1098 lines
36 KiB
C++

#pragma once
#include "CoreTypes.h"
#include "TypeTraits/TypeTraits.h"
#include "Templates/Utility.h"
#include "Templates/TypeHash.h"
#include "Memory/Allocator.h"
#include "Memory/MemoryOperator.h"
#include "Iterators/Utility.h"
#include "Iterators/BasicIterator.h"
#include "Iterators/Sentinel.h"
#include "Iterators/ReverseIterator.h"
#include "Ranges/Utility.h"
#include "Ranges/Factory.h"
#include "Miscellaneous/Compare.h"
#include "Miscellaneous/AssertionMacros.h"
NAMESPACE_REDCRAFT_BEGIN
NAMESPACE_MODULE_BEGIN(Redcraft)
NAMESPACE_MODULE_BEGIN(Utility)
/** Dynamic array. The elements are stored contiguously, which means that elements can be accessed not only through iterators, but also using offsets to regular pointers to elements. */
template <CAllocatableObject T, CAllocator<T> Allocator = FHeapAllocator>
class TArray
{
private:
template <bool bConst, typename = TConditional<bConst, const T, T>>
class TIteratorImpl;
public:
using FElementType = T;
using FAllocatorType = Allocator;
using FReference = T&;
using FConstReference = const T&;
using FIterator = TIteratorImpl<false>;
using FConstIterator = TIteratorImpl<true >;
using FReverseIterator = TReverseIterator< FIterator>;
using FConstReverseIterator = TReverseIterator<FConstIterator>;
static_assert(CContiguousIterator< FIterator>);
static_assert(CContiguousIterator<FConstIterator>);
/** Default constructor. Constructs an empty container with a default-constructed allocator. */
FORCEINLINE TArray() : TArray(0) { }
/** Constructs the container with 'Count' default instances of T. */
explicit TArray(size_t Count) requires (CDefaultConstructible<T>)
{
Impl.ArrayNum = Count;
Impl.ArrayMax = Impl->CalculateSlackReserve(Num());
Impl.Pointer = Impl->Allocate(Max());
Memory::DefaultConstruct<FElementType>(Impl.Pointer, Num());
}
/** Constructs the container with 'Count' copies of elements with 'InValue'. */
FORCEINLINE explicit TArray(size_t Count, const FElementType& InValue) requires (CCopyConstructible<T>)
: TArray(Range::Repeat(InValue, Count))
{ }
/** Constructs the container with the contents of the range ['First', 'Last'). */
template <CInputIterator I, CSentinelFor<I> S> requires (CConstructibleFrom<T, TIteratorReference<I>> && CMovable<T>)
explicit TArray(I First, S Last)
{
if constexpr (CForwardIterator<I>)
{
size_t Count = 0;
if constexpr (CSizedSentinelFor<S, I>)
{
checkf(First - Last <= 0, TEXT("Illegal range iterator. Please check First <= Last."));
Count = Last - First;
}
else for (I Iter = First; Iter != Last; ++Iter) ++Count;
Impl.ArrayNum = Count;
Impl.ArrayMax = Impl->CalculateSlackReserve(Num());
Impl.Pointer = Impl->Allocate(Max());
for (size_t Index = 0; Index != Count; ++Index)
{
new (Impl.Pointer + Index) FElementType(*First++);
}
}
else
{
Impl.ArrayNum = 0;
Impl.ArrayMax = Impl->CalculateSlackReserve(Num());
Impl.Pointer = Impl->Allocate(Max());
while (First != Last)
{
PushBack(*First);
++First;
}
}
}
/** Constructs the container with the contents of the range. */
template <CInputRange R> requires (!CSameAs<TRemoveCVRef<R>, TArray> && CConstructibleFrom<T, TRangeReference<R>> && CMovable<T>)
FORCEINLINE explicit TArray(R&& Range) : TArray(Range::Begin(Range), Range::End(Range)) { }
/** Copy constructor. Constructs the container with the copy of the contents of 'InValue'. */
TArray(const TArray& InValue) requires (CCopyConstructible<T>)
{
Impl.ArrayNum = InValue.Num();
Impl.ArrayMax = Impl->CalculateSlackReserve(Num());
Impl.Pointer = Impl->Allocate(Max());
Memory::CopyConstruct<FElementType>(Impl.Pointer, InValue.Impl.Pointer, Num());
}
/** Move constructor. After the move, 'InValue' is guaranteed to be empty. */
TArray(TArray&& InValue) requires (CMoveConstructible<T>)
{
Impl.ArrayNum = InValue.Num();
if (InValue.Impl->IsTransferable(InValue.Impl.Pointer))
{
Impl.ArrayMax = InValue.Max();
Impl.Pointer = InValue.Impl.Pointer;
InValue.Impl.ArrayNum = 0;
InValue.Impl.ArrayMax = InValue.Impl->CalculateSlackReserve(InValue.Num());
InValue.Impl.Pointer = InValue.Impl->Allocate(InValue.Max());
}
else
{
Impl.ArrayMax = Impl->CalculateSlackReserve(Num());
Impl.Pointer = Impl->Allocate(Max());
Memory::MoveConstruct<FElementType>(Impl.Pointer, InValue.Impl.Pointer, Num());
}
InValue.Reset();
}
