Redcraft/Redcraft.Utility/Source/Public/Containers/Array.h

1219 lines
43 KiB
C++

#pragma once
#include "CoreTypes.h"
#include "Memory/Allocator.h"
#include "Templates/Utility.h"
#include "Templates/TypeHash.h"
#include "Templates/Container.h"
#include "Containers/Iterator.h"
#include "TypeTraits/TypeTraits.h"
#include "Miscellaneous/Compare.h"
#include "Memory/MemoryOperator.h"
#include "Memory/ObserverPointer.h"
#include "Miscellaneous/AssertionMacros.h"
NAMESPACE_REDCRAFT_BEGIN
NAMESPACE_MODULE_BEGIN(Redcraft)
NAMESPACE_MODULE_BEGIN(Utility)
NAMESPACE_PRIVATE_BEGIN
template <typename T, typename A, bool = CEmpty<A> && !CFinal<A>>
class TArrayStorage;
template <typename T, typename A>
class TArrayStorage<T, A, true> : private A
{
public:
FORCEINLINE TArrayStorage() = default;
FORCEINLINE TArrayStorage(const TArrayStorage&) = delete;
FORCEINLINE TArrayStorage(TArrayStorage&& InValue) = delete;
FORCEINLINE TArrayStorage& operator=(const TArrayStorage&) = delete;
FORCEINLINE TArrayStorage& operator=(TArrayStorage&&) = delete;
FORCEINLINE T*& GetPointer() { return Pointer; }
FORCEINLINE T* GetPointer() const { return Pointer; }
FORCEINLINE size_t& GetNum() { return ArrayNum; }
FORCEINLINE size_t GetNum() const { return ArrayNum; }
FORCEINLINE size_t& GetMax() { return ArrayMax; }
FORCEINLINE size_t GetMax() const { return ArrayMax; }
FORCEINLINE A& GetAllocator() { return *this; }
FORCEINLINE const A& GetAllocator() const { return *this; }
private:
// NOTE: NO_UNIQUE_ADDRESS is not valid in MSVC, use base class instead of member variable
//NO_UNIQUE_ADDRESS A Allocator;
T* Pointer;
size_t ArrayNum;
size_t ArrayMax;
};
template <typename T, typename A>
class TArrayStorage<T, A, false>
{
public:
FORCEINLINE TArrayStorage() = default;
FORCEINLINE TArrayStorage(const TArrayStorage&) = delete;
FORCEINLINE TArrayStorage(TArrayStorage&& InValue) = delete;
FORCEINLINE TArrayStorage& operator=(const TArrayStorage&) = delete;
FORCEINLINE TArrayStorage& operator=(TArrayStorage&&) = delete;
FORCEINLINE T*& GetPointer() { return Pointer; }
FORCEINLINE T* GetPointer() const { return Pointer; }
FORCEINLINE size_t& GetNum() { return ArrayNum; }
FORCEINLINE size_t GetNum() const { return ArrayNum; }
FORCEINLINE size_t& GetMax() { return ArrayMax; }
FORCEINLINE size_t GetMax() const { return ArrayMax; }
FORCEINLINE A& GetAllocator() { return Allocator; }
FORCEINLINE const A& GetAllocator() const { return Allocator; }
private:
T* Pointer;
size_t ArrayNum;
size_t ArrayMax;
A Allocator;
};
template <typename ArrayType, typename T>
class TArrayIterator
{
public:
using ElementType = T;
FORCEINLINE TArrayIterator() = default;
# if DO_CHECK
FORCEINLINE TArrayIterator(const TArrayIterator<ArrayType, TRemoveConst<ElementType>>& InValue) requires (CConst<ElementType>)
: Owner(InValue.Owner), Pointer(InValue.Pointer)
{ }
# else
FORCEINLINE TArrayIterator(const TArrayIterator<ArrayType, TRemoveConst<ElementType>>& InValue) requires (CConst<ElementType>)
: Pointer(InValue.Pointer)
{ }
# endif
FORCEINLINE TArrayIterator(const TArrayIterator&) = default;
FORCEINLINE TArrayIterator(TArrayIterator&&) = default;
FORCEINLINE TArrayIterator& operator=(const TArrayIterator&) = default;
FORCEINLINE TArrayIterator& operator=(TArrayIterator&&) = default;
NODISCARD friend FORCEINLINE bool operator==(const TArrayIterator& LHS, const TArrayIterator& RHS) { return LHS.Pointer == RHS.Pointer; }
NODISCARD friend FORCEINLINE strong_ordering operator<=>(const TArrayIterator & LHS, const TArrayIterator & RHS) { return LHS.Pointer <=> RHS.Pointer; }
NODISCARD FORCEINLINE ElementType& operator*() const { CheckThis(true); return *Pointer; }
NODISCARD FORCEINLINE ElementType* operator->() const { CheckThis(true); return Pointer; }
NODISCARD FORCEINLINE ElementType& operator[](ptrdiff Index) const { TArrayIterator Temp = *this + Index; return *Temp; }
FORCEINLINE TArrayIterator& operator++() { ++Pointer; CheckThis(); return *this; }
FORCEINLINE TArrayIterator& operator--() { --Pointer; CheckThis(); return *this; }
FORCEINLINE TArrayIterator operator++(int) { TArrayIterator Temp = *this; ++Pointer; CheckThis(); return Temp; }
FORCEINLINE TArrayIterator operator--(int) { TArrayIterator Temp = *this; --Pointer; CheckThis(); return Temp; }
FORCEINLINE TArrayIterator& operator+=(ptrdiff Offset) { Pointer += Offset; CheckThis(); return *this; }
FORCEINLINE TArrayIterator& operator-=(ptrdiff Offset) { Pointer -= Offset; CheckThis(); return *this; }
NODISCARD friend FORCEINLINE TArrayIterator operator+(TArrayIterator Iter, ptrdiff Offset) { TArrayIterator Temp = Iter; Temp += Offset; return Temp; }
NODISCARD friend FORCEINLINE TArrayIterator operator+(ptrdiff Offset, TArrayIterator Iter) { TArrayIterator Temp = Iter; Temp += Offset; return Temp; }
NODISCARD FORCEINLINE TArrayIterator operator-(ptrdiff Offset) const { TArrayIterator Temp = *this; Temp -= Offset; return Temp; }
NODISCARD friend FORCEINLINE ptrdiff operator-(const TArrayIterator& LHS, const TArrayIterator& RHS) { LHS.CheckThis(); RHS.CheckThis(); return LHS.Pointer - RHS.Pointer; }
NODISCARD FORCEINLINE explicit operator TObserverPtr<ElementType[]>() const { CheckThis(); return TObserverPtr<ElementType[]>(Pointer); }
