38 lines
964 B
Python
38 lines
964 B
Python
|
import os
|
||
|
import argparse
|
||
|
import torch
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
parser = argparse.ArgumentParser(description="Prune a model")
|
||
|
parser.add_argument("model_prune", type=str, help="Path to model to prune")
|
||
|
parser.add_argument("prune_output", type=str, help="Path to pruned ckpt output")
|
||
|
parser.add_argument("--half", action="store_true", help="Save weights in half precision.")
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
print("Loading model...")
|
||
|
model_prune = torch.load(args.model_prune)
|
||
|
theta_prune = model_prune["state_dict"]
|
||
|
theta = {}
|
||
|
|
||
|
print("Pruning model...")
|
||
|
for key in tqdm(theta_prune.keys(), desc="Pruning keys"):
|
||
|
if "model" in key:
|
||
|
theta.update({key: theta_prune[key]})
|
||
|
|
||
|
del theta_prune
|
||
|
|
||
|
if args.half:
|
||
|
print("Halving model...")
|
||
|
state_dict = {k: v.half() for k, v in theta.items()}
|
||
|
else:
|
||
|
state_dict = theta
|
||
|
|
||
|
del theta
|
||
|
|
||
|
print("Saving pruned model...")
|
||
|
|
||
|
torch.save({"state_dict": state_dict}, args.prune_output)
|
||
|
|
||
|
del state_dict
|
||
|
|
||
|
print("Done pruning!")
|