1024 lines
33 KiB
C++

#pragma once
#include "CoreTypes.h"
#include "Memory/Memory.h"
#include "Memory/Allocator.h"
#include "Templates/Utility.h"
#include "Templates/TypeHash.h"
#include "Templates/Noncopyable.h"
#include "TypeTraits/TypeTraits.h"
#include "Miscellaneous/Compare.h"
#include "Memory/MemoryOperator.h"
#include "Miscellaneous/Iterator.h"
#include "Miscellaneous/Container.h"
#include "Miscellaneous/AssertionMacros.h"
NAMESPACE_REDCRAFT_BEGIN
NAMESPACE_MODULE_BEGIN(Redcraft)
NAMESPACE_MODULE_BEGIN(Utility)
template <CUnsignedIntegral InBlockType> requires (!CSameAs<InBlockType, bool>)
using TDefaultBitsetAllocator = TInlineAllocator<(40 - 3 * sizeof(size_t)) / sizeof(InBlockType)>;
template <CUnsignedIntegral InBlockType, CAllocator<InBlockType> Allocator = TDefaultBitsetAllocator<InBlockType>> requires (!CSameAs<InBlockType, bool>)
class TBitset
{
private:
template <bool bConst>
class TIteratorImpl;
public:
using BlockType = InBlockType;
using ElementType = bool;
using AllocatorType = Allocator;
class Reference;
using ConstReference = bool;
using Iterator = TIteratorImpl<false>;
using ConstIterator = TIteratorImpl<true >;
using ReverseIterator = TReverseIterator< Iterator>;
using ConstReverseIterator = TReverseIterator<ConstIterator>;
static_assert(CRandomAccessIterator< Iterator>);
static_assert(CRandomAccessIterator<ConstIterator>);
static constexpr size_t BlockWidth = sizeof(BlockType) * 8;
/** Default constructor. Constructs an empty bitset. */
FORCEINLINE TBitset() : TBitset(0) { }
/** Constructs the bitset with 'Count' uninitialized bits. */
FORCEINLINE explicit TBitset(size_t InCount)
{
Impl.BitsetNum = InCount;
Impl.BlocksMax = Impl->CalculateSlackReserve(NumBlocks());
Impl.Pointer = Impl->Allocate(MaxBlocks());
}
/** Constructs a bitset from an integer. */
TBitset(size_t InCount, uint64 InValue) : TBitset(InCount > 64 ? InCount : 64)
{
static_assert(sizeof(BlockType) <= sizeof(uint64), "The block width of TBitset is unexpected");
if constexpr (sizeof(BlockType) == sizeof(uint8))
{
Impl.Pointer[0] = static_cast<BlockType>(InValue >> 0);
Impl.Pointer[1] = static_cast<BlockType>(InValue >> 8);
Impl.Pointer[2] = static_cast<BlockType>(InValue >> 16);
Impl.Pointer[3] = static_cast<BlockType>(InValue >> 24);
Impl.Pointer[4] = static_cast<BlockType>(InValue >> 32);
Impl.Pointer[5] = static_cast<BlockType>(InValue >> 40);
Impl.Pointer[6] = static_cast<BlockType>(InValue >> 48);
Impl.Pointer[7] = static_cast<BlockType>(InValue >> 56);
}
else if constexpr (sizeof(BlockType) == sizeof(uint16))
{
Impl.Pointer[0] = static_cast<BlockType>(InValue >> 0);
Impl.Pointer[1] = static_cast<BlockType>(InValue >> 16);
Impl.Pointer[2] = static_cast<BlockType>(InValue >> 32);
Impl.Pointer[3] = static_cast<BlockType>(InValue >> 48);
}
else if constexpr (sizeof(BlockType) == sizeof(uint32))
{
Impl.Pointer[0] = static_cast<BlockType>(InValue >> 0);
Impl.Pointer[1] = static_cast<BlockType>(InValue >> 32);
}
else if constexpr (sizeof(BlockType) == sizeof(uint64))
{
Impl.Pointer[0] = static_cast<BlockType>(InValue >> 0);
}
else check_no_entry();
size_t BlockInteger = sizeof(uint64) / sizeof(BlockType);
Memory::Memset(Impl.Pointer + BlockInteger, 0, (NumBlocks() - BlockInteger) * sizeof(BlockType));
Impl.BitsetNum = InCount;
}
/** Constructs the bitset with the bits of the range ['First', 'Last'). */
template <CInputIterator I, CSentinelFor<I> S> requires (CConstructibleFrom<bool, TIteratorReferenceType<I>>)
TBitset(I First, S Last)
{
if constexpr (CForwardIterator<I>)
{
if (CSizedSentinelFor<S, I>) { checkf(First <= Last, TEXT("Illegal range iterator. Please check First <= Last.")); }
const size_t InCount = Iteration::Distance(First, Last);
new (this) TBitset(InCount);
BlockType* CurrentBlock = Impl.Pointer - 1;
for (Reference Ref: *this) Ref = *First++;
}
else
{
new (this) TBitset(0);
while (First != Last)
{
PushBack(*First);
++First;
}
}
}
