Redcraft/Redcraft.Utility/Source/Public/Templates/Variant.h

598 lines
28 KiB
C++

#pragma once
#include "CoreTypes.h"
#include "Range/Utility.h"
#include "Templates/Meta.h"
#include "Templates/Invoke.h"
#include "Templates/Utility.h"
#include "Templates/TypeHash.h"
#include "TypeTraits/TypeTraits.h"
#include "Memory/MemoryOperator.h"
#include "Miscellaneous/Compare.h"
#include "Miscellaneous/AssertionMacros.h"
NAMESPACE_REDCRAFT_BEGIN
NAMESPACE_MODULE_BEGIN(Redcraft)
NAMESPACE_MODULE_BEGIN(Utility)
template <typename... Ts> requires (sizeof...(Ts) > 0 && (true && ... && CDestructible<Ts>))
class TVariant;
NAMESPACE_PRIVATE_BEGIN
template <typename T > struct TIsTVariant : FFalse { };
template <typename... Ts> struct TIsTVariant<TVariant<Ts...>> : FTrue { };
template <typename VariantType>
struct TVariantNumImpl;
template <typename... Ts>
struct TVariantNumImpl<TVariant<Ts...>> : TConstant<size_t, Meta::TSize<TTypeSequence<Ts...>>> { };
template <typename T, typename VariantType>
struct TVariantIndexImpl;
template <typename T, typename... Ts>
struct TVariantIndexImpl<T, TVariant<Ts...>> : TConstant<size_t, Meta::TIndex<T, TTypeSequence<Ts...>>> { };
template <size_t I, typename VariantType>
struct TVariantAlternativeImpl;
template <size_t I, typename... Ts>
struct TVariantAlternativeImpl<I, TVariant<Ts...>>
{
using FType = Meta::TType<I, TTypeSequence<Ts...>>;
};
template <typename T, typename TSequence>
struct TVariantOverloadType
{
using FFrontType = Meta::TFront<TSequence>;
using FNextSequence = Meta::TPop<TSequence>;
using FNextUniqueSequence = typename TVariantOverloadType<T, FNextSequence>::FType;
// T_i x[] = { Forward<T>(t) };
static constexpr bool bConditional = requires { DeclVal<void(FFrontType(&&)[1])>()({ DeclVal<T>() }); };
using FType = TConditional<bConditional, Meta::TPush<FFrontType, FNextUniqueSequence>, FNextUniqueSequence>;
};
template <typename T>
struct TVariantOverloadType<T, TTypeSequence<>>
{
using FType = TTypeSequence<>;
};
template <typename T, typename... Ts>
using TVariantSelectedType = Meta::TOverloadResolution<T, typename NAMESPACE_PRIVATE::TVariantOverloadType<T, TTypeSequence<Ts...>>::FType>;
NAMESPACE_PRIVATE_END
template <typename T>
concept CTVariant = NAMESPACE_PRIVATE::TIsTVariant<TRemoveCV<T>>::Value;
template <CTVariant T>
inline constexpr size_t TVariantNum = NAMESPACE_PRIVATE::TVariantNumImpl<TRemoveCV<T>>::Value;
template <typename T, CTVariant U>
inline constexpr size_t TVariantIndex = NAMESPACE_PRIVATE::TVariantIndexImpl<T, TRemoveCV<U>>::Value;
template <size_t I, CTVariant U>
using TVariantAlternative = TCopyCV<U, typename NAMESPACE_PRIVATE::TVariantAlternativeImpl<I, TRemoveCV<U>>::FType>;
/**
* The class template TVariant represents a type-safe union. An instance of TVariant
* holds a value of one of its alternative types, or in the case of invalid - no value.
