2023-03-16 00:33:25 +00:00
|
|
|
import gradio as gr
|
|
|
|
from easygui import msgbox
|
|
|
|
import subprocess
|
|
|
|
import os
|
|
|
|
from .common_gui import (
|
|
|
|
get_saveasfilename_path,
|
|
|
|
get_any_file_path,
|
|
|
|
get_file_path,
|
|
|
|
)
|
|
|
|
|
|
|
|
folder_symbol = '\U0001f4c2' # 📂
|
|
|
|
refresh_symbol = '\U0001f504' # 🔄
|
|
|
|
save_style_symbol = '\U0001f4be' # 💾
|
|
|
|
document_symbol = '\U0001F4C4' # 📄
|
|
|
|
PYTHON = 'python3' if os.name == 'posix' else './venv/Scripts/python.exe'
|
|
|
|
|
|
|
|
|
|
|
|
def extract_lycoris_locon(
|
2023-03-20 12:47:00 +00:00
|
|
|
db_model,
|
|
|
|
base_model,
|
|
|
|
output_name,
|
|
|
|
device,
|
|
|
|
is_v2,
|
|
|
|
mode,
|
|
|
|
linear_dim,
|
|
|
|
conv_dim,
|
|
|
|
linear_threshold,
|
|
|
|
conv_threshold,
|
|
|
|
linear_ratio,
|
|
|
|
conv_ratio,
|
|
|
|
linear_quantile,
|
|
|
|
conv_quantile,
|
|
|
|
use_sparse_bias,
|
|
|
|
sparsity,
|
|
|
|
disable_cp,
|
2023-03-16 00:33:25 +00:00
|
|
|
):
|
|
|
|
# Check for caption_text_input
|
|
|
|
if db_model == '':
|
|
|
|
msgbox('Invalid finetuned model file')
|
|
|
|
return
|
|
|
|
|
|
|
|
if base_model == '':
|
|
|
|
msgbox('Invalid base model file')
|
|
|
|
return
|
|
|
|
|
|
|
|
# Check if source model exist
|
|
|
|
if not os.path.isfile(db_model):
|
|
|
|
msgbox('The provided finetuned model is not a file')
|
|
|
|
return
|
|
|
|
|
|
|
|
if not os.path.isfile(base_model):
|
|
|
|
msgbox('The provided base model is not a file')
|
|
|
|
return
|
|
|
|
|
2023-03-20 12:47:00 +00:00
|
|
|
run_cmd = f'{PYTHON} "{os.path.join("tools","lycoris_locon_extract.py")}"'
|
2023-03-16 00:33:25 +00:00
|
|
|
if is_v2:
|
|
|
|
run_cmd += f' --is_v2'
|
|
|
|
run_cmd += f' --device {device}'
|
|
|
|
run_cmd += f' --mode {mode}'
|
|
|
|
run_cmd += f' --safetensors'
|
|
|
|
run_cmd += f' --linear_dim {linear_dim}'
|
|
|
|
run_cmd += f' --conv_dim {conv_dim}'
|
|
|
|
run_cmd += f' --linear_threshold {linear_threshold}'
|
|
|
|
run_cmd += f' --conv_threshold {conv_threshold}'
|
|
|
|
run_cmd += f' --linear_ratio {linear_ratio}'
|
|
|
|
run_cmd += f' --conv_ratio {conv_ratio}'
|
|
|
|
run_cmd += f' --linear_quantile {linear_quantile}'
|
|
|
|
run_cmd += f' --conv_quantile {conv_quantile}'
|
|
|
|
if use_sparse_bias:
|
|
|
|
run_cmd += f' --use_sparse_bias'
|
|
|
|
run_cmd += f' --sparsity {sparsity}'
|
|
|
|
if disable_cp:
|
|
|
|
run_cmd += f' --disable_cp'
|
|
|
|
run_cmd += f' "{base_model}"'
|
|
|
|
run_cmd += f' "{db_model}"'
|
|
|
|
run_cmd += f' "{output_name}"'
|
|
|
|
|
|
|
|
print(run_cmd)
|
|
|
|
|
|
|
|
# Run the command
|
|
|
|
if os.name == 'posix':
|
|
|
|
os.system(run_cmd)
|
|
|
|
else:
|
|
|
|
subprocess.run(run_cmd)
|
|
|
|
|
|
|
|
|
|
|
|
###
|
|
|
|
# Gradio UI
|
|
|
|
###
|
|
|
|
# def update_mode(mode):
|
|
|
|
# # 'fixed', 'threshold','ratio','quantile'
|
|
|
|
# if mode == 'fixed':
|
|
|
|
# return gr.Row.update(visible=True), gr.Row.update(visible=False), gr.Row.update(visible=False), gr.Row.update(visible=False)
|
|
|
|
# if mode == 'threshold':
|
|
|
|
# return gr.Row.update(visible=False), gr.Row.update(visible=True), gr.Row.update(visible=False), gr.Row.update(visible=False)
|
|
|
|
# if mode == 'ratio':
|
|
|
|
# return gr.Row.update(visible=False), gr.Row.update(visible=False), gr.Row.update(visible=True), gr.Row.update(visible=False)
|