/** Copy constructor. Constructs the bitset with the copy of the bits of 'InValue'. */
FORCEINLINE TBitset(const TBitset& InValue)
{
Impl.BitsetNum = InValue.Num();
Impl.BlocksMax = Impl->CalculateSlackReserve(NumBlocks());
Impl.Pointer = Impl->Allocate(MaxBlocks());
Memory::Memcpy(Impl.Pointer, InValue.Impl.Pointer, NumBlocks() * sizeof(BlockType));
}
/** Move constructor. After the move, 'InValue' is guaranteed to be empty. */
TBitset(TBitset&& InValue)
{
Impl.BitsetNum = InValue.Num();
if (InValue.Impl->IsTransferable(InValue.Impl.Pointer))
{
Impl.BlocksMax = InValue.MaxBlocks();
Impl.Pointer = InValue.Impl.Pointer;
InValue.Impl.BitsetNum = 0;
InValue.Impl.BlocksMax = InValue.Impl->CalculateSlackReserve(InValue.NumBlocks());
InValue.Impl.Pointer = InValue.Impl->Allocate(InValue.MaxBlocks());
}
else
{
Impl.BlocksMax = Impl->CalculateSlackReserve(NumBlocks());
Impl.Pointer = Impl->Allocate(MaxBlocks());
Memory::Memcpy(Impl.Pointer, InValue.Impl.Pointer, NumBlocks() * sizeof(BlockType));
}
}
/** Constructs the bitset with the bits of the initializer list. */
FORCEINLINE TBitset(initializer_list<bool> IL) : TBitset(Iteration::Begin(IL), Iteration::End(IL)) { }
/** Destructs the bitset. The storage is deallocated. */
~TBitset()
{
Impl->Deallocate(Impl.Pointer);
}
/** Copy assignment operator. Replaces the bits with a copy of the bits of 'InValue'. */
TBitset& operator=(const TBitset& InValue)
{
if (&InValue == this) UNLIKELY return *this;
size_t NumToAllocate = InValue.NumBlocks();
NumToAllocate = NumToAllocate > MaxBlocks() ? Impl->CalculateSlackGrow(InValue.NumBlocks(), MaxBlocks()) : NumToAllocate;
NumToAllocate = NumToAllocate < MaxBlocks() ? Impl->CalculateSlackShrink(InValue.NumBlocks(), MaxBlocks()) : NumToAllocate;
if (NumToAllocate != MaxBlocks())
{
Impl->Deallocate(Impl.Pointer);
Impl.BitsetNum = InValue.Num();
Impl.BlocksMax = NumToAllocate;
Impl.Pointer = Impl->Allocate(MaxBlocks());
Memory::Memcpy(Impl.Pointer, InValue.Impl.Pointer, NumBlocks() * sizeof(BlockType));
return *this;
}
check(InValue.Num() <= Max());
Impl.BitsetNum = InValue.Num();
Memory::Memcpy(Impl.Pointer, InValue.Impl.Pointer, NumBlocks() * sizeof(BlockType));
return *this;
}
/** Move assignment operator. After the move, 'InValue' is guaranteed to be empty. */
TBitset& operator=(TBitset&& InValue)
{
if (&InValue == this) UNLIKELY return *this;
if (InValue.Impl->IsTransferable(InValue.Impl.Pointer))
{
Impl->Deallocate(Impl.Pointer);
Impl.Pointer = InValue.Impl.Pointer;
InValue.Impl.BitsetNum = 0;
InValue.Impl.BlocksMax = InValue.Impl->CalculateSlackReserve(InValue.NumBlocks());
InValue.Impl.Pointer = InValue.Impl->Allocate(InValue.MaxBlocks());
return *this;
}
*this = InValue;
InValue.Reset();
return *this;
}
/** Replaces the bits with those identified by initializer list. */
TBitset& operator=(initializer_list<bool> IL)
{
auto First = Iteration::Begin(IL);
const size_t BlocksCount = (GetNum(IL) + BlockWidth - 1) / BlockWidth;
size_t NumToAllocate = BlocksCount;
NumToAllocate = NumToAllocate > MaxBlocks() ? Impl->CalculateSlackGrow(BlocksCount, MaxBlocks()) : NumToAllocate;
NumToAllocate = NumToAllocate < MaxBlocks() ? Impl->CalculateSlackShrink(BlocksCount, MaxBlocks()) : NumToAllocate;
if (NumToAllocate != MaxBlocks())
{
Impl->Deallocate(Impl.Pointer);
Impl.BitsetNum = GetNum(IL);
Impl.BlocksMax = NumToAllocate;
Impl.Pointer = Impl->Allocate(MaxBlocks());
for (Reference Ref : *this) Ref = *First++;
return *this;
}
Impl.BitsetNum = GetNum(IL);
for (Reference Ref : *this) Ref = *First++;
return *this;
}
/** Compares the bits of two bitsets. */
NODISCARD friend bool operator==(const TBitset& LHS, const TBitset& RHS)
{
if (LHS.Num() != RHS.Num()) return false;
if (LHS.NumBlocks() == 0) return true;
for (size_t Index = 0; Index != LHS.NumBlocks() - 1; ++Index)
{
if (LHS.Impl.Pointer[Index] != RHS.Impl.Pointer[Index]) return false;
}