*/
template <typename... Ts> requires (sizeof...(Ts) > 0 && (true && ... && CDestructible<Ts>))
class TVariant final
{
public:
/** Constructs an invalid object. */
FORCEINLINE constexpr TVariant() : TypeIndex(0xFF) { };
/** Constructs an invalid object. */
FORCEINLINE constexpr TVariant(FInvalid) : TVariant() { };
/** Copies content of other into a new instance. */
FORCEINLINE constexpr TVariant(const TVariant& InValue) requires (true && ... && CTriviallyCopyConstructible<Ts>) = default;
/** Copies content of other into a new instance. */
FORCEINLINE constexpr TVariant(const TVariant& InValue) requires ((true && ... && CCopyConstructible<Ts>) && !(true && ... && CTriviallyCopyConstructible<Ts>))
: TypeIndex(static_cast<uint8>(InValue.GetIndex()))
{
if (IsValid()) CopyConstructImpl[InValue.GetIndex()](&Value, &InValue.Value);
}
/** Moves content of other into a new instance. */
FORCEINLINE constexpr TVariant(TVariant&& InValue) requires (true && ... && CTriviallyMoveConstructible<Ts>) = default;
/** Moves content of other into a new instance. */
FORCEINLINE constexpr TVariant(TVariant&& InValue) requires ((true && ... && CMoveConstructible<Ts>) && !(true && ... && CTriviallyMoveConstructible<Ts>))
: TypeIndex(static_cast<uint8>(InValue.GetIndex()))
{
if (IsValid()) MoveConstructImpl[InValue.GetIndex()](&Value, &InValue.Value);
}
/**
* Converting constructor. Constructs a variant holding the alternative type that would be selected
* by overload resolution for the expression F(Forward<T>(InValue)) if there was an overload of
* imaginary function F(T) for every T from Ts... in scope at the same time, except that an overload F(T)
* is only considered if the declaration T X[] = { Forward<T>(InValue) }; is valid for some invented variable x.
* Direct-initializes the contained value as if by direct non-list-initialization from Forward<T>(InValue).
*/
template <typename T> requires (requires { typename NAMESPACE_PRIVATE::TVariantSelectedType<T, Ts...>; }
&& !CTInPlaceType<TRemoveCVRef<T>> && !CTInPlaceIndex<TRemoveCVRef<T>>
&& !CSameAs<TVariant, TRemoveCVRef<T>>)
FORCEINLINE constexpr TVariant(T&& InValue) : TVariant(InPlaceType<NAMESPACE_PRIVATE::TVariantSelectedType<T, Ts...>>, Forward<T>(InValue))
{ }
/** Constructs a variant with the specified alternative T and initializes the contained value with the arguments Forward<Us>(Args).... */
template <typename T, typename... Us> requires (CConstructibleFrom<T, Us...>)
FORCEINLINE constexpr explicit TVariant(TInPlaceType<T>, Us&&... Args)
: TVariant(InPlaceIndex<TVariantIndex<T, TVariant<Ts...>>>, Forward<Us>(Args)...)
{ }
/** Constructs a variant with the alternative T specified by the index I and initializes the contained value with the arguments Forward<Us>(Args).... */
template <size_t I, typename... Us> requires (I < sizeof...(Ts)
&& CConstructibleFrom<TVariantAlternative<I, TVariant<Ts...>>, Us...>)
FORCEINLINE constexpr explicit TVariant(TInPlaceIndex<I>, Us&&... Args)
: TypeIndex(I)
{
using FSelectedType = TVariantAlternative<I, TVariant<Ts...>>;
new (&Value) FSelectedType(Forward<Us>(Args)...);
}
/** Constructs a variant with the specified alternative T and initializes the contained value with the arguments IL, Forward<Us>(Args).... */
template <typename T, typename U, typename... Us> requires (CConstructibleFrom<T, initializer_list<U>, Us...>)
FORCEINLINE constexpr explicit TVariant(TInPlaceType<T>, initializer_list<U> IL, Us&&... Args)
: TVariant(InPlaceIndex<TVariantIndex<T, TVariant<Ts...>>>, IL, Forward<Us>(Args)...)