/** Constructs the container with the contents of the initializer list. */
FORCEINLINE TArray(initializer_list<FElementType> IL) requires (CCopyConstructible<T>) : TArray(Range::Begin(IL), Range::End(IL)) { }
/** Destructs the array. The destructors of the elements are called and the used storage is deallocated. */
~TArray()
{
Memory::Destruct(Impl.Pointer,Num());
Impl->Deallocate(Impl.Pointer);
}
/** Copy assignment operator. Replaces the contents with a copy of the contents of 'InValue'. */
TArray& operator=(const TArray& InValue) requires (CCopyable<T>)
{
if (&InValue == this) UNLIKELY return *this;
size_t NumToAllocate = InValue.Num();
NumToAllocate = NumToAllocate > Max() ? Impl->CalculateSlackGrow(InValue.Num(), Max()) : NumToAllocate;
NumToAllocate = NumToAllocate < Max() ? Impl->CalculateSlackShrink(InValue.Num(), Max()) : NumToAllocate;
if (NumToAllocate != Max())
{
Memory::Destruct(Impl.Pointer, Num());
Impl->Deallocate(Impl.Pointer);
Impl.ArrayNum = InValue.Num();
Impl.ArrayMax = NumToAllocate;
Impl.Pointer = Impl->Allocate(Max());
Memory::CopyConstruct<FElementType>(Impl.Pointer, InValue.Impl.Pointer, Num());
return *this;
}
if (InValue.Num() <= Num())
{
Memory::CopyAssign(Impl.Pointer, InValue.Impl.Pointer, InValue.Num());
Memory::Destruct(Impl.Pointer + InValue.Num(), Num() - InValue.Num());
}
else if (InValue.Num() <= Max())
{
Memory::CopyAssign(Impl.Pointer, InValue.Impl.Pointer, Num());
Memory::CopyConstruct<FElementType>(Impl.Pointer + Num(), InValue.Impl.Pointer + Num(), InValue.Num() - Num());
}
else check_no_entry();
Impl.ArrayNum = InValue.Num();
return *this;
}
/** Move assignment operator. After the move, 'InValue' is guaranteed to be empty. */
TArray& operator=(TArray&& InValue) requires (CMovable<T>)
{
if (&InValue == this) UNLIKELY return *this;
if (InValue.Impl->IsTransferable(InValue.Impl.Pointer))
{
Memory::Destruct(Impl.Pointer, Num());
Impl->Deallocate(Impl.Pointer);
Impl.ArrayNum = InValue.Num();
Impl.ArrayMax = InValue.Max();
Impl.Pointer = InValue.Impl.Pointer;
InValue.Impl.ArrayNum = 0;
InValue.Impl.ArrayMax = InValue.Impl->CalculateSlackReserve(InValue.Num());
InValue.Impl.Pointer = InValue.Impl->Allocate(InValue.Max());
return *this;
}
size_t NumToAllocate = InValue.Num();
NumToAllocate = NumToAllocate > Max() ? Impl->CalculateSlackGrow(InValue.Num(), Max()) : NumToAllocate;
NumToAllocate = NumToAllocate < Max() ? Impl->CalculateSlackShrink(InValue.Num(), Max()) : NumToAllocate;
if (NumToAllocate != Max())
{
Memory::Destruct(Impl.Pointer, Num());
Impl->Deallocate(Impl.Pointer);
Impl.ArrayNum = InValue.Num();
Impl.ArrayMax = NumToAllocate;
Impl.Pointer = Impl->Allocate(Max());
Memory::MoveConstruct<FElementType>(Impl.Pointer, InValue.Impl.Pointer, Num());
InValue.Reset();
return *this;
}
if (InValue.Num() <= Num())
{
Memory::MoveAssign(Impl.Pointer, InValue.Impl.Pointer, InValue.Num());
Memory::Destruct(Impl.Pointer + InValue.Num(), Num() - InValue.Num());
}
else if (InValue.Num() <= Max())
{
Memory::MoveAssign(Impl.Pointer, InValue.Impl.Pointer, Num());
Memory::MoveConstruct<FElementType>(Impl.Pointer + Num(), InValue.Impl.Pointer + Num(), InValue.Num() - Num());
}
else check_no_entry();
Impl.ArrayNum = InValue.Num();
InValue.Reset();
return *this;
}
/** Replaces the contents with those identified by initializer list. */
TArray& operator=(initializer_list<FElementType> IL) requires (CCopyable<T>)
{
size_t NumToAllocate = Range::Num(IL);
NumToAllocate = NumToAllocate > Max() ? Impl->CalculateSlackGrow (Range::Num(IL), Max()) : NumToAllocate;
NumToAllocate = NumToAllocate < Max() ? Impl->CalculateSlackShrink(Range::Num(IL), Max()) : NumToAllocate;
if (NumToAllocate != Max())
{
Memory::Destruct(Impl.Pointer, Num());
Impl->Deallocate(Impl.Pointer);
Impl.ArrayNum = Range::Num(IL);
Impl.ArrayMax = NumToAllocate;
Impl.Pointer = Impl->Allocate(Max());
Memory::CopyConstruct<FElementType>(Impl.Pointer, Range::GetData(IL), Num());
return *this;
}
if (Range::Num(IL) <= Num())
{
Memory::CopyAssign(Impl.Pointer, Range::GetData(IL), Range::Num(IL));
Memory::Destruct(Impl.Pointer + Range::Num(IL), Num() - Range::Num(IL));
}
else if (Range::Num(IL) <= Max())
{
Memory::CopyAssign(Impl.Pointer, Range::GetData(IL), Num());
Memory::CopyConstruct<FElementType>(Impl.Pointer + Num(), Range::GetData(IL) + Num(), Range::Num(IL) - Num());