const BlockType LastBlockBitmask = LHS.Num() % BlockWidth != 0 ? (1ull << LHS.Num() % BlockWidth) - 1 : -1;
return (LHS.Impl.Pointer[LHS.NumBlocks() - 1] & LastBlockBitmask) == (RHS.Impl.Pointer[LHS.NumBlocks() - 1] & LastBlockBitmask);
}
/** Sets the bits to the result of binary AND on corresponding pairs of bits of *this and other. */
TBitset& operator&=(const TBitset& InValue)
{
if (&InValue == this) UNLIKELY return *this;
if (Num() == 0) return *this;
if (InValue.Num() == 0) return Set(false);
if (Num() <= InValue.Num())
{
for (size_t Index = 0; Index != NumBlocks(); ++Index)
{
Impl.Pointer[Index] &= InValue.Impl.Pointer[Index];
}
}
else
{
const size_t LastBlock = InValue.NumBlocks() - 1;
for (size_t Index = 0; Index != LastBlock; ++Index)
{
Impl.Pointer[Index] &= InValue.Impl.Pointer[Index];
}
const BlockType LastBlockBitmask = InValue.Num() % BlockWidth != 0 ? (1ull << InValue.Num() % BlockWidth) - 1 : -1;
Impl.Pointer[LastBlock] &= InValue.Impl.Pointer[LastBlock] & LastBlockBitmask;
for (size_t Index = LastBlock + 1; Index != NumBlocks(); ++Index)
{
Impl.Pointer[Index] = 0;
}
}
return *this;
}
/** Sets the bits to the result of binary OR on corresponding pairs of bits of *this and other. */
TBitset& operator|=(const TBitset& InValue)
{
if (&InValue == this) UNLIKELY return *this;
if (Num() == 0) return *this;
if (InValue.Num() == 0) return *this;
if (Num() <= InValue.Num())
{
for (size_t Index = 0; Index != NumBlocks(); ++Index)
{
Impl.Pointer[Index] |= InValue.Impl.Pointer[Index];
}
}
else
{
const size_t LastBlock = InValue.NumBlocks() - 1;
for (size_t Index = 0; Index != LastBlock; ++Index)
{
Impl.Pointer[Index] |= InValue.Impl.Pointer[Index];
}
const BlockType LastBlockBitmask = InValue.Num() % BlockWidth != 0 ? (1ull << InValue.Num() % BlockWidth) - 1 : -1;
Impl.Pointer[LastBlock] |= InValue.Impl.Pointer[LastBlock] & LastBlockBitmask;
}
return *this;
}
/** Sets the bits to the result of binary XOR on corresponding pairs of bits of *this and other. */
TBitset& operator^=(const TBitset& InValue)
{
if (&InValue == this) UNLIKELY return *this;
if (Num() == 0) return *this;
if (InValue.Num() == 0) return *this;
if (Num() <= InValue.Num())
{
for (size_t Index = 0; Index != NumBlocks(); ++Index)
{
Impl.Pointer[Index] ^= InValue.Impl.Pointer[Index];
}
}
else
{
const size_t LastBlock = InValue.NumBlocks() - 1;
for (size_t Index = 0; Index != LastBlock; ++Index)
{
Impl.Pointer[Index] ^= InValue.Impl.Pointer[Index];
}
const BlockType LastBlockBitmask = InValue.Num() % BlockWidth != 0 ? (1ull << InValue.Num() % BlockWidth) - 1 : -1;
Impl.Pointer[LastBlock] ^= InValue.Impl.Pointer[LastBlock] & LastBlockBitmask;
}
return *this;
}
NODISCARD friend FORCEINLINE TBitset operator&(const TBitset& LHS, const TBitset& RHS) { return LHS.Num() < RHS.Num() ? TBitset(RHS) &= LHS : TBitset(LHS) &= RHS; }
NODISCARD friend FORCEINLINE TBitset operator|(const TBitset& LHS, const TBitset& RHS) { return LHS.Num() < RHS.Num() ? TBitset(RHS) |= LHS : TBitset(LHS) |= RHS; }
NODISCARD friend FORCEINLINE TBitset operator^(const TBitset& LHS, const TBitset& RHS) { return LHS.Num() < RHS.Num() ? TBitset(RHS) ^= LHS : TBitset(LHS) ^= RHS; }
/** @return The temporary copy of *this with all bits flipped (binary NOT). */
NODISCARD TBitset operator~() const
{
TBitset Result = *this;
for (size_t Index = 0; Index != NumBlocks(); ++Index)
{
Result.Impl.Pointer[Index] = ~Result.Impl.Pointer[Index];
}
return Result;
}
/** Performs binary shift left. */
TBitset& operator<<=(size_t Offset)
{
const size_t Blockshift = Offset / BlockWidth;
const size_t Bitshift = Offset % BlockWidth;
if (Num() == 0) return *this;
if (Blockshift != 0)
{
for (size_t Index = NumBlocks() - 1; Index != -1; --Index)
{
Impl.Pointer[Index] = Index >= Blockshift ? Impl.Pointer[Index - Blockshift] : 0;
}
}
if (Bitshift != 0)
{
for (size_t Index = NumBlocks() - 1; Index != 0; --Index)
{