{ }
/** Constructs a variant with the alternative T specified by the index I and initializes the contained value with the arguments IL, Forward<Us>(Args).... */
template <size_t I, typename T, typename... Us> requires (I < sizeof...(Ts)
&& CConstructibleFrom<TVariantAlternative<I, TVariant<Ts...>>, initializer_list<T>, Us...>)
FORCEINLINE constexpr explicit TVariant(TInPlaceIndex<I>, initializer_list<T> IL, Us&&... Args)
: TypeIndex(I)
{
using FSelectedType = TVariantAlternative<I, TVariant<Ts...>>;
new (&Value) FSelectedType(IL, Forward<Us>(Args)...);
}
/** Destroys the contained object, if any, as if by a call to Reset(). */
FORCEINLINE constexpr ~TVariant() requires (true && ... && CTriviallyDestructible<Ts>) = default;
/** Destroys the contained object, if any, as if by a call to Reset(). */
FORCEINLINE constexpr ~TVariant() requires (!(true && ... && CTriviallyDestructible<Ts>))
{
Reset();
}
/** Assigns by copying the state of 'InValue'. */
FORCEINLINE constexpr TVariant& operator=(const TVariant& InValue) requires (true && ... && (CTriviallyCopyConstructible<Ts> && CTriviallyCopyAssignable<Ts>)) = default;
/** Assigns by copying the state of 'InValue'. */
constexpr TVariant& operator=(const TVariant& InValue) requires ((true && ... && (CCopyConstructible<Ts> && CCopyAssignable<Ts>))
&& !(true && ... && (CTriviallyCopyConstructible<Ts> && CTriviallyCopyAssignable<Ts>)))
{
if (&InValue == this) return *this;
if (!InValue.IsValid())
{
Reset();
return *this;
}
if (GetIndex() == InValue.GetIndex()) CopyAssignImpl[InValue.GetIndex()](&Value, &InValue.Value);
else
{
Reset();
CopyConstructImpl[InValue.GetIndex()](&Value, &InValue.Value);
TypeIndex = static_cast<uint8>(InValue.GetIndex());
}
return *this;
}
/** Assigns by moving the state of 'InValue'. */
FORCEINLINE constexpr TVariant& operator=(TVariant&& InValue) requires (true && ... && (CTriviallyMoveConstructible<Ts> && CTriviallyMoveAssignable<Ts>)) = default;
/** Assigns by moving the state of 'InValue'. */
constexpr TVariant& operator=(TVariant&& InValue) requires ((true && ... && (CMoveConstructible<Ts> && CMoveAssignable<Ts>))
&& !(true && ... && (CTriviallyMoveConstructible<Ts> && CTriviallyMoveAssignable<Ts>)))
{
if (&InValue == this) return *this;
if (!InValue.IsValid())
{
Reset();
return *this;
}
if (GetIndex() == InValue.GetIndex()) MoveAssignImpl[InValue.GetIndex()](&Value, &InValue.Value);
else
{
Reset();
MoveConstructImpl[InValue.GetIndex()](&Value, &InValue.Value);
TypeIndex = static_cast<uint8>(InValue.GetIndex());
}
return *this;
}
/** Converting assignment. Constructs a variant holding the alternative type that would be selected by overload resolution. */
template <typename T> requires (requires { typename NAMESPACE_PRIVATE::TVariantSelectedType<T, Ts...>; })
FORCEINLINE constexpr TVariant& operator=(T&& InValue)
{
using FSelectedType = NAMESPACE_PRIVATE::TVariantSelectedType<T, Ts...>;
if (GetIndex() == TVariantIndex<FSelectedType, TVariant<Ts...>>) GetValue<FSelectedType>() = Forward<T>(InValue);
else
{
Reset();
new (&Value) FSelectedType(Forward<T>(InValue));
TypeIndex = TVariantIndex<FSelectedType, TVariant<Ts...>>;
}
return *this;
}
/** Check if the two variants are equivalent. */
NODISCARD friend constexpr bool operator==(const TVariant& LHS, const TVariant& RHS) requires (true && ... && CEqualityComparable<Ts>)
{
if (LHS.GetIndex() != RHS.GetIndex()) return false;
if (LHS.IsValid() == false) return true;
using FCompareImpl = bool(*)(const void*, const void*);