}
else check_no_entry();
Impl.ArrayNum = Range::Num(IL);
return *this;
}
/** Compares the contents of two arrays. */
NODISCARD friend bool operator==(const TArray& LHS, const TArray& RHS) requires (CWeaklyEqualityComparable<T>)
{
if (LHS.Num() != RHS.Num()) return false;
for (size_t Index = 0; Index < LHS.Num(); ++Index)
{
if (LHS[Index] != RHS[Index]) return false;
}
return true;
}
/** Compares the contents of 'LHS' and 'RHS' lexicographically. */
NODISCARD friend auto operator<=>(const TArray& LHS, const TArray& RHS) requires (CSynthThreeWayComparable<T>)
{
const size_t NumToCompare = LHS.Num() < RHS.Num() ? LHS.Num() : RHS.Num();
for (size_t Index = 0; Index < NumToCompare; ++Index)
{
if (const auto Result = SynthThreeWayCompare(LHS[Index], RHS[Index]); Result != 0) return Result;
}
return LHS.Num() <=> RHS.Num();
}
/** Inserts 'InValue' before 'Iter' in the container. */
FIterator Insert(FConstIterator Iter, const FElementType& InValue) requires (CCopyable<T>)
{
checkf(IsValidIterator(Iter), TEXT("Read access violation. Please check IsValidIterator()."));
const size_t InsertIndex = Iter - Begin();
const size_t NumToAllocate = Num() + 1 > Max() ? Impl->CalculateSlackGrow(Num() + 1, Max()) : Max();
check(NumToAllocate >= Num() + 1);
if (NumToAllocate != Max())
{
FElementType* OldAllocation = Impl.Pointer;
const size_t NumToDestruct = Num();
Impl.ArrayNum = Num() + 1;
Impl.ArrayMax = NumToAllocate;
Impl.Pointer = Impl->Allocate(Max());
Memory::MoveConstruct<FElementType>(Impl.Pointer, OldAllocation, InsertIndex);
new (Impl.Pointer + InsertIndex) FElementType(InValue);
Memory::MoveConstruct<FElementType>(Impl.Pointer + InsertIndex + 1, OldAllocation + InsertIndex, NumToDestruct - InsertIndex);
Memory::Destruct(OldAllocation, NumToDestruct);
Impl->Deallocate(OldAllocation);
return FIterator(this, Impl.Pointer + InsertIndex);
}
if (InsertIndex != Num())
{
new (Impl.Pointer + Num()) FElementType(MoveTemp(Impl.Pointer[Num() - 1]));
for (size_t Index = Num() - 1; Index != InsertIndex; --Index)
{
Impl.Pointer[Index] = MoveTemp(Impl.Pointer[Index - 1]);
}
Impl.Pointer[InsertIndex] = InValue;
}
else new (Impl.Pointer + Num()) FElementType(InValue);
Impl.ArrayNum = Num() + 1;
return FIterator(this, Impl.Pointer + InsertIndex);
}
/** Inserts 'InValue' before 'Iter' in the container. */
FIterator Insert(FConstIterator Iter, FElementType&& InValue) requires (CMovable<T>)
{
checkf(IsValidIterator(Iter), TEXT("Read access violation. Please check IsValidIterator()."));
const size_t InsertIndex = Iter - Begin();
const size_t NumToAllocate = Num() + 1 > Max() ? Impl->CalculateSlackGrow(Num() + 1, Max()) : Max();
check(NumToAllocate >= Num() + 1);
if (NumToAllocate != Max())
{
FElementType* OldAllocation = Impl.Pointer;
const size_t NumToDestruct = Num();
Impl.ArrayNum = Num() + 1;
Impl.ArrayMax = NumToAllocate;
Impl.Pointer = Impl->Allocate(Max());
Memory::MoveConstruct<FElementType>(Impl.Pointer, OldAllocation, InsertIndex);
new (Impl.Pointer + InsertIndex) FElementType(MoveTemp(InValue));
Memory::MoveConstruct<FElementType>(Impl.Pointer + InsertIndex + 1, OldAllocation + InsertIndex, NumToDestruct - InsertIndex);
Memory::Destruct(OldAllocation, NumToDestruct);
Impl->Deallocate(OldAllocation);
return FIterator(this, Impl.Pointer + InsertIndex);
}
if (InsertIndex != Num())
{
new (Impl.Pointer + Num()) FElementType(MoveTemp(Impl.Pointer[Num() - 1]));
for (size_t Index = Num() - 1; Index != InsertIndex; --Index)
{
Impl.Pointer[Index] = MoveTemp(Impl.Pointer[Index - 1]);
}
Impl.Pointer[InsertIndex] = MoveTemp(InValue);
}
else new (Impl.Pointer + Num()) FElementType(MoveTemp(InValue));
Impl.ArrayNum = Num() + 1;
return FIterator(this, Impl.Pointer + InsertIndex);
}
/** Inserts 'Count' copies of the 'InValue' before 'Iter' in the container. */
FIterator Insert(FConstIterator Iter, size_t Count, const FElementType& InValue) requires (CCopyable<T>)
{
checkf(IsValidIterator(Iter), TEXT("Read access violation. Please check IsValidIterator()."));
return Insert(Iter, Range::Repeat(InValue, Count));
}
/** Inserts elements from range ['First', 'Last') before 'Iter'. */
template <CInputIterator I, CSentinelFor<I> S> requires (CConstructibleFrom<T, TIteratorReference<I>> && CAssignableFrom<T&, TIteratorReference<I>> && CMovable<T>)