private:
# if DO_CHECK
const ArrayType* Owner = nullptr;
# endif
ElementType* Pointer = nullptr;
# if DO_CHECK
FORCEINLINE TArrayIterator(const ArrayType* InContainer, ElementType* InPointer)
: Owner(InContainer), Pointer(InPointer)
{ }
# else
FORCEINLINE TArrayIterator(const ArrayType* InContainer, ElementType* InPointer)
: Pointer(InPointer)
{ }
# endif
FORCEINLINE void CheckThis(bool bExceptEnd = false) const
{
checkf(Owner && Owner->IsValidIterator(*this), TEXT("Read access violation. Please check IsValidIterator()."));
checkf(!(bExceptEnd && Owner->End() == *this), TEXT("Read access violation. Please check IsValidIterator()."));
}
friend ArrayType;
template <typename InArrayType, typename InElementType>
friend class TArrayIterator;
};
NAMESPACE_PRIVATE_END
/** Dynamic array. The elements are stored contiguously, which means that elements can be accessed not only through iterators, but also using offsets to regular pointers to elements. */
template <CElementalObject T, CInstantiableAllocator Allocator = FDefaultAllocator> requires (!CConst<T>)
class TArray final
{
public:
using ElementType = T;
using AllocatorType = Allocator;
using Iterator = NAMESPACE_PRIVATE::TArrayIterator<TArray, ElementType>;
using ConstIterator = NAMESPACE_PRIVATE::TArrayIterator<TArray, const ElementType>;
using ReverseIterator = TReverseIterator< Iterator>;
using ConstReverseIterator = TReverseIterator<ConstIterator>;
static_assert(CContiguousIterator< Iterator>);
static_assert(CContiguousIterator<ConstIterator>);
/** Default constructor. Constructs an empty container with a default-constructed allocator. */
FORCEINLINE TArray() : TArray(0) { }
/** Constructs the container with 'Count' default instances of T. */
explicit TArray(size_t Count) requires (CDefaultConstructible<ElementType>)
{
Storage.GetNum() = Count;
Storage.GetMax() = Storage.GetAllocator().CalculateSlackReserve(Num());
Storage.GetPointer() = Storage.GetAllocator().Allocate(Max());
Memory::DefaultConstruct<ElementType>(Storage.GetPointer(), Num());
}
/** Constructs the container with 'Count' copies of elements with 'InValue'. */
TArray(size_t Count, const ElementType& InValue) requires (CCopyConstructible<ElementType>)
{
Storage.GetNum() = Count;
Storage.GetMax() = Storage.GetAllocator().CalculateSlackReserve(Num());
Storage.GetPointer() = Storage.GetAllocator().Allocate(Max());
for (size_t Index = 0; Index < Num(); ++Index)
{
new (Storage.GetPointer() + Index) ElementType(InValue);
}
}
/** Constructs the container with the contents of the range ['First', 'Last'). */
template <CInputIterator I, CSentinelFor<I> S> requires (CConstructibleFrom<ElementType, TIteratorReferenceType<I>> && CMovable<ElementType>)
TArray(I First, S Last)
{
if constexpr (CForwardIterator<I>)
{
if (CSizedSentinelFor<S, I>) checkf(First <= Last, TEXT("Illegal range iterator. Please check First <= Last."));
const size_t Count = Iteration::Distance(First, Last);
Storage.GetNum() = Count;
Storage.GetMax() = Storage.GetAllocator().CalculateSlackReserve(Num());
Storage.GetPointer() = Storage.GetAllocator().Allocate(Max());
for (size_t Index = 0; Index != Count; ++Index)
{
new (Storage.GetPointer() + Index) ElementType(*First++);
}
}
else
{
Storage.GetNum() = 0;
Storage.GetMax() = Storage.GetAllocator().CalculateSlackReserve(Num());
Storage.GetPointer() = Storage.GetAllocator().Allocate(Max());
while (First != Last)
{
PushBack(*First);
++First;
}
}
}
/** Copy constructor. Constructs the container with the copy of the contents of 'InValue'. */
TArray(const TArray& InValue) requires (CCopyConstructible<ElementType>)
{
Storage.GetNum() = InValue.Num();
Storage.GetMax() = Storage.GetAllocator().CalculateSlackReserve(Num());
Storage.GetPointer() = Storage.GetAllocator().Allocate(Max());
Memory::CopyConstruct<ElementType>(Storage.GetPointer(), InValue.Storage.GetPointer(), Num());
}
/** Move constructor. After the move, 'InValue' is guaranteed to be empty. */
TArray(TArray&& InValue) requires (CMoveConstructible<ElementType>)
{
Storage.GetNum() = InValue.Num();
if (InValue.Storage.GetAllocator().IsTransferable(InValue.Storage.GetPointer()))
{
Storage.GetMax() = InValue.Max();
Storage.GetPointer() = InValue.Storage.GetPointer();
InValue.Storage.GetNum() = 0;
InValue.Storage.GetMax() = InValue.Storage.GetAllocator().CalculateSlackReserve(InValue.Num());
InValue.Storage.GetPointer() = InValue.Storage.GetAllocator().Allocate(InValue.Max());
}
else
{
Storage.GetMax() = Storage.GetAllocator().CalculateSlackReserve(Num());
Storage.GetPointer() = Storage.GetAllocator().Allocate(Max());
Memory::MoveConstruct<ElementType>(Storage.GetPointer(), InValue.Storage.GetPointer(), Num());
}
}
/** Constructs the container with the contents of the initializer list. */
FORCEINLINE TArray(initializer_list<ElementType> IL) requires (CCopyConstructible<ElementType>) : TArray(Iteration::Begin(IL), Iteration::End(IL)) { }
/** Destructs the array. The destructors of the elements are called and the used storage is deallocated. */
~TArray()
{
Memory::Destruct(Storage.GetPointer(),Num());
Storage.GetAllocator().Deallocate(Storage.GetPointer());