constexpr FCompareImpl CompareImpl[] = { [](const void* LHS, const void* RHS) -> bool { return *reinterpret_cast<const Ts*>(LHS) == *reinterpret_cast<const Ts*>(RHS); }... };
return CompareImpl[LHS.GetIndex()](&LHS.Value, &RHS.Value);
}
/** Check the order relationship between two variants. */
NODISCARD friend constexpr partial_ordering operator<=>(const TVariant& LHS, const TVariant& RHS) requires (true && ... && CSynthThreeWayComparable<Ts>)
{
if (LHS.GetIndex() != RHS.GetIndex()) return partial_ordering::unordered;
if (LHS.IsValid() == false) return partial_ordering::equivalent;
using FCompareImpl = partial_ordering(*)(const void*, const void*);
constexpr FCompareImpl CompareImpl[] = { [](const void* LHS, const void* RHS) -> partial_ordering { return SynthThreeWayCompare(*reinterpret_cast<const Ts*>(LHS), *reinterpret_cast<const Ts*>(RHS)); }...};
return CompareImpl[LHS.GetIndex()](&LHS.Value, &RHS.Value);
}
/** Check if the variant value is equivalent to 'InValue'. */
template <typename T> requires (!CSameAs<TVariant, T> && CEqualityComparable<T>)
NODISCARD FORCEINLINE constexpr bool operator==(const T& InValue) const&
{
return HoldsAlternative<T>() ? GetValue<T>() == InValue : false;
}
/** Check that the variant value is in ordered relationship with 'InValue'. */
template <typename T> requires (!CSameAs<TVariant, T> && CEqualityComparable<T>)
NODISCARD FORCEINLINE constexpr partial_ordering operator<=>(const T& InValue) const&
{
return HoldsAlternative<T>() ? SynthThreeWayCompare(GetValue<T>(), InValue) : partial_ordering::unordered;
}
/** @return true if instance does not contain a value, otherwise false. */
NODISCARD FORCEINLINE constexpr bool operator==(FInvalid) const& { return !IsValid(); }
/** Equivalent to Emplace<I>(Forward<Us>(Args)...), where I is the zero-based index of T in Types.... */
template <typename T, typename... Us> requires (CConstructibleFrom<T, Us...>)
FORCEINLINE constexpr T& Emplace(Us&&... Args)
{
return Emplace<TVariantIndex<T, TVariant<Ts...>>>(Forward<Us>(Args)...);
}
/**
* First, destroys the currently contained value if any.
* Then direct-initializes the contained value as if constructing a value of type T with the arguments Forward<Us>(Args)....
*
* @param Args - The arguments to be passed to the constructor of the contained object.
*
* @return A reference to the new contained object.
*/
template <size_t I, typename... Us> requires (I < sizeof...(Ts)
&& CConstructibleFrom<TVariantAlternative<I, TVariant<Ts...>>, Us...>)
FORCEINLINE constexpr TVariantAlternative<I, TVariant<Ts...>>& Emplace(Us&&... Args)
{
Reset();
using FSelectedType = TVariantAlternative<I, TVariant<Ts...>>;
FSelectedType* Result = new (&Value) FSelectedType(Forward<Us>(Args)...);
TypeIndex = I;
return *Result;
}
/** Equivalent to Emplace<I>(IL, Forward<Us>(Args)...), where I is the zero-based index of T in Types.... */
template <typename T, typename U, typename... Us> requires (CConstructibleFrom<T, initializer_list<U>, Us...>)
FORCEINLINE constexpr T& Emplace(initializer_list<U> IL, Us&&... Args)
{
return Emplace<TVariantIndex<T, TVariant<Ts...>>>(IL, Forward<Us>(Args)...);
}
/**
* First, destroys the currently contained value if any.
* Then direct-initializes the contained value as if constructing a value of type T with the arguments IL, Forward<Us>(Args)....
*
* @param IL, Args - The arguments to be passed to the constructor of the contained object.
*
* @return A reference to the new contained object.