|
|
|
# if mode == 'threshold':
|
|
|
|
# return gr.Row.update(visible=False), gr.Row.update(visible=False), gr.Row.update(visible=False), gr.Row.update(visible=True)
|
|
|
|
|
2023-03-20 12:47:00 +00:00
|
|
|
|
2023-03-16 00:33:25 +00:00
|
|
|
def update_mode(mode):
|
|
|
|
# Create a list of possible mode values
|
|
|
|
modes = ['fixed', 'threshold', 'ratio', 'quantile']
|
2023-03-20 12:47:00 +00:00
|
|
|
|
2023-03-16 00:33:25 +00:00
|
|
|
# Initialize an empty list to store visibility updates
|
|
|
|
updates = []
|
|
|
|
|
|
|
|
# Iterate through the possible modes
|
|
|
|
for m in modes:
|
|
|
|
# Add a visibility update for each mode, setting it to True if the input mode matches the current mode in the loop
|
|
|
|
updates.append(gr.Row.update(visible=(mode == m)))
|
|
|
|
|
|
|
|
# Return the visibility updates as a tuple
|
|
|
|
return tuple(updates)
|
|
|
|
|
2023-03-20 12:47:00 +00:00
|
|
|
|
2023-03-16 00:33:25 +00:00
|
|
|
def gradio_extract_lycoris_locon_tab():
|
|
|
|
with gr.Tab('Extract LyCORIS LoCON'):
|
|
|
|
gr.Markdown(
|
|
|
|
'This utility can extract a LyCORIS LoCon network from a finetuned model.'
|
|
|
|
)
|
2023-03-20 12:47:00 +00:00
|
|
|
lora_ext = gr.Textbox(
|
|
|
|
value='*.safetensors', visible=False
|
|
|
|
) # lora_ext = gr.Textbox(value='*.safetensors *.pt', visible=False)
|
2023-03-16 00:33:25 +00:00
|
|
|
lora_ext_name = gr.Textbox(value='LoRA model types', visible=False)
|
|
|
|
model_ext = gr.Textbox(value='*.safetensors *.ckpt', visible=False)
|
|
|
|
model_ext_name = gr.Textbox(value='Model types', visible=False)
|
|
|
|
|
|
|
|
with gr.Row():
|
|
|
|
db_model = gr.Textbox(
|
|
|
|
label='Finetuned model',
|
|
|
|
placeholder='Path to the finetuned model to extract',
|
|
|
|
interactive=True,
|
|
|
|
)
|
|
|
|
button_db_model_file = gr.Button(
|
|
|
|
folder_symbol, elem_id='open_folder_small'
|
|
|
|
)
|
|
|
|
button_db_model_file.click(
|
|
|
|
get_file_path,
|
|
|
|
inputs=[db_model, model_ext, model_ext_name],
|
|
|
|
outputs=db_model,
|
|
|
|
show_progress=False,
|
|
|
|
)
|
|
|
|
|
|
|
|
base_model = gr.Textbox(
|
|
|
|
label='Stable Diffusion base model',
|
|
|
|
placeholder='Stable Diffusion original model: ckpt or safetensors file',
|
|
|
|
interactive=True,
|
|
|
|
)
|
|
|
|
button_base_model_file = gr.Button(
|
|
|
|
folder_symbol, elem_id='open_folder_small'
|
|
|
|
)
|
|
|
|
button_base_model_file.click(
|
|
|
|
get_file_path,
|
|
|
|
inputs=[base_model, model_ext, model_ext_name],
|
|
|
|
outputs=base_model,
|
|
|
|
show_progress=False,
|
|
|
|
)
|
|
|
|
with gr.Row():
|
|
|
|
output_name = gr.Textbox(
|
|
|
|
label='Save to',
|
|
|
|
placeholder='path where to save the extracted LoRA model...',
|
|
|
|
interactive=True,
|
|
|
|
)
|
|
|
|
button_output_name = gr.Button(
|
|
|
|
folder_symbol, elem_id='open_folder_small'
|
|
|
|
)
|
|
|
|
button_output_name.click(
|
|
|
|
get_saveasfilename_path,
|
|
|
|
inputs=[output_name, lora_ext, lora_ext_name],
|
|
|
|
outputs=output_name,
|
|
|
|
show_progress=False,
|
|
|
|
)
|
|
|
|
device = gr.Dropdown(
|
|
|
|
label='Device',
|
2023-03-20 12:47:00 +00:00
|
|
|
choices=[
|
|
|
|
'cpu',
|
|
|
|
'cuda',
|
|
|
|
],
|
2023-03-16 00:33:25 +00:00
|
|
|
value='cuda',
|
|
|
|
interactive=True,
|
|