}
/** Copy assignment operator. Replaces the contents with a copy of the contents of 'InValue'. */
TArray& operator=(const TArray& InValue) requires (CCopyable<ElementType>)
{
if (&InValue == this) UNLIKELY return *this;
size_t NumToAllocate = InValue.Num();
NumToAllocate = NumToAllocate > Max() ? Storage.GetAllocator().CalculateSlackGrow(InValue.Num(), Max()) : NumToAllocate;
NumToAllocate = NumToAllocate < Max() ? Storage.GetAllocator().CalculateSlackShrink(InValue.Num(), Max()) : NumToAllocate;
if (NumToAllocate != Max())
{
Memory::Destruct(Storage.GetPointer(), Num());
Storage.GetAllocator().Deallocate(Storage.GetPointer());
Storage.GetNum() = InValue.Num();
Storage.GetMax() = NumToAllocate;
Storage.GetPointer() = Storage.GetAllocator().Allocate(Max());
Memory::CopyConstruct<ElementType>(Storage.GetPointer(), InValue.Storage.GetPointer(), Num());
return *this;
}
if (InValue.Num() <= Num())
{
Memory::CopyAssign(Storage.GetPointer(), InValue.Storage.GetPointer(), InValue.Num());
Memory::Destruct(Storage.GetPointer() + InValue.Num(), Num() - InValue.Num());
}
else if (InValue.Num() <= Max())
{
Memory::CopyAssign(Storage.GetPointer(), InValue.Storage.GetPointer(), Num());
Memory::CopyConstruct<ElementType>(Storage.GetPointer() + Num(), InValue.Storage.GetPointer() + Num(), InValue.Num() - Num());
}
else check_no_entry();
Storage.GetNum() = InValue.Num();
return *this;
}
/** Move assignment operator. After the move, 'InValue' is guaranteed to be empty. */
TArray& operator=(TArray&& InValue) requires (CMovable<ElementType>)
{
if (&InValue == this) UNLIKELY return *this;
if (InValue.Storage.GetAllocator().IsTransferable(InValue.Storage.GetPointer()))
{
Memory::Destruct(Storage.GetPointer(), Num());
Storage.GetAllocator().Deallocate(Storage.GetPointer());
Storage.GetPointer() = InValue.Storage.GetPointer();
InValue.Storage.GetNum() = 0;
InValue.Storage.GetMax() = InValue.Storage.GetAllocator().CalculateSlackReserve(InValue.Num());
InValue.Storage.GetPointer() = InValue.Storage.GetAllocator().Allocate(InValue.Max());
return *this;
}
size_t NumToAllocate = InValue.Num();
NumToAllocate = NumToAllocate > Max() ? Storage.GetAllocator().CalculateSlackGrow(InValue.Num(), Max()) : NumToAllocate;
NumToAllocate = NumToAllocate < Max() ? Storage.GetAllocator().CalculateSlackShrink(InValue.Num(), Max()) : NumToAllocate;
if (NumToAllocate != Max())
{
Memory::Destruct(Storage.GetPointer(), Num());
Storage.GetAllocator().Deallocate(Storage.GetPointer());
Storage.GetNum() = InValue.Num();
Storage.GetMax() = NumToAllocate;
Storage.GetPointer() = Storage.GetAllocator().Allocate(Max());
Memory::MoveConstruct<ElementType>(Storage.GetPointer(), InValue.Storage.GetPointer(), Num());
InValue.Reset();
return *this;
}
if (InValue.Num() <= Num())
{
Memory::MoveAssign(Storage.GetPointer(), InValue.Storage.GetPointer(), InValue.Num());
Memory::Destruct(Storage.GetPointer() + InValue.Num(), Num() - InValue.Num());
}
else if (InValue.Num() <= Max())
{
Memory::MoveAssign(Storage.GetPointer(), InValue.Storage.GetPointer(), Num());
Memory::MoveConstruct<ElementType>(Storage.GetPointer() + Num(), InValue.Storage.GetPointer() + Num(), InValue.Num() - Num());
}
else check_no_entry();
Storage.GetNum() = InValue.Num();
InValue.Reset();
return *this;
}
/** Replaces the contents with those identified by initializer list. */
TArray& operator=(initializer_list<ElementType> IL) requires (CCopyable<ElementType>)
{
size_t NumToAllocate = GetNum(IL);
NumToAllocate = NumToAllocate > Max() ? Storage.GetAllocator().CalculateSlackGrow(GetNum(IL), Max()) : NumToAllocate;
NumToAllocate = NumToAllocate < Max() ? Storage.GetAllocator().CalculateSlackShrink(GetNum(IL), Max()) : NumToAllocate;
if (NumToAllocate != Max())
{
Memory::Destruct(Storage.GetPointer(), Num());
Storage.GetAllocator().Deallocate(Storage.GetPointer());
Storage.GetNum() = GetNum(IL);
Storage.GetMax() = NumToAllocate;
Storage.GetPointer() = Storage.GetAllocator().Allocate(Max());
Memory::CopyConstruct<ElementType>(Storage.GetPointer(), NAMESPACE_REDCRAFT::GetData(IL).Get(), Num());
return *this;
}
if (GetNum(IL) <= Num())
{
Memory::CopyAssign(Storage.GetPointer(), NAMESPACE_REDCRAFT::GetData(IL).Get(), GetNum(IL));
Memory::Destruct(Storage.GetPointer() + GetNum(IL), Num() - GetNum(IL));
}
else if (GetNum(IL) <= Max())
{
Memory::CopyAssign(Storage.GetPointer(), NAMESPACE_REDCRAFT::GetData(IL).Get(), Num());
Memory::CopyConstruct<ElementType>(Storage.GetPointer() + Num(), NAMESPACE_REDCRAFT::GetData(IL).Get() + Num(), GetNum(IL) - Num());
}
else check_no_entry();
Storage.GetNum() = GetNum(IL);
return *this;
}
/** Compares the contents of two arrays. */
NODISCARD friend bool operator==(const TArray& LHS, const TArray& RHS) requires (CWeaklyEqualityComparable<ElementType>)
{
if (LHS.Num() != RHS.Num()) return false;
ConstIterator LHSIter = LHS.Begin();
ConstIterator RHSIter = RHS.Begin();
while (LHSIter != LHS.End())
{
if (*LHSIter != *RHSIter) return false;
++LHSIter;
++RHSIter;
}
check(RHSIter == RHS.End());
return true;
}
/** Compares the contents of two arrays. */