*/
template <size_t I, typename T, typename... Us> requires (I < sizeof...(Ts)
&& CConstructibleFrom<TVariantAlternative<I, TVariant<Ts...>>, initializer_list<T>, Us...>)
FORCEINLINE constexpr TVariantAlternative<I, TVariant<Ts...>>& Emplace(initializer_list<T> IL, Us&&... Args)
{
Reset();
using FSelectedType = TVariantAlternative<I, TVariant<Ts...>>;
FSelectedType* Result = new (&Value) FSelectedType(IL, Forward<Us>(Args)...);
TypeIndex = I;
return *Result;
}
/** @return The typeid of the contained value if instance is non-empty, otherwise typeid(void). */
NODISCARD FORCEINLINE constexpr const type_info& GetTypeInfo() const { return IsValid() ? *TypeInfos[GetIndex()] : typeid(void); }
/** @return The zero-based index of the alternative held by the variant. */
NODISCARD FORCEINLINE constexpr size_t GetIndex() const { return IsValid() ? TypeIndex : INDEX_NONE; }
/** @return true if instance contains a value, otherwise false. */
NODISCARD FORCEINLINE constexpr bool IsValid() const { return TypeIndex != 0xFF; }
NODISCARD FORCEINLINE constexpr explicit operator bool() const { return TypeIndex != 0xFF; }
/** @return true if the variant currently holds the alternative, false otherwise. */
template <size_t I> NODISCARD FORCEINLINE constexpr bool HoldsAlternative() const { return IsValid() ? GetIndex() == I : false; }
template <typename T> NODISCARD FORCEINLINE constexpr bool HoldsAlternative() const { return IsValid() ? GetIndex() == TVariantIndex<T, TVariant<Ts...>> : false; }
/** @return The contained object. */
template <size_t I> requires (I < sizeof...(Ts)) NODISCARD FORCEINLINE constexpr decltype(auto) GetValue() & { checkf(HoldsAlternative<I>(), TEXT("It is an error to call GetValue() on an wrong TVariant. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return *reinterpret_cast< TVariantAlternative<I, TVariant<Ts...>>*>(&Value); }
template <size_t I> requires (I < sizeof...(Ts)) NODISCARD FORCEINLINE constexpr decltype(auto) GetValue() && { checkf(HoldsAlternative<I>(), TEXT("It is an error to call GetValue() on an wrong TVariant. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return MoveTemp(*reinterpret_cast< TVariantAlternative<I, TVariant<Ts...>>*>(&Value)); }
template <size_t I> requires (I < sizeof...(Ts)) NODISCARD FORCEINLINE constexpr decltype(auto) GetValue() const& { checkf(HoldsAlternative<I>(), TEXT("It is an error to call GetValue() on an wrong TVariant. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return *reinterpret_cast<const TVariantAlternative<I, TVariant<Ts...>>*>(&Value); }
template <size_t I> requires (I < sizeof...(Ts)) NODISCARD FORCEINLINE constexpr decltype(auto) GetValue() const&& { checkf(HoldsAlternative<I>(), TEXT("It is an error to call GetValue() on an wrong TVariant. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return MoveTemp(*reinterpret_cast<const TVariantAlternative<I, TVariant<Ts...>>*>(&Value)); }
/** @return The contained object. */
template <typename T> NODISCARD FORCEINLINE constexpr decltype(auto) GetValue() & { checkf(HoldsAlternative<T>(), TEXT("It is an error to call GetValue() on an wrong TVariant. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return *reinterpret_cast< T*>(&Value); }
template <typename T> NODISCARD FORCEINLINE constexpr decltype(auto) GetValue() && { checkf(HoldsAlternative<T>(), TEXT("It is an error to call GetValue() on an wrong TVariant. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return MoveTemp(*reinterpret_cast< T*>(&Value)); }
