Redcraft/Redcraft.Utility/Source/Public/Numerics/Limits.h

93 lines
3.8 KiB
C++

#pragma once
#include "CoreTypes.h"
#include "TypeTraits/TypeTraits.h"
#include <climits>
#include <limits>
NAMESPACE_REDCRAFT_BEGIN
NAMESPACE_MODULE_BEGIN(Redcraft)
NAMESPACE_MODULE_BEGIN(Utility)
static_assert(CHAR_BIT == 8, "CHAR_BIT must be 8");
enum class EFloatRoundMode : uint8
{
TowardZero,
ToNearest,
Upward,
Downward,
Unknown,
};
enum class EFloatDenormMode : uint8
{
Absent,
Present,
Unknown,
};
template <CArithmetic T>
struct TNumericLimits;
template <typename T> struct TNumericLimits<const T> : public TNumericLimits<T> { };
template <typename T> struct TNumericLimits< volatile T> : public TNumericLimits<T> { };
template <typename T> struct TNumericLimits<const volatile T> : public TNumericLimits<T> { };
template <CArithmetic T>
struct TNumericLimits
{
static_assert(!CFloatingPoint<T> || NAMESPACE_STD::numeric_limits<T>::has_infinity, "Floating point types must have infinity.");
static_assert(!CFloatingPoint<T> || NAMESPACE_STD::numeric_limits<T>::has_quiet_NaN, "Floating point types must have quiet NaN.");
static_assert(!CFloatingPoint<T> || NAMESPACE_STD::numeric_limits<T>::has_signaling_NaN, "Floating point types must have signaling NaN.");
static constexpr bool bIsExact = NAMESPACE_STD::numeric_limits<T>::is_exact;
static constexpr EFloatRoundMode RoundMode =
NAMESPACE_STD::numeric_limits<T>::round_style == NAMESPACE_STD::round_toward_zero ? EFloatRoundMode::TowardZero :
NAMESPACE_STD::numeric_limits<T>::round_style == NAMESPACE_STD::round_to_nearest ? EFloatRoundMode::ToNearest :
NAMESPACE_STD::numeric_limits<T>::round_style == NAMESPACE_STD::round_toward_infinity ? EFloatRoundMode::Upward :
NAMESPACE_STD::numeric_limits<T>::round_style == NAMESPACE_STD::round_toward_neg_infinity ? EFloatRoundMode::Downward :
EFloatRoundMode::Unknown;
static constexpr EFloatDenormMode DenormMode =
NAMESPACE_STD::numeric_limits<T>::has_denorm == NAMESPACE_STD::denorm_absent ? EFloatDenormMode::Absent :
NAMESPACE_STD::numeric_limits<T>::has_denorm == NAMESPACE_STD::denorm_present ? EFloatDenormMode::Present :
EFloatDenormMode::Unknown;
static constexpr bool bHasDenormLoss = NAMESPACE_STD::numeric_limits<T>::has_denorm_loss;
static constexpr bool bIsIEEE754 = NAMESPACE_STD::numeric_limits<T>::is_iec559 && sizeof(T) <= 8;
static constexpr bool bIsModulo = NAMESPACE_STD::numeric_limits<T>::is_modulo;
static constexpr int Radix = NAMESPACE_STD::numeric_limits<T>::radix;
static constexpr int Digits = NAMESPACE_STD::numeric_limits<T>::digits;
static constexpr int Digits10 = NAMESPACE_STD::numeric_limits<T>::digits10;
static constexpr int MaxExponent = NAMESPACE_STD::numeric_limits<T>::max_exponent;
static constexpr int MaxExponent10 = NAMESPACE_STD::numeric_limits<T>::max_exponent10;
static constexpr int MinExponent = NAMESPACE_STD::numeric_limits<T>::min_exponent;
static constexpr int MinExponent10 = NAMESPACE_STD::numeric_limits<T>::min_exponent10;
static constexpr bool bInterrupt = NAMESPACE_STD::numeric_limits<T>::traps;
static constexpr T Min() { return NAMESPACE_STD::numeric_limits<T>::lowest(); }
static constexpr T Max() { return NAMESPACE_STD::numeric_limits<T>::max(); }
static constexpr T Epsilon() { return NAMESPACE_STD::numeric_limits<T>::epsilon(); }
static constexpr T Infinity() { return NAMESPACE_STD::numeric_limits<T>::infinity(); }
static constexpr T QuietNaN() { return NAMESPACE_STD::numeric_limits<T>::quiet_NaN(); }
static constexpr T SignalingNaN() { return NAMESPACE_STD::numeric_limits<T>::signaling_NaN(); }
static constexpr T MinNormal() { return NAMESPACE_STD::numeric_limits<T>::min(); }
static constexpr T MinDenorm() { return NAMESPACE_STD::numeric_limits<T>::denorm_min(); }
};
NAMESPACE_MODULE_END(Utility)
NAMESPACE_MODULE_END(Redcraft)
NAMESPACE_REDCRAFT_END