FIterator Insert(FConstIterator Iter, I First, S Last)
{
checkf(IsValidIterator(Iter), TEXT("Read access violation. Please check IsValidIterator()."));
if constexpr (CForwardIterator<I>)
{
const size_t InsertIndex = Iter - Begin();
size_t Count = 0;
if constexpr (CSizedSentinelFor<S, I>)
{
checkf(First - Last <= 0, TEXT("Illegal range iterator. Please check First <= Last."));
Count = Last - First;
}
else for (I Jter = First; Jter != Last; ++Jter) ++Count;
if (Count == 0) return FIterator(this, Impl.Pointer + InsertIndex);
const size_t NumToAllocate = Num() + Count > Max() ? Impl->CalculateSlackGrow(Num() + Count, Max()) : Max();
check(NumToAllocate >= Num() + Count);
if (NumToAllocate != Max())
{
FElementType* OldAllocation = Impl.Pointer;
const size_t NumToDestruct = Num();
Impl.ArrayNum = Num() + Count;
Impl.ArrayMax = NumToAllocate;
Impl.Pointer = Impl->Allocate(Max());
Memory::MoveConstruct<FElementType>(Impl.Pointer, OldAllocation, InsertIndex);
for (size_t Index = InsertIndex; Index != InsertIndex + Count; ++Index)
{
new (Impl.Pointer + Index) FElementType(*First++);
}
Memory::MoveConstruct<FElementType>(Impl.Pointer + InsertIndex + Count, OldAllocation + InsertIndex, NumToDestruct - InsertIndex);
Memory::Destruct(OldAllocation, NumToDestruct);
Impl->Deallocate(OldAllocation);
return FIterator(this, Impl.Pointer + InsertIndex);
}
/*
* NO(XA) - No Operation
* IA(AB) - Insert Assignment
* IC(BC) - Insert Construction
* MA(CD) - Move Assignment
* MC(DO) - Move Construction
*
* IR(AC) - Insert Range
* UI(UO) - Uninitialized
*
* |X|-------------------| |-UI-|O|
* |X|----|A|-IR-| C|-----------|O|
* |X|-NO-|A|-IA-|BC|-MA-|D|-MC-|O|
*
* |X|-----------------| |-UI-|O|
* |X|----------|A|-IR-| CD|----|O|
* |X|----NO----|A|-IA-|BCD|-MC-|O|
*
* |X|-----------| |-----UI-----|O|
* |X|----|A|----IR-----|C |----|O|
* |X|-NO-|A|-IA-|B|-IC-|CD|-MC-|O|
*
* |X|----------------| |-UI-| O|
* |X|----------------|A |-IR-|C O|
* |X|-------NO-------|AB|-IC-|CDO|
*
* |X|-----------| |----UI----| O|
* |X|----------------|A |-IR-|C O|
* |X|-------NO-------|AB|-IC-|CDO|
*/
const size_t IndexA = InsertIndex;
const size_t IndexC = InsertIndex + Count;
const size_t IndexB = Num() > IndexA ? (Num() < IndexC ? Num() : IndexC) : IndexA;
const size_t IndexD = Num() > IndexC ? Num() : IndexC;
const size_t IndexO = Num() + Count;
for (size_t TargetIndex = IndexO - 1; TargetIndex != IndexD - 1; --TargetIndex)
{
new (Impl.Pointer + TargetIndex) FElementType(MoveTemp(Impl.Pointer[TargetIndex - Count]));
}
for (size_t TargetIndex = IndexD - 1; TargetIndex != IndexC - 1; --TargetIndex)
{
Impl.Pointer[TargetIndex] = MoveTemp(Impl.Pointer[TargetIndex - Count]);
}
for (size_t TargetIndex = IndexA; TargetIndex != IndexB; ++TargetIndex)
{
Impl.Pointer[TargetIndex] = *First++;
}
for (size_t TargetIndex = IndexB; TargetIndex != IndexC; ++TargetIndex)
{
new (Impl.Pointer + TargetIndex) FElementType(*First++);
}
check(First == Last);
Impl.ArrayNum = Num() + Count;
return FIterator(this, Impl.Pointer + InsertIndex);
}
else
{
TArray Temp(MoveTemp(First), MoveTemp(Last));
return Insert(Iter, MakeMoveIterator(Temp.Begin()), MakeMoveSentinel(Temp.End()));
}
}
/** Inserts elements from range before 'Iter'. */
template <CInputRange R> requires (CConstructibleFrom<T, TRangeReference<R>> && CAssignableFrom<T&, TRangeReference<R>> && CMovable<T>)
FORCEINLINE FIterator Insert(FConstIterator Iter, R&& Range)
{
return Insert(Iter, Range::Begin(Range), Range::End(Range));
}
/** Inserts elements from initializer list before 'Iter' in the container. */
FORCEINLINE FIterator Insert(FConstIterator Iter, initializer_list<FElementType> IL) requires (CCopyable<T>)
{
return Insert(Iter, Range::Begin(IL), Range::End(IL));
}
/** Inserts a new element into the container directly before 'Iter'. */
template <typename... Ts> requires (CConstructibleFrom<T, Ts...> && CMovable<T>)
FIterator Emplace(FConstIterator Iter, Ts&&... Args)
{
checkf(IsValidIterator(Iter), TEXT("Read access violation. Please check IsValidIterator()."));
const size_t InsertIndex = Iter - Begin();
const size_t NumToAllocate = Num() + 1 > Max() ? Impl->CalculateSlackGrow(Num() + 1, Max()) : Max();
check(NumToAllocate >= Num() + 1);
if (NumToAllocate != Max())
{