NODISCARD friend auto operator<=>(const TArray& LHS, const TArray& RHS) requires (CSynthThreeWayComparable<ElementType>)
{
using OrderingType = TSynthThreeWayResult<ElementType>;
if (LHS.Num() < RHS.Num()) return OrderingType::less;
if (LHS.Num() > RHS.Num()) return OrderingType::greater;
ConstIterator LHSIter = LHS.Begin();
ConstIterator RHSIter = RHS.Begin();
while (LHSIter != LHS.End())
{
TSynthThreeWayResult<ElementType> Ordering = SynthThreeWayCompare(*LHSIter, *RHSIter);
if (Ordering != OrderingType::equivalent) return Ordering;
++LHSIter;
++RHSIter;
}
check(RHSIter == RHS.End());
return OrderingType::equivalent;
}
/** Inserts 'InValue' before 'Iter' in the container. */
Iterator Insert(ConstIterator Iter, const ElementType& InValue) requires (CCopyable<ElementType>)
{
checkf(IsValidIterator(Iter), TEXT("Read access violation. Please check IsValidIterator()."));
const size_t InsertIndex = Iter - Begin();
const size_t NumToAllocate = Num() + 1 > Max() ? Storage.GetAllocator().CalculateSlackGrow(Num() + 1, Max()) : Max();
check(NumToAllocate >= Num() + 1);
if (NumToAllocate != Max())
{
ElementType* OldAllocation = Storage.GetPointer();
const size_t NumToDestruct = Num();
Storage.GetNum() = Num() + 1;
Storage.GetMax() = NumToAllocate;
Storage.GetPointer() = Storage.GetAllocator().Allocate(Max());
Memory::MoveConstruct<ElementType>(Storage.GetPointer(), OldAllocation, InsertIndex);
new (Storage.GetPointer() + InsertIndex) ElementType(InValue);
Memory::MoveConstruct<ElementType>(Storage.GetPointer() + InsertIndex + 1, OldAllocation + InsertIndex, NumToDestruct - InsertIndex);
Memory::Destruct(OldAllocation, NumToDestruct);
Storage.GetAllocator().Deallocate(OldAllocation);
return Iterator(this, Storage.GetPointer() + InsertIndex);
}
if (InsertIndex != Num())
{
new (Storage.GetPointer() + Num()) ElementType(MoveTemp(Storage.GetPointer()[Num() - 1]));
for (size_t Index = Num() - 1; Index != InsertIndex; --Index)
{
Storage.GetPointer()[Index] = MoveTemp(Storage.GetPointer()[Index - 1]);
}
Storage.GetPointer()[InsertIndex] = InValue;
}
else new (Storage.GetPointer() + Num()) ElementType(InValue);
Storage.GetNum() = Num() + 1;
return Iterator(this, Storage.GetPointer() + InsertIndex);
}
/** Inserts 'InValue' before 'Iter' in the container. */
Iterator Insert(ConstIterator Iter, ElementType&& InValue) requires (CMovable<ElementType>)
{
checkf(IsValidIterator(Iter), TEXT("Read access violation. Please check IsValidIterator()."));
const size_t InsertIndex = Iter - Begin();
const size_t NumToAllocate = Num() + 1 > Max() ? Storage.GetAllocator().CalculateSlackGrow(Num() + 1, Max()) : Max();
check(NumToAllocate >= Num() + 1);
if (NumToAllocate != Max())
{
ElementType* OldAllocation = Storage.GetPointer();
const size_t NumToDestruct = Num();
Storage.GetNum() = Num() + 1;
Storage.GetMax() = NumToAllocate;
Storage.GetPointer() = Storage.GetAllocator().Allocate(Max());
Memory::MoveConstruct<ElementType>(Storage.GetPointer(), OldAllocation, InsertIndex);
new (Storage.GetPointer() + InsertIndex) ElementType(MoveTemp(InValue));
Memory::MoveConstruct<ElementType>(Storage.GetPointer() + InsertIndex + 1, OldAllocation + InsertIndex, NumToDestruct - InsertIndex);
Memory::Destruct(OldAllocation, NumToDestruct);
Storage.GetAllocator().Deallocate(OldAllocation);
return Iterator(this, Storage.GetPointer() + InsertIndex);
}
if (InsertIndex != Num())
{
new (Storage.GetPointer() + Num()) ElementType(MoveTemp(Storage.GetPointer()[Num() - 1]));
for (size_t Index = Num() - 1; Index != InsertIndex; --Index)
{
Storage.GetPointer()[Index] = MoveTemp(Storage.GetPointer()[Index - 1]);
}
Storage.GetPointer()[InsertIndex] = MoveTemp(InValue);
}
else new (Storage.GetPointer() + Num()) ElementType(MoveTemp(InValue));
Storage.GetNum() = Num() + 1;
return Iterator(this, Storage.GetPointer() + InsertIndex);
}
/** Inserts 'Count' copies of the 'InValue' before 'Iter' in the container. */
Iterator Insert(ConstIterator Iter, size_t Count, const ElementType& InValue) requires (CCopyable<ElementType>)
{
checkf(IsValidIterator(Iter), TEXT("Read access violation. Please check IsValidIterator()."));
const size_t InsertIndex = Iter - Begin();
if (Count == 0) return Iterator(this, Storage.GetPointer() + InsertIndex);
const size_t NumToAllocate = Num() + Count > Max() ? Storage.GetAllocator().CalculateSlackGrow(Num() + Count, Max()) : Max();
check(NumToAllocate >= Num() + Count);
if (NumToAllocate != Max())
{
ElementType* OldAllocation = Storage.GetPointer();
const size_t NumToDestruct = Num();
Storage.GetNum() = Num() + Count;
Storage.GetMax() = NumToAllocate;
Storage.GetPointer() = Storage.GetAllocator().Allocate(Max());
Memory::MoveConstruct<ElementType>(Storage.GetPointer(), OldAllocation, InsertIndex);
for (size_t Index = InsertIndex; Index != InsertIndex + Count; ++Index)
{
new (Storage.GetPointer() + Index) ElementType(InValue);
}
Memory::MoveConstruct<ElementType>(Storage.GetPointer() + InsertIndex + Count, OldAllocation + InsertIndex, NumToDestruct - InsertIndex);
Memory::Destruct(OldAllocation, NumToDestruct);
Storage.GetAllocator().Deallocate(OldAllocation);
return Iterator(this, Storage.GetPointer() + InsertIndex);
}
/*
* NO(XA) - No Operation
* IA(AB) - Insert Assignment