template <typename T> NODISCARD FORCEINLINE constexpr decltype(auto) GetValue() const& { checkf(HoldsAlternative<T>(), TEXT("It is an error to call GetValue() on an wrong TVariant. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return *reinterpret_cast<const T*>(&Value); }
template <typename T> NODISCARD FORCEINLINE constexpr decltype(auto) GetValue() const&& { checkf(HoldsAlternative<T>(), TEXT("It is an error to call GetValue() on an wrong TVariant. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return MoveTemp(*reinterpret_cast<const T*>(&Value)); }
/** @return The contained object when HoldsAlternative<I>() returns true, 'DefaultValue' otherwise. */
template <size_t I> requires (I < sizeof...(Ts)) NODISCARD FORCEINLINE constexpr decltype(auto) Get( TVariantAlternative<I, TVariant<Ts...>>& DefaultValue) & { return HoldsAlternative<I>() ? GetValue<I>() : DefaultValue; }
template <size_t I> requires (I < sizeof...(Ts)) NODISCARD FORCEINLINE constexpr decltype(auto) Get(const TVariantAlternative<I, TVariant<Ts...>>& DefaultValue) const& { return HoldsAlternative<I>() ? GetValue<I>() : DefaultValue; }
/** @return The contained object when HoldsAlternative<T>() returns true, 'DefaultValue' otherwise. */
template <typename T> NODISCARD FORCEINLINE constexpr decltype(auto) Get( T& DefaultValue) & { return HoldsAlternative<T>() ? GetValue<T>() : DefaultValue; }
template <typename T> NODISCARD FORCEINLINE constexpr decltype(auto) Get(const T& DefaultValue) const& { return HoldsAlternative<T>() ? GetValue<T>() : DefaultValue; }
/** If not empty, destroys the contained object. */
FORCEINLINE constexpr void Reset()
{
if (GetIndex() == INDEX_NONE) return;
if constexpr (!(true && ... && CTriviallyDestructible<Ts>))
{
DestroyImpl[GetIndex()](&Value);
}
TypeIndex = static_cast<uint8>(INDEX_NONE);
}
/** Overloads the GetTypeHash algorithm for TVariant. */
NODISCARD friend FORCEINLINE constexpr size_t GetTypeHash(const TVariant& A) requires (true && ... && CHashable<Ts>)
{
if (!A.IsValid()) return 114514;
using FHashImpl = size_t(*)(const void*);
constexpr FHashImpl HashImpl[] = { [](const void* This) -> size_t { return GetTypeHash(*reinterpret_cast<const Ts*>(This)); }... };
return HashCombine(GetTypeHash(A.GetIndex()), HashImpl[A.GetIndex()](&A.Value));
}
/** Overloads the Swap algorithm for TVariant. */
friend constexpr void Swap(TVariant& A, TVariant& B) requires (true && ... && (CMoveConstructible<Ts> && CSwappable<Ts>))
{
if (!A.IsValid() && !B.IsValid()) return;
if (A.IsValid() && !B.IsValid())
{
B = MoveTemp(A);
A.Reset();
}
else if (!A.IsValid() && B.IsValid())
{
A = MoveTemp(B);
B.Reset();
}
else if (A.GetIndex() == B.GetIndex())
{
using FSwapImpl = void(*)(void*, void*);
constexpr FSwapImpl SwapImpl[] = { [](void* A, void* B) { Swap(*reinterpret_cast<Ts*>(A), *reinterpret_cast<Ts*>(B)); }... };
SwapImpl[A.GetIndex()](&A.Value, &B.Value);
}
else
{
TVariant Temp = MoveTemp(A);
A = MoveTemp(B);
B = MoveTemp(Temp);
}
}
private:
static constexpr const type_info* TypeInfos[] = { &typeid(Ts)... };
using FCopyConstructImpl = void(*)(void*, const void*);
using FMoveConstructImpl = void(*)(void*, void*);
using FCopyAssignImpl = void(*)(void*, const void*);
using FMoveAssignImpl = void(*)(void*, void*);
using FDestroyImpl = void(*)(void* );
