2022-11-27 21:07:26 +00:00
|
|
|
# This powershell script will create a model using the fine tuning dreambooth method. It will require landscape,
|
|
|
|
# portrait and square images.
|
|
|
|
#
|
|
|
|
# Adjust the script to your own needs
|
|
|
|
|
|
|
|
# variable values
|
|
|
|
$pretrained_model_name_or_path = "D:\models\512-base-ema.ckpt"
|
|
|
|
$data_dir = "D:\models\dariusz_zawadzki\kohya_reg\data"
|
|
|
|
$reg_data_dir = "D:\models\dariusz_zawadzki\kohya_reg\reg"
|
|
|
|
$logging_dir = "D:\models\dariusz_zawadzki\logs"
|
2022-12-20 14:15:17 +00:00
|
|
|
$output_dir = "D:\models\dariusz_zawadzki\train_db_model_reg_v2"
|
2022-11-27 21:07:26 +00:00
|
|
|
$resolution = "512,512"
|
|
|
|
$lr_scheduler="polynomial"
|
|
|
|
$cache_latents = 1 # 1 = true, 0 = false
|
|
|
|
|
|
|
|
$image_num = Get-ChildItem $data_dir -Recurse -File -Include *.png, *.jpg, *.webp | Measure-Object | %{$_.Count}
|
|
|
|
|
|
|
|
Write-Output "image_num: $image_num"
|
|
|
|
|
|
|
|
$dataset_repeats = 200
|
|
|
|
$learning_rate = 2e-6
|
|
|
|
$train_batch_size = 4
|
|
|
|
$epoch = 1
|
|
|
|
$save_every_n_epochs=1
|
|
|
|
$mixed_precision="bf16"
|
|
|
|
$num_cpu_threads_per_process=6
|
|
|
|
|
|
|
|
# You should not have to change values past this point
|
|
|
|
if ($cache_latents -eq 1) {
|
|
|
|
$cache_latents_value="--cache_latents"
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
$cache_latents_value=""
|
|
|
|
}
|
|
|
|
|
|
|
|
$repeats = $image_num * $dataset_repeats
|
|
|
|
$mts = [Math]::Ceiling($repeats / $train_batch_size * $epoch)
|
|
|
|
|
|
|
|
Write-Output "Repeats: $repeats"
|
|
|
|
|
|
|
|
cd D:\kohya_ss
|
|
|
|
.\venv\Scripts\activate
|
|
|
|
|
2022-12-20 14:15:17 +00:00
|
|
|
accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db.py `
|
2022-11-27 21:07:26 +00:00
|
|
|
--v2 `
|
|
|
|
--pretrained_model_name_or_path=$pretrained_model_name_or_path `
|
|
|
|
--train_data_dir=$data_dir `
|
|
|
|
--output_dir=$output_dir `
|
|
|
|
--resolution=$resolution `
|
|
|
|
--train_batch_size=$train_batch_size `
|
|
|
|
--learning_rate=$learning_rate `
|
|
|
|
--max_train_steps=$mts `
|
|
|
|
--use_8bit_adam `
|
|
|
|
--xformers `
|
|
|
|
--mixed_precision=$mixed_precision `
|
|
|
|
$cache_latents_value `
|
|
|
|
--save_every_n_epochs=$save_every_n_epochs `
|
|
|
|
--logging_dir=$logging_dir `
|
|
|
|
--save_precision="fp16" `
|
|
|
|
--reg_data_dir=$reg_data_dir `
|
|
|
|
--seed=494481440 `
|
|
|
|
--lr_scheduler=$lr_scheduler
|
|
|
|
|
|
|
|
# Add the inference yaml file along with the model for proper loading. Need to have the same name as model... Most likelly "last.yaml" in our case.
|