NumToAllocate != Max()) { FElementType* OldAllocation = Impl.Pointer; const size_t NumToDestruct = Num(); Impl.ArrayNum = Count; Impl.ArrayMax = NumToAllocate; Impl.Pointer = Impl->Allocate(Max()); if (NumToDestruct <= Num()) { Memory::MoveConstruct(Impl.Pointer, OldAllocation, NumToDestruct); Memory::DefaultConstruct(Impl.Pointer + NumToDestruct, Num() - NumToDestruct); } else { Memory::MoveConstruct(Impl.Pointer, OldAllocation, Num()); } Memory::Destruct(OldAllocation, NumToDestruct); Impl->Deallocate(OldAllocation); return; } if (Count <= Num()) { Memory::Destruct(Impl.Pointer + Count, Num() - Count); } else if (Count <= Max()) { Memory::DefaultConstruct(Impl.Pointer + Num(), Count - Num()); } else check_no_entry(); Impl.ArrayNum = Count; } /** Resizes the container to contain 'Count' elements. Additional copies of 'InValue' are appended. */ void SetNum(size_t Count, const FElementType& InValue, bool bAllowShrinking = true) requires (CCopyConstructible && CMovable) { size_t NumToAllocate = Count; NumToAllocate = NumToAllocate > Max() ? Impl->CalculateSlackGrow(Count, Max()) : NumToAllocate; NumToAllocate = NumToAllocate < Max() ? (bAllowShrinking ? Impl->CalculateSlackShrink(Count, Max()) : Max()) : NumToAllocate; if (NumToAllocate != Max()) { FElementType* OldAllocation = Impl.Pointer; const size_t NumToDestruct = Num(); Impl.ArrayNum = Count; Impl.ArrayMax = NumToAllocate; Impl.Pointer = Impl->Allocate(Max()); if (NumToDestruct <= Num()) { Memory::MoveConstruct(Impl.Pointer, OldAllocation, NumToDestruct); for (size_t Index = NumToDestruct; Index != Num(); ++Index) { new (Impl.Pointer + Index) FElementType(InValue); } } else { Memory::MoveConstruct(Impl.Pointer, OldAllocation, Num()); } Memory::Destruct(OldAllocation, NumToDestruct); Impl->Deallocate(OldAllocation); return; } if (Count <= Num()) { Memory::Destruct(Impl.Pointer + Count, Num() - Count); } else if (Count <= Max()) { for (size_t Index = Num(); Index != Count; ++Index) { new (Impl.Pointer + Index) FElementType(InValue); } } else check_no_entry(); Impl.ArrayNum = Count; } /** Increase the max capacity of the array to a value that's greater or equal to 'Count'. */ void Reserve(size_t Count) requires (CMovable) { if (Count <= Max()) return; const size_t NumToAllocate = Impl->CalculateSlackReserve(Count); FElementType* OldAllocation = Impl.Pointer; check(NumToAllocate > Max()); Impl.ArrayMax = NumToAllocate; Impl.Pointer = Impl->Allocate(Max()); Memory::MoveConstruct(Impl.Pointer, OldAllocation, Num()); Memory::Destruct(OldAllocation, Num()); Impl->Deallocate(OldAllocation); } /** Requests the removal of unused capacity. */ void Shrink() { size_t NumToAllocate = Impl->CalculateSlackReserve(Num()); check(NumToAllocate <= Max()); if (NumToAllocate == Max()) return; FElementType* OldAllocation = Impl.Pointer; Impl.ArrayMax = NumToAllocate; Impl.Pointer = Impl->Allocate(Max()); Memory::MoveConstruct(Impl.Pointer, OldAllocation, Num()); Memory::Destruct(OldAllocation, Num()); Impl->Deallocate(OldAllocation); } /** @return The pointer to the underlying element storage. */ NODISCARD FORCEINLINE FElementType* GetData() { return Impl.Pointer; } NODISCARD FORCEINLINE const FElementType* GetData() const { return Impl.Pointer; } /** @return The iterator to the first or end element. */ NODISCARD FORCEINLINE FIterator Begin() { return FIterator(this, Impl.Pointer); } NODISCARD