static constexpr FCopyConstructImpl CopyConstructImpl[] = { [](void* A, const void* B) { if constexpr (requires(Ts* A, const Ts* B) { Memory::CopyConstruct (A, B); }) Memory::CopyConstruct (reinterpret_cast<Ts*>(A), reinterpret_cast<const Ts*>(B)); else checkf(false, TEXT("The type '%s' is not copy constructible."), typeid(Ts).name()); }... };
static constexpr FMoveConstructImpl MoveConstructImpl[] = { [](void* A, void* B) { if constexpr (requires(Ts* A, Ts* B) { Memory::MoveConstruct (A, B); }) Memory::MoveConstruct (reinterpret_cast<Ts*>(A), reinterpret_cast< Ts*>(B)); else checkf(false, TEXT("The type '%s' is not move constructible."), typeid(Ts).name()); }... };
static constexpr FCopyAssignImpl CopyAssignImpl[] = { [](void* A, const void* B) { if constexpr (requires(Ts* A, const Ts* B) { Memory::CopyAssign (A, B); }) Memory::CopyAssign (reinterpret_cast<Ts*>(A), reinterpret_cast<const Ts*>(B)); else checkf(false, TEXT("The type '%s' is not copy assignable."), typeid(Ts).name()); }... };
static constexpr FMoveAssignImpl MoveAssignImpl[] = { [](void* A, void* B) { if constexpr (requires(Ts* A, Ts* B) { Memory::MoveAssign (A, B); }) Memory::MoveAssign (reinterpret_cast<Ts*>(A), reinterpret_cast< Ts*>(B)); else checkf(false, TEXT("The type '%s' is not move assignable."), typeid(Ts).name()); }... };
static constexpr FDestroyImpl DestroyImpl[] = { [](void* A ) { if constexpr (requires(Ts* A ) { Memory::Destruct (A ); }) Memory::Destruct (reinterpret_cast<Ts*>(A) ); else checkf(false, TEXT("The type '%s' is not destructible."), typeid(Ts).name()); }... };
TAlignedUnion<1, Ts...> Value;
uint8 TypeIndex;
};
NAMESPACE_PRIVATE_BEGIN
template <typename F, typename... VariantTypes>
struct TVariantVisitImpl
{
struct FGetTotalNum
{
FORCEINLINE static constexpr size_t Do()
{
if (sizeof...(VariantTypes) == 0) return 0;
constexpr size_t VariantNums[] = { TVariantNum<TRemoveReference<VariantTypes>>... };
size_t Result = 1;
for (size_t Index = 0; Index < sizeof...(VariantTypes); ++Index)
{
Result *= VariantNums[Index];
}
return Result;
}
};
struct FEncodeIndices
{
FORCEINLINE static constexpr size_t Do(initializer_list<size_t> Indices)
{
constexpr size_t VariantNums[] = { TVariantNum<TRemoveReference<VariantTypes>>... };
size_t Result = 0;
for (size_t Index = 0; Index < sizeof...(VariantTypes); ++Index)
{
Result *= VariantNums[Index];
Result += Range::Begin(Indices)[Index];
}
return Result;
}
};
struct FDecodeExtent
{
FORCEINLINE static constexpr size_t Do(size_t EncodedIndex, size_t Extent)
{
constexpr size_t VariantNums[] = { TVariantNum<TRemoveReference<VariantTypes>>... };
for (size_t Index = Extent + 1; Index < sizeof...(VariantTypes); ++Index)
{
EncodedIndex /= VariantNums[Index];
}
return EncodedIndex % VariantNums[Extent];
}
};
template <size_t EncodedIndex, typename>
struct FInvokeEncoded;
template <size_t EncodedIndex, size_t... ExtentIndices>
struct FInvokeEncoded<EncodedIndex, TIndexSequence<ExtentIndices...>>
{
FORCEINLINE static constexpr decltype(auto) Do(F&& Func, VariantTypes&&... Variants)
{
return Invoke(Forward<F>(Func), Forward<VariantTypes>(Variants).template GetValue<FDecodeExtent::Do(EncodedIndex, ExtentIndices)>()...);
}
template <typename Ret>
struct FResult
{
FORCEINLINE static constexpr Ret Do(F&& Func, VariantTypes&&... Variants)
{
return InvokeResult<Ret>(Forward<F>(Func), Forward<VariantTypes>(Variants).template GetValue<FDecodeExtent::Do(EncodedIndex, ExtentIndices)>()...);