FElementType* OldAllocation = Impl.Pointer;
const size_t NumToDestruct = Num();
Impl.ArrayNum = Num() + 1;
Impl.ArrayMax = NumToAllocate;
Impl.Pointer = Impl->Allocate(Max());
Memory::MoveConstruct<FElementType>(Impl.Pointer, OldAllocation, InsertIndex);
new (Impl.Pointer + InsertIndex) FElementType(Forward<Ts>(Args)...);
Memory::MoveConstruct<FElementType>(Impl.Pointer + InsertIndex + 1, OldAllocation + InsertIndex, NumToDestruct - InsertIndex);
Memory::Destruct(OldAllocation, NumToDestruct);
Impl->Deallocate(OldAllocation);
return FIterator(this, Impl.Pointer + InsertIndex);
}
if (InsertIndex != Num())
{
new (Impl.Pointer + Num()) FElementType(MoveTemp(Impl.Pointer[Num() - 1]));
for (size_t Index = Num() - 1; Index != InsertIndex; --Index)
{
Impl.Pointer[Index] = MoveTemp(Impl.Pointer[Index - 1]);
}
Impl.Pointer[InsertIndex] = FElementType(Forward<Ts>(Args)...);
}
else new (Impl.Pointer + Num()) FElementType(Forward<Ts>(Args)...);
Impl.ArrayNum = Num() + 1;
return FIterator(this, Impl.Pointer + InsertIndex);
}
/** Removes the element at 'Iter' in the container. Without changing the order of elements. */
FORCEINLINE FIterator StableErase(FConstIterator Iter, bool bAllowShrinking = true) requires (CMovable<T>)
{
checkf(IsValidIterator(Iter) && Iter != End(), TEXT("Read access violation. Please check IsValidIterator()."));
return StableErase(Iter, Iter + 1, bAllowShrinking);
}
/** Removes the elements in the range ['First', 'Last') in the container. Without changing the order of elements. */
FIterator StableErase(FConstIterator First, FConstIterator Last, bool bAllowShrinking = true) requires (CMovable<T>)
{
checkf(IsValidIterator(First) && IsValidIterator(Last) && First <= Last, TEXT("Read access violation. Please check IsValidIterator()."));
const size_t EraseIndex = First - Begin();
const size_t EraseCount = Last - First;
if (EraseCount == 0) return FIterator(this, Impl.Pointer + EraseIndex);
const size_t NumToAllocate = bAllowShrinking ? Impl->CalculateSlackShrink(Num() - EraseCount, Max()) : Max();
if (NumToAllocate != Max())
{
FElementType* OldAllocation = Impl.Pointer;
const size_t NumToDestruct = Num();
Impl.ArrayNum = Num() - EraseCount;
Impl.ArrayMax = NumToAllocate;
Impl.Pointer = Impl->Allocate(Max());
Memory::MoveConstruct<FElementType>(Impl.Pointer, OldAllocation, EraseIndex);
Memory::MoveConstruct<FElementType>(Impl.Pointer + EraseIndex, OldAllocation + EraseIndex + EraseCount, NumToDestruct - EraseIndex - EraseCount);
Memory::Destruct(OldAllocation, NumToDestruct);
Impl->Deallocate(OldAllocation);
return FIterator(this, Impl.Pointer + EraseIndex);
}
for (size_t Index = EraseIndex + EraseCount; Index != Num(); ++Index)
{
Impl.Pointer[Index - EraseCount] = MoveTemp(Impl.Pointer[Index]);
}
Memory::Destruct(Impl.Pointer + Num() - EraseCount, EraseCount);
Impl.ArrayNum = Num() - EraseCount;
return FIterator(this, Impl.Pointer + EraseIndex);
}
/** Removes the element at 'Iter' in the container. But it may change the order of elements. */
FORCEINLINE FIterator Erase(FConstIterator Iter, bool bAllowShrinking = true) requires (CMovable<T>)
{
checkf(IsValidIterator(Iter) && Iter != End(), TEXT("Read access violation. Please check IsValidIterator()."));
return Erase(Iter, Iter + 1, bAllowShrinking);
}
/** Removes the elements in the range ['First', 'Last') in the container. But it may change the order of elements. */
FIterator Erase(FConstIterator First, FConstIterator Last, bool bAllowShrinking = true) requires (CMovable<T>)
{
checkf(IsValidIterator(First) && IsValidIterator(Last) && First <= Last, TEXT("Read access violation. Please check IsValidIterator()."));
const size_t EraseIndex = First - Begin();
const size_t EraseCount = Last - First;
if (EraseCount == 0) return FIterator(this, Impl.Pointer + EraseIndex);
const size_t NumToAllocate = bAllowShrinking ? Impl->CalculateSlackShrink(Num() - EraseCount, Max()) : Max();
if (NumToAllocate != Max())
{
FElementType* OldAllocation = Impl.Pointer;
const size_t NumToDestruct = Num();
Impl.ArrayNum = Num() - EraseCount;
Impl.ArrayMax = NumToAllocate;
Impl.Pointer = Impl->Allocate(Max());
Memory::MoveConstruct<FElementType>(Impl.Pointer, OldAllocation, EraseIndex);
Memory::MoveConstruct<FElementType>(Impl.Pointer + EraseIndex, OldAllocation + EraseIndex + EraseCount, NumToDestruct - EraseIndex - EraseCount);