FORCEINLINE FConstIterator Begin() const { return FConstIterator(this, Impl.Pointer); } NODISCARD FORCEINLINE FIterator End() { return FIterator(this, Impl.Pointer + Num()); } NODISCARD FORCEINLINE FConstIterator End() const { return FConstIterator(this, Impl.Pointer + Num()); } /** @return The reverse iterator to the first or end element. */ NODISCARD FORCEINLINE FReverseIterator RBegin() { return FReverseIterator(End()); } NODISCARD FORCEINLINE FConstReverseIterator RBegin() const { return FConstReverseIterator(End()); } NODISCARD FORCEINLINE FReverseIterator REnd() { return FReverseIterator(Begin()); } NODISCARD FORCEINLINE FConstReverseIterator REnd() const { return FConstReverseIterator(Begin()); } /** @return The number of elements in the container. */ NODISCARD FORCEINLINE size_t Num() const { return Impl.ArrayNum; } /** @return The number of elements that can be held in currently allocated storage. */ NODISCARD FORCEINLINE size_t Max() const { return Impl.ArrayMax; } /** @return true if the container is empty, false otherwise. */ NODISCARD FORCEINLINE bool IsEmpty() const { return Num() == 0; } /** @return true if the iterator is valid, false otherwise. */ NODISCARD FORCEINLINE bool IsValidIterator(FConstIterator Iter) const { return Begin() <= Iter && Iter <= End(); } /** @return The reference to the requested element. */ NODISCARD FORCEINLINE FElementType& operator[](size_t Index) { checkf(Index < Num(), TEXT("Read access violation. Please check IsValidIterator().")); return Impl.Pointer[Index]; } NODISCARD FORCEINLINE const FElementType& operator[](size_t Index) const { checkf(Index < Num(), TEXT("Read access violation. Please check IsValidIterator().")); return Impl.Pointer[Index]; } /** @return The reference to the first or last element. */ NODISCARD FORCEINLINE FElementType& Front() { return *Begin(); } NODISCARD FORCEINLINE const FElementType& Front() const { return *Begin(); } NODISCARD FORCEINLINE FElementType& Back() { return *(End() - 1); } NODISCARD FORCEINLINE const FElementType& Back() const { return *(End() - 1); } /** Erases all elements from the container. After this call, Num() returns zero. */ void Reset(bool bAllowShrinking = true) { const size_t NumToAllocate = Impl->CalculateSlackReserve(0); if (bAllowShrinking && NumToAllocate != Max()) { Memory::Destruct(Impl.Pointer, Num()); Impl->Deallocate(Impl.Pointer); Impl.ArrayNum = 0; Impl.ArrayMax = Impl->CalculateSlackReserve(Num()); Impl.Pointer = Impl->Allocate(Max()); return; } Memory::Destruct(Impl.Pointer, Num()); Impl.ArrayNum = 0; } /** Overloads the GetTypeHash algorithm for TArray. */ NODISCARD friend FORCEINLINE size_t GetTypeHash(const TArray& A) requires (CHashable) { size_t Result = 0; for (FConstIterator Iter = A.Begin(); Iter != A.End(); ++Iter) { Result = HashCombine(Result, GetTypeHash(*Iter)); } return Result; } /** Overloads the Swap algorithm for TArray. */ friend void Swap(TArray& A, TArray& B) requires (CMovable) { const bool bIsTransferable = A.Impl->IsTransferable(A.Impl.Pointer) && B.Impl->IsTransferable(B.Impl.Pointer); if (bIsTransferable) { Swap(A.Impl.ArrayNum, B.Impl.ArrayNum); Swap(A.Impl.ArrayMax, B.Impl.ArrayMax); Swap(A.Impl.Pointer, B.Impl.Pointer); return; } TArray Temp = MoveTemp(A); A = MoveTemp(B); B = MoveTemp(Temp); } ENABLE_RANGE_BASED_FOR_LOOP_SUPPORT private: ALLOCATOR_WRAPPER_BEGIN(FAllocatorType, FElementType, Impl) { size_t ArrayNum; size_t ArrayMax; FElementType* Pointer; } ALLOCATOR_WRAPPER_END(FAllocatorType, FElementType, Impl) private: template class TIteratorImpl final { public: using FElementType = T; FORCEINLINE TIteratorImpl() = default; # if DO_CHECK FORCEINLINE TIteratorImpl(const TIteratorImpl& InValue) requires (bConst) : Owner(InValue.Owner), Pointer(InValue.Pointer) { } # else FORCEINLINE TIteratorImpl(const TIteratorImpl& InValue) requires (bConst) : Pointer(InValue.Pointer) { } # endif FORCEINLINE TIteratorImpl(const TIteratorImpl&) = default; FORCEINLINE TIteratorImpl(TIteratorImpl&&) = default; FORCEINLINE TIteratorImpl& operator=(const TIteratorImpl&) = default; FORCEINLINE TIteratorImpl& operator=(TIteratorImpl&&) = default; NODISCARD friend FORCEINLINE bool operator==(const TIteratorImpl& LHS, const TIteratorImpl& RHS) { return LHS.Pointer == RHS.Pointer; } NODISCARD friend FORCEINLINE strong_ordering operator<=>(const TIteratorImpl& LHS, const TIteratorImpl& RHS) { return LHS.Pointer <=> RHS.Pointer; } NODISCARD FORCEINLINE U& operator*() const { CheckThis(true ); return *Pointer; } NODISCARD FORCEINLINE U* operator->() const { CheckThis(false); return Pointer; } NODISCARD FORCEINLINE U& operator[](ptrdiff Index) const { TIteratorImpl Temp = *this + Index; return *Temp; } FORCEINLINE TIteratorImpl& operator++() { ++Pointer; CheckThis(); return *this; } FORCEINLINE TIteratorImpl& operator--() { --Pointer; CheckThis(); return *this; } FORCEINLINE TIteratorImpl operator++(int) { TIteratorImpl Temp = *this; ++*this; return Temp; } FORCEINLINE TIteratorImpl operator--(int) { TIteratorImpl Temp = *this; --*this; return Temp; } FORCEINLINE TIteratorImpl& operator+=(ptrdiff Offset) { Pointer += Offset; CheckThis(); return *this; } FORCEINLINE TIteratorImpl& operator-=(ptrdiff Offset) { Pointer -= Offset; CheckThis(); return *this; } NODISCARD friend FORCEINLINE TIteratorImpl operator+(TIteratorImpl Iter, ptrdiff Offset) { TIteratorImpl Temp = Iter; Temp += Offset; return Temp; } NODISCARD friend FORCEINLINE TIteratorImpl operator+(ptrdiff Offset, TIteratorImpl Iter) { TIteratorImpl Temp = Iter; Temp += Offset; return Temp; } NODISCARD FORCEINLINE TIteratorImpl operator-(ptrdiff Offset) const { TIteratorImpl Temp = *this; Temp -= Offset; return Temp; } NODISCARD friend FORCEINLINE ptrdiff operator-(const TIteratorImpl& LHS, const TIteratorImpl& RHS) { LHS.CheckThis(); RHS.CheckThis(); return LHS.Pointer - RHS.Pointer; } private: # if DO_CHECK const TArray* Owner = nullptr; # endif U* Pointer = nullptr; # if DO_CHECK FORCEINLINE TIteratorImpl(const TArray* InContainer, U* InPointer) : Owner(InContainer), Pointer(InPointer) { } # else FORCEINLINE TIteratorImpl(const TArray* InContainer, U* InPointer) : Pointer(InPointer) { } # endif FORCEINLINE void CheckThis(bool bExceptEnd = false) const { checkf(Owner && Owner->IsValidIterator(*this), TEXT("Read access violation. Please check IsValidIterator().")); checkf(!(bExceptEnd && Owner->End() == *this), TEXT("Read access violation. Please check IsValidIterator().")); } template friend class TIteratorImpl; friend TArray; }; }; template TArray(I, S) -> TArray>; template TArray(R) -> TArray>; template TArray(initializer_list) -> TArray; NAMESPACE_MODULE_END(Utility) NAMESPACE_MODULE_END(Redcraft) NAMESPACE_REDCRAFT_END