* IC(BC) - Insert Construction
* MA(CD) - Move Assignment
* MC(DO) - Move Construction
*
* IR(AC) - Insert Range
* UI(UO) - Uninitialized
*
* |X|-------------------| |-UI-|O|
* |X|----|A|-IR-| C|-----------|O|
* |X|-NO-|A|-IA-|BC|-MA-|D|-MC-|O|
*
* |X|-----------------| |-UI-|O|
* |X|----------|A|-IR-| CD|----|O|
* |X|----NO----|A|-IA-|BCD|-MC-|O|
*
* |X|-----------| |-----UI-----|O|
* |X|----|A|----IR-----|C |----|O|
* |X|-NO-|A|-IA-|B|-IC-|CD|-MC-|O|
*
* |X|----------------| |-UI-| O|
* |X|----------------|A |-IR-|C O|
* |X|-------NO-------|AB|-IC-|CDO|
*
* |X|-----------| |----UI----| O|
* |X|----------------|A |-IR-|C O|
* |X|-------NO-------|AB|-IC-|CDO|
*/
const size_t IndexA = InsertIndex;
const size_t IndexC = InsertIndex + Count;
const size_t IndexB = Num() > IndexA ? (Num() < IndexC ? Num() : IndexC) : IndexA;
const size_t IndexD = Num() > IndexC ? Num() : IndexC;
const size_t IndexO = Num() + Count;
for (size_t TargetIndex = IndexO - 1; TargetIndex != IndexD - 1; --TargetIndex)
{
new (Storage.GetPointer() + TargetIndex) ElementType(MoveTemp(Storage.GetPointer()[TargetIndex - Count]));
}
for (size_t TargetIndex = IndexD - 1; TargetIndex != IndexC - 1; --TargetIndex)
{
Storage.GetPointer()[TargetIndex] = MoveTemp(Storage.GetPointer()[TargetIndex - Count]);
}
for (size_t TargetIndex = IndexA; TargetIndex != IndexB; ++TargetIndex)
{
Storage.GetPointer()[TargetIndex] = InValue;
}
for (size_t TargetIndex = IndexB; TargetIndex != IndexC; ++TargetIndex)
{
new (Storage.GetPointer() + TargetIndex) ElementType(InValue);
}
Storage.GetNum() = Num() + Count;
return Iterator(this, Storage.GetPointer() + InsertIndex);
}
/** Inserts elements from range ['First', 'Last') before 'Iter'. */
template <CInputIterator I, CSentinelFor<I> S> requires (CConstructibleFrom<ElementType, TIteratorReferenceType<I>>
&& CAssignableFrom<ElementType&, TIteratorReferenceType<I>> && CMovable<ElementType>)
Iterator Insert(ConstIterator Iter, I First, S Last)
{
checkf(IsValidIterator(Iter), TEXT("Read access violation. Please check IsValidIterator()."));
if constexpr (CForwardIterator<I>)
{
if (CSizedSentinelFor<S, I>) checkf(First <= Last, TEXT("Illegal range iterator. Please check First <= Last."));
const size_t InsertIndex = Iter - Begin();
const size_t Count = Iteration::Distance(First, Last);
if (Count == 0) return Iterator(this, Storage.GetPointer() + InsertIndex);
const size_t NumToAllocate = Num() + Count > Max() ? Storage.GetAllocator().CalculateSlackGrow(Num() + Count, Max()) : Max();
check(NumToAllocate >= Num() + Count);
if (NumToAllocate != Max())
{
ElementType* OldAllocation = Storage.GetPointer();
const size_t NumToDestruct = Num();
Storage.GetNum() = Num() + Count;
Storage.GetMax() = NumToAllocate;
Storage.GetPointer() = Storage.GetAllocator().Allocate(Max());
Memory::MoveConstruct<ElementType>(Storage.GetPointer(), OldAllocation, InsertIndex);
for (size_t Index = InsertIndex; Index != InsertIndex + Count; ++Index)
{
new (Storage.GetPointer() + Index) ElementType(*First++);
}
Memory::MoveConstruct<ElementType>(Storage.GetPointer() + InsertIndex + Count, OldAllocation + InsertIndex, NumToDestruct - InsertIndex);
Memory::Destruct(OldAllocation, NumToDestruct);
Storage.GetAllocator().Deallocate(OldAllocation);
return Iterator(this, Storage.GetPointer() + InsertIndex);
}
const size_t IndexA = InsertIndex;
const size_t IndexC = InsertIndex + Count;
const size_t IndexB = Num() > IndexA ? (Num() < IndexC ? Num() : IndexC) : IndexA;
const size_t IndexD = Num() > IndexC ? Num() : IndexC;
const size_t IndexO = Num() + Count;
size_t TargetIndex = Num() + Count - 1;
for (size_t TargetIndex = IndexO - 1; TargetIndex != IndexD - 1; --TargetIndex)
{
new (Storage.GetPointer() + TargetIndex) ElementType(MoveTemp(Storage.GetPointer()[TargetIndex - Count]));
}
for (size_t TargetIndex = IndexD - 1; TargetIndex != IndexC - 1; --TargetIndex)
{
Storage.GetPointer()[TargetIndex] = MoveTemp(Storage.GetPointer()[TargetIndex - Count]);
}
for (size_t TargetIndex = IndexA; TargetIndex != IndexB; ++TargetIndex)
{
Storage.GetPointer()[TargetIndex] = *First++;
}
for (size_t TargetIndex = IndexB; TargetIndex != IndexC; ++TargetIndex)
{
new (Storage.GetPointer() + TargetIndex) ElementType(*First++);
}
check(First == Last);
Storage.GetNum() = Num() + Count;
return Iterator(this, Storage.GetPointer() + InsertIndex);
}
else
{
TArray Temp(MoveTemp(First), MoveTemp(Last));
return Insert(Iter, TMoveIterator(Temp.Begin()), TMoveSentinel(Temp.End()));
}
}
/** Inserts elements from initializer list before 'Iter' in the container. */
FORCEINLINE Iterator Insert(ConstIterator Iter, initializer_list<ElementType> IL) requires (CCopyable<ElementType>)
{
return Insert(Iter, Iteration::Begin(IL), Iteration::End(IL));
}
/** Inserts a new element into the container directly before 'Iter'. */
template <typename... Ts> requires (CConstructibleFrom<ElementType, Ts...> && CMovable<ElementType>)
Iterator Emplace(ConstIterator Iter, Ts&&... Args)
{
checkf(IsValidIterator(Iter), TEXT("Read access violation. Please check IsValidIterator()."));
const size_t InsertIndex = Iter - Begin();