Memory::Destruct(OldAllocation, NumToDestruct);
Impl->Deallocate(OldAllocation);
return FIterator(this, Impl.Pointer + EraseIndex);
}
for (size_t Index = 0; Index != EraseCount; ++Index)
{
if (EraseIndex + Index >= Num() - EraseCount) break;
Impl.Pointer[EraseIndex + Index] = MoveTemp(Impl.Pointer[Num() - Index - 1]);
}
Memory::Destruct(Impl.Pointer + Num() - EraseCount, EraseCount);
Impl.ArrayNum = Num() - EraseCount;
return FIterator(this, Impl.Pointer + EraseIndex);
}
/** Appends the given element value to the end of the container. */
FORCEINLINE void PushBack(const FElementType& InValue) requires (CCopyable<T>)
{
EmplaceBack(InValue);
}
/** Appends the given element value to the end of the container. */
FORCEINLINE void PushBack(FElementType&& InValue) requires (CMovable<T>)
{
EmplaceBack(MoveTemp(InValue));
}
/** Appends a new element to the end of the container. */
template <typename... Ts> requires (CConstructibleFrom<T, Ts...> && CMovable<T>)
FElementType& EmplaceBack(Ts&&... Args)
{
const size_t NumToAllocate = Num() + 1 > Max() ? Impl->CalculateSlackGrow(Num() + 1, Max()) : Max();
check(NumToAllocate >= Num() + 1);
if (NumToAllocate != Max())
{
FElementType* OldAllocation = Impl.Pointer;
const size_t NumToDestruct = Num();
Impl.ArrayNum = Num() + 1;
Impl.ArrayMax = NumToAllocate;
Impl.Pointer = Impl->Allocate(Max());
Memory::MoveConstruct<FElementType>(Impl.Pointer, OldAllocation, Num() - 1);
new (Impl.Pointer + Num() - 1) FElementType(Forward<Ts>(Args)...);
Memory::Destruct(OldAllocation, NumToDestruct);
Impl->Deallocate(OldAllocation);
return Impl.Pointer[Num() - 1];
}
new (Impl.Pointer + Num()) FElementType(Forward<Ts>(Args)...);
Impl.ArrayNum = Num() + 1;
return Impl.Pointer[Num() - 1];
}
/** Removes the last element of the container. The array cannot be empty. */
FORCEINLINE void PopBack(bool bAllowShrinking = true) requires (CMovable<T>)
{
Erase(End() - 1, bAllowShrinking);
}
/** Resizes the container to contain 'Count' elements. Additional default elements are appended. */
void SetNum(size_t Count, bool bAllowShrinking = true) requires (CDefaultConstructible<T> && CMovable<T>)
{
size_t NumToAllocate = Count;
NumToAllocate = NumToAllocate > Max() ? Impl->CalculateSlackGrow(Count, Max()) : NumToAllocate;
NumToAllocate = NumToAllocate < Max() ? (bAllowShrinking ? Impl->CalculateSlackShrink(Count, Max()) : Max()) : NumToAllocate;
if (NumToAllocate != Max())
{
FElementType* OldAllocation = Impl.Pointer;
const size_t NumToDestruct = Num();
Impl.ArrayNum = Count;
Impl.ArrayMax = NumToAllocate;
Impl.Pointer = Impl->Allocate(Max());
if (NumToDestruct <= Num())
{
Memory::MoveConstruct<FElementType>(Impl.Pointer, OldAllocation, NumToDestruct);
Memory::DefaultConstruct<FElementType>(Impl.Pointer + NumToDestruct, Num() - NumToDestruct);
}
else
{
Memory::MoveConstruct<FElementType>(Impl.Pointer, OldAllocation, Num());
}
Memory::Destruct(OldAllocation, NumToDestruct);
Impl->Deallocate(OldAllocation);
return;
}
if (Count <= Num())
{
Memory::Destruct(Impl.Pointer + Count, Num() - Count);
}
else if (Count <= Max())
{
Memory::DefaultConstruct<FElementType>(Impl.Pointer + Num(), Count - Num());
}
else check_no_entry();
Impl.ArrayNum = Count;
}
/** Resizes the container to contain 'Count' elements. Additional copies of 'InValue' are appended. */
void SetNum(size_t Count, const FElementType& InValue, bool bAllowShrinking = true) requires (CCopyConstructible<T> && CMovable<T>)
{
size_t NumToAllocate = Count;
NumToAllocate = NumToAllocate > Max() ? Impl->CalculateSlackGrow(Count, Max()) : NumToAllocate;
NumToAllocate = NumToAllocate < Max() ? (bAllowShrinking ? Impl->CalculateSlackShrink(Count, Max()) : Max()) : NumToAllocate;
if (NumToAllocate != Max())
{
FElementType* OldAllocation = Impl.Pointer;
const size_t NumToDestruct = Num();
Impl.ArrayNum = Count;
Impl.ArrayMax = NumToAllocate;
Impl.Pointer = Impl->Allocate(Max());
if (NumToDestruct <= Num())
{
Memory::MoveConstruct<FElementType>(Impl.Pointer, OldAllocation, NumToDestruct);
for (size_t Index = NumToDestruct; Index != Num(); ++Index)
{
new (Impl.Pointer + Index) FElementType(InValue);
}
}
else
{
Memory::MoveConstruct<FElementType>(Impl.Pointer, OldAllocation, Num());
}