Impl.Pointer[Index] = Impl.Pointer[Index] << Bitshift | Impl.Pointer[Index - 1] >> (BlockWidth - Bitshift);
}
Impl.Pointer[0] <<= Bitshift;
}
return *this;
}
/** Performs binary shift right. */
TBitset& operator>>=(size_t Offset)
{
const size_t Blockshift = Offset / BlockWidth;
const size_t Bitshift = Offset % BlockWidth;
if (Num() == 0) return *this;
if (Num() % BlockWidth != 0)
{
Impl.Pointer[NumBlocks() - 1] &= (1ull << Num() % BlockWidth) - 1;
}
if (Blockshift != 0)
{
for (size_t Index = 0; Index != NumBlocks(); ++Index)
{
Impl.Pointer[Index] = Index < NumBlocks() - Blockshift ? Impl.Pointer[Index + Blockshift] : 0;
}
}
if (Bitshift != 0)
{
for (size_t Index = 0; Index != NumBlocks() - 1; ++Index)
{
Impl.Pointer[Index] = Impl.Pointer[Index] >> Bitshift | Impl.Pointer[Index + 1] << (BlockWidth - Bitshift);
}
Impl.Pointer[NumBlocks() - 1] >>= Bitshift;
}
return *this;
}
NODISCARD FORCEINLINE TBitset operator<<(size_t Offset) const { return TBitset(*this) <<= Offset; }
NODISCARD FORCEINLINE TBitset operator>>(size_t Offset) const { return TBitset(*this) >>= Offset; }
/** @return true if all bits are set to true, otherwise false. */
NODISCARD bool All() const
{
if (Num() == 0) return true;
for (size_t Index = 0; Index != NumBlocks() - 1; ++Index)
{
if (Impl.Pointer[Index] != -1) return false;
}
const BlockType LastBlockBitmask = Num() % BlockWidth != 0 ? (1ull << Num() % BlockWidth) - 1 : -1;
return (Impl.Pointer[NumBlocks() - 1] | ~LastBlockBitmask) == -1;
}
/** @return true if any of the bits are set to true, otherwise false. */
NODISCARD bool Any() const
{
if (Num() == 0) return false;
for (size_t Index = 0; Index != NumBlocks() - 1; ++Index)
{
if (Impl.Pointer[Index] != 0) return true;
}
const BlockType LastBlockBitmask = Num() % BlockWidth != 0 ? (1ull << Num() % BlockWidth) - 1 : -1;
return (Impl.Pointer[NumBlocks() - 1] & LastBlockBitmask) != 0;
}
/** @return true if none of the bits are set to true, otherwise false. */
NODISCARD FORCEINLINE bool None() const { return !Any(); }
/** @return The number of bits that are set to true. */
NODISCARD size_t Count() const
{
if (Num() == 0) return 0;
size_t Result = 0;
constexpr auto BlockCount = [](BlockType Block)
{
static_assert(sizeof(BlockType) <= sizeof(uint64), "The block width of TBitset is unexpected");
if constexpr (sizeof(BlockType) == sizeof(uint8))
{
Block = (Block & 0x55ull) + ((Block >> 1) & 0x55ull);
Block = (Block & 0x33ull) + ((Block >> 2) & 0x33ull);
Block = (Block & 0x0Full) + ((Block >> 4) & 0x0Full);
}
else if constexpr (sizeof(BlockType) == sizeof(uint16))
{
Block = (Block & 0x5555ull) + ((Block >> 1) & 0x5555ull);
Block = (Block & 0x3333ull) + ((Block >> 2) & 0x3333ull);
Block = (Block & 0x0F0Full) + ((Block >> 4) & 0x0F0Full);
Block = (Block & 0x00FFull) + ((Block >> 8) & 0x00FFull);
}
else if constexpr (sizeof(BlockType) == sizeof(uint32))
{
Block = (Block & 0x55555555ull) + ((Block >> 1) & 0x55555555ull);
Block = (Block & 0x33333333ull) + ((Block >> 2) & 0x33333333ull);
Block = (Block & 0x0F0F0F0Full) + ((Block >> 4) & 0x0F0F0F0Full);
Block = (Block & 0x00FF00FFull) + ((Block >> 8) & 0x00FF00FFull);
Block = (Block & 0x0000FFFFull) + ((Block >> 16) & 0x0000FFFFull);
}
else if constexpr (sizeof(BlockType) == sizeof(uint64))
{
Block = (Block & 0x5555555555555555ull) + ((Block >> 1) & 0x5555555555555555ull);
Block = (Block & 0x3333333333333333ull) + ((Block >> 2) & 0x3333333333333333ull);
Block = (Block & 0x0F0F0F0F0F0F0F0Full) + ((Block >> 4) & 0x0F0F0F0F0F0F0F0Full);
Block = (Block & 0x00FF00FF00FF00FFull) + ((Block >> 8) & 0x00FF00FF00FF00FFull);
Block = (Block & 0x0000FFFF0000FFFFull) + ((Block >> 16) & 0x0000FFFF0000FFFFull);
Block = (Block & 0x00000000FFFFFFFFull) + ((Block >> 32) & 0x00000000FFFFFFFFull);
}
else check_no_entry();
return Block;
};
for (size_t Index = 0; Index != NumBlocks() - 1; ++Index)
{
Result += BlockCount(Impl.Pointer[Index]);
}
const BlockType LastBlockBitmask = Num() % BlockWidth != 0 ? (1ull << Num() % BlockWidth) - 1 : -1;