const size_t NumToAllocate = Num() + 1 > Max() ? Storage.GetAllocator().CalculateSlackGrow(Num() + 1, Max()) : Max();
check(NumToAllocate >= Num() + 1);
if (NumToAllocate != Max())
{
ElementType* OldAllocation = Storage.GetPointer();
const size_t NumToDestruct = Num();
Storage.GetNum() = Num() + 1;
Storage.GetMax() = NumToAllocate;
Storage.GetPointer() = Storage.GetAllocator().Allocate(Max());
Memory::MoveConstruct<ElementType>(Storage.GetPointer(), OldAllocation, InsertIndex);
new (Storage.GetPointer() + InsertIndex) ElementType(Forward<Ts>(Args)...);
Memory::MoveConstruct<ElementType>(Storage.GetPointer() + InsertIndex + 1, OldAllocation + InsertIndex, NumToDestruct - InsertIndex);
Memory::Destruct(OldAllocation, NumToDestruct);
Storage.GetAllocator().Deallocate(OldAllocation);
return Iterator(this, Storage.GetPointer() + InsertIndex);
}
if (InsertIndex != Num())
{
new (Storage.GetPointer() + Num()) ElementType(MoveTemp(Storage.GetPointer()[Num() - 1]));
for (size_t Index = Num() - 1; Index != InsertIndex; --Index)
{
Storage.GetPointer()[Index] = MoveTemp(Storage.GetPointer()[Index - 1]);
}
Storage.GetPointer()[InsertIndex] = ElementType(Forward<Ts>(Args)...);
}
else new (Storage.GetPointer() + Num()) ElementType(Forward<Ts>(Args)...);
Storage.GetNum() = Num() + 1;
return Iterator(this, Storage.GetPointer() + InsertIndex);
}
/** Removes the element at 'Iter' in the container. Without changing the order of elements. */
FORCEINLINE Iterator StableErase(ConstIterator Iter, bool bAllowShrinking = true) requires (CMovable<ElementType>)
{
checkf(IsValidIterator(Iter) && Iter != End(), TEXT("Read access violation. Please check IsValidIterator()."));
return StableErase(Iter, Iter + 1, bAllowShrinking);
}
/** Removes the elements in the range ['First', 'Last') in the container. Without changing the order of elements. */
Iterator StableErase(ConstIterator First, ConstIterator Last, bool bAllowShrinking = true) requires (CMovable<ElementType>)
{
checkf(IsValidIterator(First) && IsValidIterator(Last) && First <= Last, TEXT("Read access violation. Please check IsValidIterator()."));
const size_t EraseIndex = First - Begin();
const size_t EraseCount = Last - First;
if (EraseCount == 0) return Iterator(this, Storage.GetPointer() + EraseIndex);
const size_t NumToAllocate = bAllowShrinking ? Storage.GetAllocator().CalculateSlackShrink(Num() - EraseCount, Max()) : Max();
if (NumToAllocate != Max())
{
ElementType* OldAllocation = Storage.GetPointer();
const size_t NumToDestruct = Num();
Storage.GetNum() = Num() - EraseCount;
Storage.GetMax() = NumToAllocate;
Storage.GetPointer() = Storage.GetAllocator().Allocate(Max());
Memory::MoveConstruct<ElementType>(Storage.GetPointer(), OldAllocation, EraseIndex);
Memory::MoveConstruct<ElementType>(Storage.GetPointer() + EraseIndex, OldAllocation + EraseIndex + EraseCount, NumToDestruct - EraseIndex - EraseCount);
Memory::Destruct(OldAllocation, NumToDestruct);
Storage.GetAllocator().Deallocate(OldAllocation);
return Iterator(this, Storage.GetPointer() + EraseIndex);
}
for (size_t Index = EraseIndex + EraseCount; Index != Num(); ++Index)
{
Storage.GetPointer()[Index - EraseCount] = MoveTemp(Storage.GetPointer()[Index]);
}
Memory::Destruct(Storage.GetPointer() + Num() - EraseCount, EraseCount);
Storage.GetNum() = Num() - EraseCount;
return Iterator(this, Storage.GetPointer() + EraseIndex);
}
/** Removes the element at 'Iter' in the container. But it may change the order of elements. */
FORCEINLINE Iterator Erase(ConstIterator Iter, bool bAllowShrinking = true) requires (CMovable<ElementType>)
{
checkf(IsValidIterator(Iter) && Iter != End(), TEXT("Read access violation. Please check IsValidIterator()."));
return Erase(Iter, Iter + 1, bAllowShrinking);
}
/** Removes the elements in the range ['First', 'Last') in the container. But it may change the order of elements. */
Iterator Erase(ConstIterator First, ConstIterator Last, bool bAllowShrinking = true) requires (CMovable<ElementType>)
{
checkf(IsValidIterator(First) && IsValidIterator(Last) && First <= Last, TEXT("Read access violation. Please check IsValidIterator()."));
const size_t EraseIndex = First - Begin();
const size_t EraseCount = Last - First;
if (EraseCount == 0) return Iterator(this, Storage.GetPointer() + EraseIndex);
const size_t NumToAllocate = bAllowShrinking ? Storage.GetAllocator().CalculateSlackShrink(Num() - EraseCount, Max()) : Max();
if (NumToAllocate != Max())
{
ElementType* OldAllocation = Storage.GetPointer();
const size_t NumToDestruct = Num();
Storage.GetNum() = Num() - EraseCount;
Storage.GetMax() = NumToAllocate;
Storage.GetPointer() = Storage.GetAllocator().Allocate(Max());
Memory::MoveConstruct<ElementType>(Storage.GetPointer(), OldAllocation, EraseIndex);
Memory::MoveConstruct<ElementType>(Storage.GetPointer() + EraseIndex, OldAllocation + EraseIndex + EraseCount, NumToDestruct - EraseIndex - EraseCount);
Memory::Destruct(OldAllocation, NumToDestruct);
Storage.GetAllocator().Deallocate(OldAllocation);
return Iterator(this, Storage.GetPointer() + EraseIndex);
}
for (size_t Index = 0; Index != EraseCount; ++Index)
{
if (EraseIndex + Index >= Num() - EraseCount) break;