|
|
)
|
|
|
|
is_v2 = gr.Checkbox(label='is v2', value=False, interactive=True)
|
|
|
|
mode = gr.Dropdown(
|
|
|
|
label='Mode',
|
2023-03-20 12:47:00 +00:00
|
|
|
choices=['fixed', 'threshold', 'ratio', 'quantile'],
|
2023-03-16 00:33:25 +00:00
|
|
|
value='fixed',
|
|
|
|
interactive=True,
|
|
|
|
)
|
|
|
|
with gr.Row(visible=True) as fixed:
|
|
|
|
linear_dim = gr.Slider(
|
|
|
|
minimum=1,
|
|
|
|
maximum=1024,
|
|
|
|
label='Network Dimension',
|
|
|
|
value=1,
|
|
|
|
step=1,
|
|
|
|
interactive=True,
|
|
|
|
)
|
|
|
|
conv_dim = gr.Slider(
|
|
|
|
minimum=1,
|
|
|
|
maximum=1024,
|
|
|
|
label='Conv Dimension',
|
|
|
|
value=1,
|
|
|
|
step=1,
|
|
|
|
interactive=True,
|
|
|
|
)
|
|
|
|
with gr.Row(visible=False) as threshold:
|
|
|
|
linear_threshold = gr.Slider(
|
|
|
|
minimum=0,
|
|
|
|
maximum=1,
|
|
|
|
label='Linear threshold',
|
|
|
|
value=0,
|
|
|
|
step=0.01,
|
|
|
|
interactive=True,
|
|
|
|
)
|
|
|
|
conv_threshold = gr.Slider(
|
|
|
|
minimum=0,
|
|
|
|
maximum=1,
|
|
|
|
label='Conv threshold',
|
|
|
|
value=0,
|
|
|
|
step=0.01,
|
|
|
|
interactive=True,
|
|
|
|
)
|
|
|
|
with gr.Row(visible=False) as ratio:
|
|
|
|
linear_ratio = gr.Slider(
|
|
|
|
minimum=0,
|
|
|
|
maximum=1,
|
|
|
|
label='Linear ratio',
|
|
|
|
value=0,
|
|
|
|
step=0.01,
|
|
|
|
interactive=True,
|
|
|
|
)
|
|
|
|
conv_ratio = gr.Slider(
|
|
|
|
minimum=0,
|
|
|
|
maximum=1,
|
|
|
|
label='Conv ratio',
|
|
|
|
value=0,
|
|
|
|
step=0.01,
|
|
|
|
interactive=True,
|
|
|
|
)
|
|
|
|
with gr.Row(visible=False) as quantile:
|
|
|
|
linear_quantile = gr.Slider(
|
|
|
|
minimum=0,
|
|
|
|
maximum=1,
|
|
|
|
label='Linear quantile',
|
|
|
|
value=0.75,
|
|
|
|
step=0.01,
|
|
|
|
interactive=True,
|
|
|
|
)
|
|
|
|
conv_quantile = gr.Slider(
|
|
|
|
minimum=0,
|
|
|
|
maximum=1,
|
|
|
|
label='Conv quantile',
|
|
|
|
value=0.75,
|
|
|
|
step=0.01,
|
|
|
|
interactive=True,
|
|
|
|
)
|
|
|
|
with gr.Row():
|
2023-03-20 12:47:00 +00:00
|
|
|
use_sparse_bias = gr.Checkbox(
|
|
|
|
label='Use sparse biais', value=False, interactive=True
|
|
|
|
)
|
2023-03-16 00:33:25 +00:00
|
|
|
sparsity = gr.Slider(
|
|
|
|
minimum=0,
|
|
|
|
maximum=1,
|
|
|
|
label='Sparsity',
|
|
|
|
value=0.98,
|
|
|
|
step=0.01,
|
|
|
|
interactive=True,
|
|
|
|
)
|
2023-03-20 12:47:00 +00:00
|
|
|
disable_cp = gr.Checkbox(
|
|
|
|
label='Disable CP decomposition', value=False, interactive=True
|
|
|
|
)
|
2023-03-16 00:33:25 +00:00
|
|
|
mode.change(
|
|
|
|
update_mode,
|
|
|
|
inputs=[mode],
|
|
|
|
outputs=[
|
2023-03-20 12:47:00 +00:00
|
|
|
fixed,
|
|
|
|
threshold,
|
|
|
|
ratio,
|
|
|
|
quantile,
|
|
|
|
],
|
2023-03-16 00:33:25 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
extract_button = gr.Button('Extract LyCORIS LoCon')
|
|
|
|
|
|
|
|
extract_button.click(
|
|
|
|
extract_lycoris_locon,
|
2023-03-20 12:47:00 +00:00
|
|
|
inputs=[
|
|
|
|
db_model,
|
|
|
|
base_model,
|
|
|
|
output_name,
|
|
|
|
device,
|
|
|
|
is_v2,
|
|
|
|
mode,
|
|
|
|
linear_dim,
|
|
|
|
conv_dim,
|
|
|
|
linear_threshold,
|
|
|
|
conv_threshold,
|
|
|
|
linear_ratio,
|
|
|
|
conv_ratio,
|
|
|
|
linear_quantile,
|
|
|
|
conv_quantile,
|
|
|
|
use_sparse_bias,
|
|
|
|
sparsity,
|
|
|
|
disable_cp,
|
|
|
|
],
|
2023-03-16 00:33:25 +00:00
|
|
|
show_progress=False,
|
|
|
|
)
|