Result += BlockCount(Impl.Pointer[NumBlocks() - 1] & LastBlockBitmask);
return Result;
}
/** Sets all bits to true. */
TBitset& Set(bool InValue = true)
{
Memory::Memset(Impl.Pointer, static_cast<uint8>(InValue ? -1 : 0), NumBlocks() * sizeof(BlockType));
return *this;
}
/** Flips all bits (like operator~, but in-place). */
TBitset& Flip()
{
for (size_t Index = 0; Index != NumBlocks(); ++Index)
{
Impl.Pointer[Index] = ~Impl.Pointer[Index];
}
return *this;
}
/** Flips the bit at the position 'Index'. */
TBitset& Flip(size_t Index)
{
Impl.Pointer[Index / BlockWidth] ^= 1ull << Index % BlockWidth;
return *this;
}
/** Converts the contents of the bitset to an uint64 integer. */
NODISCARD uint64 ToIntegral()
{
if (Num() > 64)
{
for (size_t Index = 64 / BlockWidth; Index < NumBlocks() - 1; ++Index)
{
checkf(Impl.Pointer[Index] != 0, TEXT("The bitset can not be represented in uint64. Please check Num()."));
}
const BlockType LastBlockBitmask = Num() % BlockWidth != 0 ? (1ull << Num() % BlockWidth) - 1 : -1;
const BlockType LastBlock = Impl.Pointer[NumBlocks() - 1] & LastBlockBitmask;
checkf(LastBlock != 0, TEXT("The bitset can not be represented in uint64. Please check Num()."));
}
uint64 Result = 0;
static_assert(sizeof(BlockType) <= sizeof(uint64), "The block width of TBitset is unexpected");
if constexpr (sizeof(BlockType) == sizeof(uint8))
{
Result |= static_cast<uint64>(Impl.Pointer[0]) << 0;
Result |= static_cast<uint64>(Impl.Pointer[1]) << 8;
Result |= static_cast<uint64>(Impl.Pointer[2]) << 16;
Result |= static_cast<uint64>(Impl.Pointer[3]) << 24;
Result |= static_cast<uint64>(Impl.Pointer[4]) << 32;
Result |= static_cast<uint64>(Impl.Pointer[5]) << 40;
Result |= static_cast<uint64>(Impl.Pointer[6]) << 48;
Result |= static_cast<uint64>(Impl.Pointer[7]) << 56;
}
else if constexpr (sizeof(BlockType) == sizeof(uint16))
{
Result |= static_cast<uint64>(Impl.Pointer[0]) << 0;
Result |= static_cast<uint64>(Impl.Pointer[1]) << 16;
Result |= static_cast<uint64>(Impl.Pointer[2]) << 32;
Result |= static_cast<uint64>(Impl.Pointer[3]) << 48;
}
else if constexpr (sizeof(BlockType) == sizeof(uint32))
{
Result |= static_cast<uint64>(Impl.Pointer[0]) << 0;
Result |= static_cast<uint64>(Impl.Pointer[1]) << 32;
}
else if constexpr (sizeof(BlockType) == sizeof(uint64))
{
Result |= static_cast<uint64>(Impl.Pointer[0]) << 0;
}
else check_no_entry();
const uint64 Mask = Num() < 64 ? (1ull << Num()) - 1 : -1;
return Result & Mask;
}
/** Appends the given bit value to the end of the bitset. */
FORCEINLINE void PushBack(bool InValue)
{
SetNum(Num() + 1);
Back() = InValue;
}
/** Removes the last bit of the bitset. The bitset cannot be empty. */
FORCEINLINE void PopBack(bool bAllowShrinking = true)
{
checkf(Num() != 0, TEXT("The bitset is empty. Please check Num()."));
SetNum(Num() - 1, bAllowShrinking);
}
/** Resizes the bitset to contain 'InCount' bits. Additional uninitialized bits are appended. */
void SetNum(size_t InCount, bool bAllowShrinking = true)
{
const size_t BlocksCount = (InCount + BlockWidth - 1) / BlockWidth;
size_t NumToAllocate = BlocksCount;
NumToAllocate = NumToAllocate > MaxBlocks() ? Impl->CalculateSlackGrow(BlocksCount, MaxBlocks()) : NumToAllocate;
NumToAllocate = NumToAllocate < MaxBlocks() ? (bAllowShrinking ? Impl->CalculateSlackShrink(BlocksCount, MaxBlocks()) : MaxBlocks()) : NumToAllocate;
if (NumToAllocate != MaxBlocks())
{
BlockType* OldAllocation = Impl.Pointer;
const size_t NumToDestruct = NumBlocks();
Impl.BitsetNum = InCount;
Impl.BlocksMax = NumToAllocate;
Impl.Pointer = Impl->Allocate(MaxBlocks());
if (NumToDestruct <= Num())
{
Memory::Memcpy(Impl.Pointer, OldAllocation, NumToDestruct * sizeof(BlockType));
}
else
{
Memory::Memcpy(Impl.Pointer, OldAllocation, BlocksCount * sizeof(BlockType));
}
Impl->Deallocate(OldAllocation);
return;
}
check(InCount <= Max());
Impl.BitsetNum = InCount;