Memory::Destruct(OldAllocation, NumToDestruct);
Impl->Deallocate(OldAllocation);
return;
}
if (Count <= Num())
{
Memory::Destruct(Impl.Pointer + Count, Num() - Count);
}
else if (Count <= Max())
{
for (size_t Index = Num(); Index != Count; ++Index)
{
new (Impl.Pointer + Index) FElementType(InValue);
}
}
else check_no_entry();
Impl.ArrayNum = Count;
}
/** Increase the max capacity of the array to a value that's greater or equal to 'Count'. */
void Reserve(size_t Count) requires (CMovable<T>)
{
if (Count <= Max()) return;
const size_t NumToAllocate = Impl->CalculateSlackReserve(Count);
FElementType* OldAllocation = Impl.Pointer;
check(NumToAllocate > Max());
Impl.ArrayMax = NumToAllocate;
Impl.Pointer = Impl->Allocate(Max());
Memory::MoveConstruct<FElementType>(Impl.Pointer, OldAllocation, Num());
Memory::Destruct(OldAllocation, Num());
Impl->Deallocate(OldAllocation);
}
/** Requests the removal of unused capacity. */
void Shrink()
{
size_t NumToAllocate = Impl->CalculateSlackReserve(Num());
check(NumToAllocate <= Max());
if (NumToAllocate == Max()) return;
FElementType* OldAllocation = Impl.Pointer;
Impl.ArrayMax = NumToAllocate;
Impl.Pointer = Impl->Allocate(Max());
Memory::MoveConstruct<FElementType>(Impl.Pointer, OldAllocation, Num());
Memory::Destruct(OldAllocation, Num());
Impl->Deallocate(OldAllocation);
}
/** @return The pointer to the underlying element storage. */
NODISCARD FORCEINLINE FElementType* GetData() { return Impl.Pointer; }
NODISCARD FORCEINLINE const FElementType* GetData() const { return Impl.Pointer; }
/** @return The iterator to the first or end element. */
NODISCARD FORCEINLINE FIterator Begin() { return FIterator(this, Impl.Pointer); }
NODISCARD FORCEINLINE FConstIterator Begin() const { return FConstIterator(this, Impl.Pointer); }
NODISCARD FORCEINLINE FIterator End() { return FIterator(this, Impl.Pointer + Num()); }
NODISCARD FORCEINLINE FConstIterator End() const { return FConstIterator(this, Impl.Pointer + Num()); }
/** @return The reverse iterator to the first or end element. */
NODISCARD FORCEINLINE FReverseIterator RBegin() { return FReverseIterator(End()); }
NODISCARD FORCEINLINE FConstReverseIterator RBegin() const { return FConstReverseIterator(End()); }
NODISCARD FORCEINLINE FReverseIterator REnd() { return FReverseIterator(Begin()); }
NODISCARD FORCEINLINE FConstReverseIterator REnd() const { return FConstReverseIterator(Begin()); }
/** @return The number of elements in the container. */
NODISCARD FORCEINLINE size_t Num() const { return Impl.ArrayNum; }
/** @return The number of elements that can be held in currently allocated storage. */
NODISCARD FORCEINLINE size_t Max() const { return Impl.ArrayMax; }
/** @return true if the container is empty, false otherwise. */
NODISCARD FORCEINLINE bool IsEmpty() const { return Num() == 0; }
/** @return true if the iterator is valid, false otherwise. */
NODISCARD FORCEINLINE bool IsValidIterator(FConstIterator Iter) const { return Begin() <= Iter && Iter <= End(); }
/** @return The reference to the requested element. */
NODISCARD FORCEINLINE FElementType& operator[](size_t Index) { checkf(Index < Num(), TEXT("Read access violation. Please check IsValidIterator().")); return Impl.Pointer[Index]; }
NODISCARD FORCEINLINE const FElementType& operator[](size_t Index) const { checkf(Index < Num(), TEXT("Read access violation. Please check IsValidIterator().")); return Impl.Pointer[Index]; }
/** @return The reference to the first or last element. */
NODISCARD FORCEINLINE FElementType& Front() { return *Begin(); }
NODISCARD FORCEINLINE const FElementType& Front() const { return *Begin(); }
NODISCARD FORCEINLINE FElementType& Back() { return *(End() - 1); }
NODISCARD FORCEINLINE const FElementType& Back() const { return *(End() - 1); }
/** Erases all elements from the container. After this call, Num() returns zero. */
void Reset(bool bAllowShrinking = true)
{
const size_t NumToAllocate = Impl->CalculateSlackReserve(0);
if (bAllowShrinking && NumToAllocate != Max())
{
Memory::Destruct(Impl.Pointer, Num());
Impl->Deallocate(Impl.Pointer);
Impl.ArrayNum = 0;
Impl.ArrayMax = Impl->CalculateSlackReserve(Num());
Impl.Pointer = Impl->Allocate(Max());
return;
}
Memory::Destruct(Impl.Pointer, Num());
Impl.ArrayNum = 0;
}
/** Overloads the GetTypeHash algorithm for TArray. */