}
};
};
template <typename>
struct FInvokeVariant;
template <size_t... EncodedIndices>
struct FInvokeVariant<TIndexSequence<EncodedIndices...>>
{
FORCEINLINE static constexpr decltype(auto) Do(F&& Func, VariantTypes&&... Variants)
{
using FExtentIndices = TIndexSequenceFor<VariantTypes...>;
using FResultType = TCommonType<decltype(FInvokeEncoded<EncodedIndices, FExtentIndices>::Do(Forward<F>(Func), Forward<VariantTypes>(Variants)...))...>;
using FInvokeImplType = FResultType(*)(F&&, VariantTypes&&...);
constexpr FInvokeImplType InvokeImpl[] = { FInvokeEncoded<EncodedIndices, FExtentIndices>::template FResult<FResultType>::Do... };
return InvokeImpl[FEncodeIndices::Do({ Variants.GetIndex()... })](Forward<F>(Func), Forward<VariantTypes>(Variants)...);
}
template <typename Ret>
struct FResult
{
FORCEINLINE static constexpr Ret Do(F&& Func, VariantTypes&&... Variants)
{
using FExtentIndices = TIndexSequenceFor<VariantTypes...>;
using FInvokeImplType = Ret(*)(F&&, VariantTypes&&...);
constexpr FInvokeImplType InvokeImpl[] = { FInvokeEncoded<EncodedIndices, FExtentIndices>::template FResult<Ret>::Do... };
return InvokeImpl[FEncodeIndices::Do({ Variants.GetIndex()... })](Forward<F>(Func), Forward<VariantTypes>(Variants)...);
}
};
};
FORCEINLINE static constexpr decltype(auto) Do(F&& Func, VariantTypes&&... Variants)
{
return FInvokeVariant<TMakeIndexSequence<FGetTotalNum::Do()>>::Do(Forward<F>(Func), Forward<VariantTypes>(Variants)...);
}
template <typename Ret>
struct FResult
{
FORCEINLINE static constexpr Ret Do(F&& Func, VariantTypes&&... Variants)
{
return FInvokeVariant<TMakeIndexSequence<FGetTotalNum::Do()>>::template FResult<Ret>::Do(Forward<F>(Func), Forward<VariantTypes>(Variants)...);
}
};
};
NAMESPACE_PRIVATE_END
/** Applies the visitor 'Func' (Callable that can be called with any combination of types from variants) to the variants 'Variants'. */
template <typename F, typename FirstVariantType, typename... VariantTypes>
requires (CTVariant<TRemoveReference<FirstVariantType>> && (true && ... && CTVariant<TRemoveReference<VariantTypes>>))
constexpr decltype(auto) Visit(F&& Func, FirstVariantType&& FirstVariant, VariantTypes&&... Variants)
{
checkf((true && ... && Variants.IsValid()), TEXT("It is an error to call Visit() on an wrong TVariant. Please either check IsValid()."));
return NAMESPACE_PRIVATE::TVariantVisitImpl<F, FirstVariantType, VariantTypes...>::Do(Forward<F>(Func), Forward<FirstVariantType>(FirstVariant), Forward<VariantTypes>(Variants)...);
}
/** Applies the visitor 'Func' (Callable that can be called with any combination of types from variants) to the variants 'Variants'. */
template <typename Ret, typename F, typename FirstVariantType, typename... VariantTypes>
requires (CTVariant<TRemoveReference<FirstVariantType>> && (true && ... && CTVariant<TRemoveReference<VariantTypes>>))
constexpr Ret Visit(F&& Func, FirstVariantType&& FirstVariant, VariantTypes&&... Variants)
{
checkf((true && ... && Variants.IsValid()), TEXT("It is an error to call Visit() on an wrong TVariant. Please either check IsValid()."));
return NAMESPACE_PRIVATE::TVariantVisitImpl<F, FirstVariantType, VariantTypes...>::template FResult<Ret>::Do(Forward<F>(Func), Forward<FirstVariantType>(FirstVariant), Forward<VariantTypes>(Variants)...);
}
NAMESPACE_MODULE_END(Utility)
NAMESPACE_MODULE_END(Redcraft)
NAMESPACE_REDCRAFT_END