Storage.GetPointer()[EraseIndex + Index] = MoveTemp(Storage.GetPointer()[Num() - Index - 1]);
}
Memory::Destruct(Storage.GetPointer() + Num() - EraseCount, EraseCount);
Storage.GetNum() = Num() - EraseCount;
return Iterator(this, Storage.GetPointer() + EraseIndex);
}
/** Appends the given element value to the end of the container. */
FORCEINLINE void PushBack(const ElementType& InValue) requires (CCopyable<ElementType>)
{
EmplaceBack(InValue);
}
/** Appends the given element value to the end of the container. */
FORCEINLINE void PushBack(ElementType&& InValue) requires (CMovable<ElementType>)
{
EmplaceBack(MoveTemp(InValue));
}
/** Appends a new element to the end of the container. */
template <typename... Ts> requires (CConstructibleFrom<ElementType, Ts...> && CMovable<ElementType>)
ElementType& EmplaceBack(Ts&&... Args)
{
const size_t NumToAllocate = Num() + 1 > Max() ? Storage.GetAllocator().CalculateSlackGrow(Num() + 1, Max()) : Max();
check(NumToAllocate >= Num() + 1);
if (NumToAllocate != Max())
{
ElementType* OldAllocation = Storage.GetPointer();
const size_t NumToDestruct = Num();
Storage.GetNum() = Num() + 1;
Storage.GetMax() = NumToAllocate;
Storage.GetPointer() = Storage.GetAllocator().Allocate(Max());
Memory::MoveConstruct<ElementType>(Storage.GetPointer(), OldAllocation, Num() - 1);
new (Storage.GetPointer() + Num() - 1) ElementType(Forward<Ts>(Args)...);
Memory::Destruct(OldAllocation, NumToDestruct);
Storage.GetAllocator().Deallocate(OldAllocation);
return Storage.GetPointer()[Num() - 1];
}
new (Storage.GetPointer() + Num()) ElementType(Forward<Ts>(Args)...);
Storage.GetNum() = Num() + 1;
return Storage.GetPointer()[Num() - 1];
}
/** Removes the last element of the container. The array cannot be empty. */
FORCEINLINE void PopBack(bool bAllowShrinking = true) requires (CMovable<ElementType>)
{
Erase(End() - 1, bAllowShrinking);
}
/** Resizes the container to contain 'Count' elements. Additional default elements are appended. */
void SetNum(size_t Count, bool bAllowShrinking = true) requires (CDefaultConstructible<ElementType> && CMovable<ElementType>)
{
size_t NumToAllocate = Count;
NumToAllocate = NumToAllocate > Max() ? Storage.GetAllocator().CalculateSlackGrow(Count, Max()) : NumToAllocate;
NumToAllocate = NumToAllocate < Max() ? (bAllowShrinking ? Storage.GetAllocator().CalculateSlackShrink(Count, Max()) : Max()) : NumToAllocate;
if (NumToAllocate != Max())
{
ElementType* OldAllocation = Storage.GetPointer();
const size_t NumToDestruct = Num();
Storage.GetNum() = Count;
Storage.GetMax() = NumToAllocate;
Storage.GetPointer() = Storage.GetAllocator().Allocate(Max());
if (NumToDestruct <= Num())
{
Memory::MoveConstruct<ElementType>(Storage.GetPointer(), OldAllocation, NumToDestruct);
Memory::DefaultConstruct<ElementType>(Storage.GetPointer() + NumToDestruct, Num() - NumToDestruct);
}
else
{
Memory::MoveConstruct<ElementType>(Storage.GetPointer(), OldAllocation, Num());
}
Memory::Destruct(OldAllocation, NumToDestruct);
Storage.GetAllocator().Deallocate(OldAllocation);
return;
}
if (Count <= Num())
{
Memory::Destruct(Storage.GetPointer() + Count, Num() - Count);
}
else if (Count <= Max())
{
Memory::DefaultConstruct<ElementType>(Storage.GetPointer() + Num(), Count - Num());
}
else check_no_entry();
Storage.GetNum() = Count;
}
/** Resizes the container to contain 'Count' elements. Additional copies of 'InValue' are appended. */
void SetNum(size_t Count, const ElementType& InValue, bool bAllowShrinking = true) requires (CCopyConstructible<ElementType> && CMovable<ElementType>)
{
size_t NumToAllocate = Count;
NumToAllocate = NumToAllocate > Max() ? Storage.GetAllocator().CalculateSlackGrow(Count, Max()) : NumToAllocate;
NumToAllocate = NumToAllocate < Max() ? (bAllowShrinking ? Storage.GetAllocator().CalculateSlackShrink(Count, Max()) : Max()) : NumToAllocate;
if (NumToAllocate != Max())
{
ElementType* OldAllocation = Storage.GetPointer();
const size_t NumToDestruct = Num();
Storage.GetNum() = Count;
Storage.GetMax() = NumToAllocate;
Storage.GetPointer() = Storage.GetAllocator().Allocate(Max());
if (NumToDestruct <= Num())
{
Memory::MoveConstruct<ElementType>(Storage.GetPointer(), OldAllocation, NumToDestruct);
for (size_t Index = NumToDestruct; Index != Num(); ++Index)
{
new (Storage.GetPointer() + Index) ElementType(InValue);
}
}
else
{
Memory::MoveConstruct<ElementType>(Storage.GetPointer(), OldAllocation, Num());
}
Memory::Destruct(OldAllocation, NumToDestruct);
Storage.GetAllocator().Deallocate(OldAllocation);
return;
}
if (Count <= Num())
{
Memory::Destruct(Storage.GetPointer() + Count, Num() - Count);
}
else if (Count <= Max())
{
for (size_t Index = Num(); Index != Count; ++Index)
{
new (Storage.GetPointer() + Index) ElementType(InValue);
}
}
else check_no_entry();
Storage.GetNum() = Count;
}
/** Increase the max capacity of the array to a value that's greater or equal to 'Count'. */
void Reserve(size_t Count) requires (CMovable<ElementType>)
{
if (Count <= Max()) return;
const size_t NumToAllocate = Storage.GetAllocator().CalculateSlackReserve(Count);
ElementType* OldAllocation = Storage.GetPointer();
check(NumToAllocate > Max());
Storage.GetMax() = NumToAllocate;