}
/** Resizes the bitset to contain 'InCount' elements. Additional copies of 'InValue' are appended. */
void SetNum(size_t InCount, bool InValue, bool bAllowShrinking /*= true*/)
{
const size_t BlocksCount = (InCount + BlockWidth - 1) / BlockWidth;
size_t NumToAllocate = BlocksCount;
NumToAllocate = NumToAllocate > MaxBlocks() ? Impl->CalculateSlackGrow(BlocksCount, MaxBlocks()) : NumToAllocate;
NumToAllocate = NumToAllocate < MaxBlocks() ? (bAllowShrinking ? Impl->CalculateSlackShrink(BlocksCount, MaxBlocks()) : MaxBlocks()) : NumToAllocate;
const BlockType LastBlockBitmask = Num() % BlockWidth != 0 ? (1ull << Num() % BlockWidth) - 1 : -1;
const BlockType BlocksValueToSet = static_cast<BlockType>(InValue ? -1 : 0);
if (NumToAllocate != MaxBlocks())
{
BlockType* OldAllocation = Impl.Pointer;
const size_t NumToDestruct = NumBlocks();
Impl.BitsetNum = InCount;
Impl.BlocksMax = NumToAllocate;
Impl.Pointer = Impl->Allocate(MaxBlocks());
if (NumToDestruct <= NumBlocks())
{
if (NumToDestruct != 0)
{
Memory::Memcpy(Impl.Pointer, OldAllocation, (NumToDestruct - 1) * sizeof(BlockType));
Impl.Pointer[NumToDestruct - 1] = OldAllocation[NumToDestruct - 1] & LastBlockBitmask | BlocksValueToSet & ~LastBlockBitmask;
}
Memory::Memset(Impl.Pointer + NumToDestruct, static_cast<uint8>(BlocksValueToSet), (BlocksCount - NumToDestruct) * sizeof(BlockType));
}
else
{
Memory::Memcpy(Impl.Pointer, OldAllocation, BlocksCount * sizeof(BlockType));
}
Impl->Deallocate(OldAllocation);
return;
}
check(InCount <= Max());
if (InCount > Num())
{
if (NumBlocks() != 0)
{
Impl.Pointer[NumBlocks() - 1] = Impl.Pointer[NumBlocks() - 1] & LastBlockBitmask | BlocksValueToSet & ~LastBlockBitmask;
}
Memory::Memset(Impl.Pointer + NumBlocks(), static_cast<uint8>(BlocksValueToSet), (BlocksCount - NumBlocks()) * sizeof(BlockType));
}
Impl.BitsetNum = InCount;
}
/** Increase the max capacity of the bitset to a value that's greater or equal to 'InCount'. */
void Reserve(size_t InCount)
{
if (InCount <= Max()) return;
const size_t BlocksCount = (InCount + BlockWidth - 1) / BlockWidth;
const size_t NumToAllocate = Impl->CalculateSlackReserve(BlocksCount);
BlockType* OldAllocation = Impl.Pointer;
check(NumToAllocate > MaxBlocks());
Impl.BlocksMax = NumToAllocate;
Impl.Pointer = Impl->Allocate(MaxBlocks());
Memory::Memcpy(Impl.Pointer, OldAllocation, NumBlocks() * sizeof(BlockType));
Impl->Deallocate(OldAllocation);
}
/** Requests the removal of unused capacity. */
void Shrink()
{
size_t NumToAllocate = Impl->CalculateSlackReserve(NumBlocks());
check(NumToAllocate <= MaxBlocks());
if (NumToAllocate == MaxBlocks()) return;
BlockType* OldAllocation = Impl.Pointer;
Impl.BitsetNum = NumToAllocate * BlockWidth;
Impl.Pointer = Impl->Allocate(MaxBlocks());
Memory::Memcpy(Impl.Pointer, OldAllocation, NumBlocks() * sizeof(BlockType));
Impl->Deallocate(OldAllocation);
}
/** @return The pointer to the underlying element storage. */
NODISCARD FORCEINLINE BlockType* GetData() { return Impl.Pointer; }
NODISCARD FORCEINLINE const BlockType* GetData() const { return Impl.Pointer; }
/** @return The iterator to the first or end bit. */
NODISCARD FORCEINLINE Iterator Begin() { return Iterator(this, Impl.Pointer, 0); }
NODISCARD FORCEINLINE ConstIterator Begin() const { return ConstIterator(this, Impl.Pointer, 0); }
NODISCARD FORCEINLINE Iterator End() { return Iterator(this, Impl.Pointer, Num()); }
NODISCARD FORCEINLINE ConstIterator End() const { return ConstIterator(this, Impl.Pointer, Num()); }
/** @return The reverse iterator to the first or end bit. */
NODISCARD FORCEINLINE ReverseIterator RBegin() { return ReverseIterator(End()); }
NODISCARD FORCEINLINE ConstReverseIterator RBegin() const { return ConstReverseIterator(End()); }
NODISCARD FORCEINLINE ReverseIterator REnd() { return ReverseIterator(Begin()); }
NODISCARD FORCEINLINE ConstReverseIterator REnd() const { return ConstReverseIterator(Begin()); }