NODISCARD friend FORCEINLINE size_t GetTypeHash(const TArray& A) requires (CHashable<T>)
{
size_t Result = 0;
for (FConstIterator Iter = A.Begin(); Iter != A.End(); ++Iter)
{
Result = HashCombine(Result, GetTypeHash(*Iter));
}
return Result;
}
/** Overloads the Swap algorithm for TArray. */
friend void Swap(TArray& A, TArray& B) requires (CMovable<T>)
{
const bool bIsTransferable =
A.Impl->IsTransferable(A.Impl.Pointer) &&
B.Impl->IsTransferable(B.Impl.Pointer);
if (bIsTransferable)
{
Swap(A.Impl.ArrayNum, B.Impl.ArrayNum);
Swap(A.Impl.ArrayMax, B.Impl.ArrayMax);
Swap(A.Impl.Pointer, B.Impl.Pointer);
return;
}
TArray Temp = MoveTemp(A);
A = MoveTemp(B);
B = MoveTemp(Temp);
}
ENABLE_RANGE_BASED_FOR_LOOP_SUPPORT
private:
ALLOCATOR_WRAPPER_BEGIN(FAllocatorType, FElementType, Impl)
{
size_t ArrayNum;
size_t ArrayMax;
FElementType* Pointer;
}
ALLOCATOR_WRAPPER_END(FAllocatorType, FElementType, Impl)
private:
template <bool bConst, typename U>
class TIteratorImpl final
{
public:
using FElementType = T;
FORCEINLINE TIteratorImpl() = default;
# if DO_CHECK
FORCEINLINE TIteratorImpl(const TIteratorImpl<false>& InValue) requires (bConst)
: Owner(InValue.Owner), Pointer(InValue.Pointer)
{ }
# else
FORCEINLINE TIteratorImpl(const TIteratorImpl<false>& InValue) requires (bConst)
: Pointer(InValue.Pointer)
{ }
# endif
FORCEINLINE TIteratorImpl(const TIteratorImpl&) = default;
FORCEINLINE TIteratorImpl(TIteratorImpl&&) = default;
FORCEINLINE TIteratorImpl& operator=(const TIteratorImpl&) = default;
FORCEINLINE TIteratorImpl& operator=(TIteratorImpl&&) = default;
NODISCARD friend FORCEINLINE bool operator==(const TIteratorImpl& LHS, const TIteratorImpl& RHS) { return LHS.Pointer == RHS.Pointer; }
NODISCARD friend FORCEINLINE strong_ordering operator<=>(const TIteratorImpl& LHS, const TIteratorImpl& RHS) { return LHS.Pointer <=> RHS.Pointer; }
NODISCARD FORCEINLINE U& operator*() const { CheckThis(true ); return *Pointer; }
NODISCARD FORCEINLINE U* operator->() const { CheckThis(false); return Pointer; }
NODISCARD FORCEINLINE U& operator[](ptrdiff Index) const { TIteratorImpl Temp = *this + Index; return *Temp; }
FORCEINLINE TIteratorImpl& operator++() { ++Pointer; CheckThis(); return *this; }
FORCEINLINE TIteratorImpl& operator--() { --Pointer; CheckThis(); return *this; }
FORCEINLINE TIteratorImpl operator++(int) { TIteratorImpl Temp = *this; ++*this; return Temp; }
FORCEINLINE TIteratorImpl operator--(int) { TIteratorImpl Temp = *this; --*this; return Temp; }
FORCEINLINE TIteratorImpl& operator+=(ptrdiff Offset) { Pointer += Offset; CheckThis(); return *this; }
FORCEINLINE TIteratorImpl& operator-=(ptrdiff Offset) { Pointer -= Offset; CheckThis(); return *this; }
NODISCARD friend FORCEINLINE TIteratorImpl operator+(TIteratorImpl Iter, ptrdiff Offset) { TIteratorImpl Temp = Iter; Temp += Offset; return Temp; }
NODISCARD friend FORCEINLINE TIteratorImpl operator+(ptrdiff Offset, TIteratorImpl Iter) { TIteratorImpl Temp = Iter; Temp += Offset; return Temp; }
NODISCARD FORCEINLINE TIteratorImpl operator-(ptrdiff Offset) const { TIteratorImpl Temp = *this; Temp -= Offset; return Temp; }
NODISCARD friend FORCEINLINE ptrdiff operator-(const TIteratorImpl& LHS, const TIteratorImpl& RHS) { LHS.CheckThis(); RHS.CheckThis(); return LHS.Pointer - RHS.Pointer; }
private:
# if DO_CHECK
const TArray* Owner = nullptr;
# endif
U* Pointer = nullptr;
# if DO_CHECK
FORCEINLINE TIteratorImpl(const TArray* InContainer, U* InPointer)
: Owner(InContainer), Pointer(InPointer)
{ }
# else
FORCEINLINE TIteratorImpl(const TArray* InContainer, U* InPointer)
: Pointer(InPointer)
{ }
# endif
FORCEINLINE void CheckThis(bool bExceptEnd = false) const
{
checkf(Owner && Owner->IsValidIterator(*this), TEXT("Read access violation. Please check IsValidIterator()."));
checkf(!(bExceptEnd && Owner->End() == *this), TEXT("Read access violation. Please check IsValidIterator()."));
}
template <bool, typename> friend class TIteratorImpl;
friend TArray;
};
};
template <typename I, typename S>
TArray(I, S) -> TArray<TIteratorElement<I>>;
template <typename R>
TArray(R) -> TArray<TRangeElement<R>>;
template <typename T>
TArray(initializer_list<T>) -> TArray<T>;
NAMESPACE_MODULE_END(Utility)
NAMESPACE_MODULE_END(Redcraft)
NAMESPACE_REDCRAFT_END