Storage.GetPointer() = Storage.GetAllocator().Allocate(Max());
Memory::MoveConstruct<ElementType>(Storage.GetPointer(), OldAllocation, Num());
Memory::Destruct(OldAllocation, Num());
Storage.GetAllocator().Deallocate(OldAllocation);
}
/** Requests the removal of unused capacity. */
void Shrink()
{
size_t NumToAllocate = Storage.GetAllocator().CalculateSlackReserve(Num());
check(NumToAllocate <= Max());
if (NumToAllocate == Max()) return;
ElementType* OldAllocation = Storage.GetPointer();
Storage.GetMax() = NumToAllocate;
Storage.GetPointer() = Storage.GetAllocator().Allocate(Max());
Memory::MoveConstruct<ElementType>(Storage.GetPointer(), OldAllocation, Num());
Memory::Destruct(OldAllocation, Num());
Storage.GetAllocator().Deallocate(OldAllocation);
}
/** @return The pointer to the underlying element storage. */
NODISCARD FORCEINLINE TObserverPtr< ElementType[]> GetData() { return TObserverPtr< ElementType[]>(Storage.GetPointer()); }
NODISCARD FORCEINLINE TObserverPtr<const ElementType[]> GetData() const { return TObserverPtr<const ElementType[]>(Storage.GetPointer()); }
/** @return The iterator to the first or end element. */
NODISCARD FORCEINLINE Iterator Begin() { return Iterator(this, Storage.GetPointer()); }
NODISCARD FORCEINLINE ConstIterator Begin() const { return ConstIterator(this, Storage.GetPointer()); }
NODISCARD FORCEINLINE Iterator End() { return Iterator(this, Storage.GetPointer() + Num()); }
NODISCARD FORCEINLINE ConstIterator End() const { return ConstIterator(this, Storage.GetPointer() + Num()); }
/** @return The reverse iterator to the first or end element. */
NODISCARD FORCEINLINE ReverseIterator RBegin() { return ReverseIterator(End()); }
NODISCARD FORCEINLINE ConstReverseIterator RBegin() const { return ConstReverseIterator(End()); }
NODISCARD FORCEINLINE ReverseIterator REnd() { return ReverseIterator(Begin()); }
NODISCARD FORCEINLINE ConstReverseIterator REnd() const { return ConstReverseIterator(Begin()); }
/** @return The number of elements in the container. */
NODISCARD FORCEINLINE size_t Num() const { return Storage.GetNum(); }
/** @return The number of elements that can be held in currently allocated storage. */
NODISCARD FORCEINLINE size_t Max() const { return Storage.GetMax(); }
/** @return true if the container is empty, false otherwise. */
NODISCARD FORCEINLINE bool IsEmpty() const { return Num() == 0; }
/** @return true if the iterator is valid, false otherwise. */
NODISCARD FORCEINLINE bool IsValidIterator(ConstIterator Iter) const { return Begin() <= Iter && Iter <= End(); }
/** @return The reference to the requested element. */
NODISCARD FORCEINLINE ElementType& operator[](size_t Index) { checkf(Index < Num(), TEXT("Read access violation. Please check IsValidIterator().")); return Storage.GetPointer()[Index]; }
NODISCARD FORCEINLINE const ElementType& operator[](size_t Index) const { checkf(Index < Num(), TEXT("Read access violation. Please check IsValidIterator().")); return Storage.GetPointer()[Index]; }
/** @return The reference to the first or last element. */
NODISCARD FORCEINLINE ElementType& Front() { return *Begin(); }
NODISCARD FORCEINLINE const ElementType& Front() const { return *Begin(); }
NODISCARD FORCEINLINE ElementType& Back() { return *(End() - 1); }
NODISCARD FORCEINLINE const ElementType& Back() const { return *(End() - 1); }
/** Erases all elements from the container. After this call, Num() returns zero. */
void Reset(bool bAllowShrinking = true)
{
const size_t NumToAllocate = Storage.GetAllocator().CalculateSlackReserve(0);
if (bAllowShrinking && NumToAllocate != Max())
{
Memory::Destruct(Storage.GetPointer(), Num());
Storage.GetAllocator().Deallocate(Storage.GetPointer());
Storage.GetNum() = 0;
Storage.GetMax() = Storage.GetAllocator().CalculateSlackReserve(Num());
Storage.GetPointer() = Storage.GetAllocator().Allocate(Max());
return;
}
Memory::Destruct(Storage.GetPointer(), Num());
Storage.GetNum() = 0;
}
/** Overloads the GetTypeHash algorithm for TArray. */
NODISCARD friend FORCEINLINE size_t GetTypeHash(const TArray& A) requires (CHashable<ElementType>)
{
size_t Result = 0;
for (ConstIterator Iter = A.Begin(); Iter != A.End(); ++Iter)
{
Result = HashCombine(Result, GetTypeHash(*Iter));
}
return Result;
}
/** Overloads the Swap algorithm for TArray. */
friend void Swap(TArray& A, TArray& B) requires (CMovable<ElementType>)
{
const bool bIsTransferable =
A.Storage.GetAllocator().IsTransferable(A.Storage.GetPointer()) &&
B.Storage.GetAllocator().IsTransferable(B.Storage.GetPointer());
if (bIsTransferable)
{
Swap(A.Storage.GetNum(), B.Storage.GetNum());
Swap(A.Storage.GetMax(), B.Storage.GetMax());
Swap(A.Storage.GetPointer(), B.Storage.GetPointer());
return;
}
TArray Temp = MoveTemp(A);
A = MoveTemp(B);
B = MoveTemp(Temp);
}
ENABLE_RANGE_BASED_FOR_LOOP_SUPPORT
private:
NAMESPACE_PRIVATE::TArrayStorage<T, typename AllocatorType::template ForElementType<T>> Storage;
};
template <typename I, typename S>
TArray(I, S) -> TArray<TIteratorElementType<I>>;
template <typename T>
TArray(initializer_list<T>) -> TArray<T>;
NAMESPACE_MODULE_END(Utility)
NAMESPACE_MODULE_END(Redcraft)
NAMESPACE_REDCRAFT_END