/** @return The number of bits in the bitset. */
NODISCARD FORCEINLINE size_t Num() const { return Impl.BitsetNum; }
/** @return The number of bits that can be held in currently allocated storage. */
NODISCARD FORCEINLINE size_t Max() const { return MaxBlocks() * BlockWidth; }
/** @return The number of blocks in the bitset. */
NODISCARD FORCEINLINE size_t NumBlocks() const { return (Num() + BlockWidth - 1) / BlockWidth; }
/** @return The number of blocks that can be held in currently allocated storage. */
NODISCARD FORCEINLINE size_t MaxBlocks() const { return Impl.BlocksMax; }
/** @return true if the bitset is empty, false otherwise. */
NODISCARD FORCEINLINE bool IsEmpty() const { return Num() == 0; }
/** @return true if the iterator is valid, false otherwise. */
NODISCARD FORCEINLINE bool IsValidIterator(ConstIterator Iter) const { return Begin() <= Iter && Iter <= End(); }
/** @return The reference to the requested bit. */
NODISCARD FORCEINLINE Reference operator[](size_t Index) { checkf(Index < Num(), TEXT("Read access violation. Please check IsValidIterator().")); return *(Begin() + Index); }
NODISCARD FORCEINLINE ConstReference operator[](size_t Index) const { checkf(Index < Num(), TEXT("Read access violation. Please check IsValidIterator().")); return *(Begin() + Index); }
/** @return The reference to the first or last bit. */
NODISCARD FORCEINLINE Reference Front() { return *Begin(); }
NODISCARD FORCEINLINE ConstReference Front() const { return *Begin(); }
NODISCARD FORCEINLINE Reference Back() { return *(End() - 1); }
NODISCARD FORCEINLINE ConstReference Back() const { return *(End() - 1); }
/** Erases all bits from the bitset. After this call, Num() returns zero. */
void Reset(bool bAllowShrinking = true)
{
const size_t NumToAllocate = Impl->CalculateSlackReserve(0);
if (bAllowShrinking && NumToAllocate != MaxBlocks())
{
Impl->Deallocate(Impl.Pointer);
Impl.BitsetNum = 0;
Impl.BlocksMax = Impl->CalculateSlackReserve(NumBlocks());
Impl.Pointer = Impl->Allocate(MaxBlocks());
return;
}
Impl.BitsetNum = 0;
}
/** Overloads the GetTypeHash algorithm for TBitset. */
NODISCARD friend FORCEINLINE size_t GetTypeHash(const TBitset& A)
{
if (A.NumBlocks() == 0) return 855406835;
size_t Result = 0;
for (size_t Index = 0; Index != A.NumBlocks() - 1; ++Index)
{
Result = HashCombine(Result, GetTypeHash(A.Impl.Pointer[Index]));
}
const BlockType LastBlockBitmask = A.Num() % BlockWidth != 0 ? (1ull << A.Num() % BlockWidth) - 1 : -1;
return HashCombine(Result, GetTypeHash(A.Impl.Pointer[A.NumBlocks() - 1] & LastBlockBitmask));
}
/** Overloads the Swap algorithm for TBitset. */
friend void Swap(TBitset& A, TBitset& B)
{
const bool bIsTransferable =
A.Impl->IsTransferable(A.Impl.Pointer) &&
B.Impl->IsTransferable(B.Impl.Pointer);
if (bIsTransferable)
{
Swap(A.Impl.BitsetNum, B.Impl.BitsetNum);
Swap(A.Impl.BlocksMax, B.Impl.BlocksMax);
Swap(A.Impl.Pointer, B.Impl.Pointer);
return;
}
TBitset Temp = MoveTemp(A);
A = MoveTemp(B);
B = MoveTemp(Temp);
}
ENABLE_RANGE_BASED_FOR_LOOP_SUPPORT
private:
ALLOCATOR_WRAPPER_BEGIN(AllocatorType, BlockType, Impl)
{
size_t BitsetNum;
size_t BlocksMax;
BlockType* Pointer;
}
ALLOCATOR_WRAPPER_END(AllocatorType, BlockType, Impl)
public:
class Reference final : private FSingleton
{
public:
FORCEINLINE Reference& operator=(bool InValue) { Data = (Data & ~Mask) | (InValue ? Mask : 0); return *this; }
FORCEINLINE Reference& operator=(const Reference& InValue) { *this = static_cast<bool>(InValue); return *this; }
FORCEINLINE Reference& operator&=(bool InValue) { Data &= InValue ? -1 : ~Mask; return *this; }
FORCEINLINE Reference& operator|=(bool InValue) { Data |= InValue ? Mask : 0; return *this; }
FORCEINLINE Reference& operator^=(bool InValue) { *this = InValue ^ *this; return *this; }
FORCEINLINE bool operator~() const { return !*this; }
FORCEINLINE operator bool() const { return (Data & Mask) != 0; }
private:
FORCEINLINE Reference(BlockType& InData, BlockType InMask)
: Data(InData), Mask(InMask)
{ }
BlockType& Data;
BlockType Mask;
friend Iterator;
};
private:
template <bool bConst>
class TIteratorImpl final
{
public:
using ElementType = bool;
FORCEINLINE TIteratorImpl() = default;
# if DO_CHECK
FORCEINLINE TIteratorImpl(const TIteratorImpl<false>& InValue) requires (bConst)
: Owner(InValue.Owner), Pointer(InValue.Pointer), BitOffset(InValue.BitOffset)
{ }
# else
FORCEINLINE TIteratorImpl(const TIteratorImpl<false>& InValue) requires (bConst)
: Pointer(InValue.Pointer), BitOffset(InValue.BitOffset)
{ }
# endif
FORCEINLINE TIteratorImpl(const TIteratorImpl&) = default;
FORCEINLINE TIteratorImpl(TIteratorImpl&&) = default;
FORCEINLINE TIteratorImpl& operator=(const TIteratorImpl&) = default;
FORCEINLINE TIteratorImpl& operator=(TIteratorImpl&&) = default;
NODISCARD friend FORCEINLINE bool operator==(const TIteratorImpl& LHS, const TIteratorImpl& RHS) { check(LHS.Pointer == RHS.Pointer); return LHS.BitOffset == RHS.BitOffset; }
NODISCARD friend FORCEINLINE strong_ordering operator<=>(const TIteratorImpl& LHS, const TIteratorImpl& RHS) { check(LHS.Pointer == RHS.Pointer); return LHS.BitOffset <=> RHS.BitOffset; }
NODISCARD FORCEINLINE Reference operator*() const requires (!bConst) { CheckThis(true); return Reference(*(Pointer + BitOffset / BlockWidth), 1ull << BitOffset % BlockWidth); }
NODISCARD FORCEINLINE ConstReference operator*() const requires ( bConst) { CheckThis(true); return (*(Pointer + BitOffset / BlockWidth) & (1ull << BitOffset % BlockWidth)); }
NODISCARD FORCEINLINE auto operator[](ptrdiff Index) const { TIteratorImpl Temp = *this + Index; return *Temp; }
FORCEINLINE TIteratorImpl& operator++() { ++BitOffset; CheckThis(); return *this; }
FORCEINLINE TIteratorImpl& operator--() { --BitOffset; CheckThis(); return *this; }
FORCEINLINE TIteratorImpl operator++(int) { TIteratorImpl Temp = *this; ++*this; return Temp; }
FORCEINLINE TIteratorImpl operator--(int) { TIteratorImpl Temp = *this; --*this; return Temp; }
FORCEINLINE TIteratorImpl& operator+=(ptrdiff Offset) { BitOffset += Offset; CheckThis(); return *this; }
FORCEINLINE TIteratorImpl& operator-=(ptrdiff Offset) { BitOffset -= Offset; CheckThis(); return *this; }
NODISCARD friend FORCEINLINE TIteratorImpl operator+(TIteratorImpl Iter, ptrdiff Offset) { TIteratorImpl Temp = Iter; Temp += Offset; return Temp; }
NODISCARD friend FORCEINLINE TIteratorImpl operator+(ptrdiff Offset, TIteratorImpl Iter) { TIteratorImpl Temp = Iter; Temp += Offset; return Temp; }
NODISCARD FORCEINLINE TIteratorImpl operator-(ptrdiff Offset) const { TIteratorImpl Temp = *this; Temp -= Offset; return Temp; }
NODISCARD friend FORCEINLINE ptrdiff operator-(const TIteratorImpl& LHS, const TIteratorImpl& RHS) { check(LHS.Pointer == RHS.Pointer); return LHS.BitOffset - RHS.BitOffset; }
private:
# if DO_CHECK
const TBitset* Owner = nullptr;
# endif
using BlockPtr = TConditional<bConst, const BlockType*, BlockType*>;
BlockPtr Pointer = nullptr;
size_t BitOffset = 0;
# if DO_CHECK
FORCEINLINE TIteratorImpl(const TBitset* InContainer, BlockPtr InPointer, size_t Offset)
: Owner(InContainer), Pointer(InPointer), BitOffset(Offset)
{ }
# else
FORCEINLINE TIteratorImpl(const TBitset* InContainer, BlockPtr InPointer, size_t Offset)
: Pointer(InPointer), BitOffset(Offset)
{ }
# endif
FORCEINLINE void CheckThis(bool bExceptEnd = false) const
{
checkf(Owner && Owner->IsValidIterator(*this), TEXT("Read access violation. Please check IsValidIterator()."));
checkf(!(bExceptEnd && Owner->End() == *this), TEXT("Read access violation. Please check IsValidIterator()."));
}
template <bool> friend class TIteratorImpl;
friend TBitset;
};
};
using FBitset = TBitset<uint64>;
static_assert(sizeof(FBitset) == 40, "The byte size of FBitset is unexpected");
NAMESPACE_MODULE_END(Utility)
NAMESPACE_MODULE_END(Redcraft)
NAMESPACE_REDCRAFT_END