192 lines
8.2 KiB
Python
192 lines
8.2 KiB
Python
|
import gradio as gr
|
|||
|
from easygui import msgbox
|
|||
|
import subprocess
|
|||
|
import os
|
|||
|
import shutil
|
|||
|
from .common_gui import get_folder_path, get_file_path
|
|||
|
|
|||
|
folder_symbol = '\U0001f4c2' # 📂
|
|||
|
refresh_symbol = '\U0001f504' # 🔄
|
|||
|
save_style_symbol = '\U0001f4be' # 💾
|
|||
|
document_symbol = '\U0001F4C4' # 📄
|
|||
|
|
|||
|
def convert_model(source_model_input, source_model_type, target_model_folder_input, target_model_name_input, target_model_type, target_save_precision_type):
|
|||
|
# Check for caption_text_input
|
|||
|
if source_model_type == "":
|
|||
|
msgbox("Invalid source model type")
|
|||
|
return
|
|||
|
|
|||
|
# Check if source model exist
|
|||
|
if os.path.isfile(source_model_input):
|
|||
|
print('The provided source model is a file')
|
|||
|
elif os.path.isdir(source_model_input):
|
|||
|
print('The provided model is a folder')
|
|||
|
else:
|
|||
|
msgbox("The provided source model is neither a file nor a folder")
|
|||
|
return
|
|||
|
|
|||
|
# Check if source model exist
|
|||
|
if os.path.isdir(target_model_folder_input):
|
|||
|
print('The provided model folder exist')
|
|||
|
else:
|
|||
|
msgbox("The provided target folder does not exist")
|
|||
|
return
|
|||
|
|
|||
|
run_cmd = f'.\\venv\Scripts\python.exe "tools/convert_diffusers20_original_sd.py"'
|
|||
|
|
|||
|
v1_models = [
|
|||
|
'runwayml/stable-diffusion-v1-5',
|
|||
|
'CompVis/stable-diffusion-v1-4',
|
|||
|
]
|
|||
|
|
|||
|
# check if v1 models
|
|||
|
if str(source_model_type) in v1_models:
|
|||
|
print('SD v1 model specified. Setting --v1 parameter')
|
|||
|
run_cmd += ' --v1'
|
|||
|
else:
|
|||
|
print('SD v2 model specified. Setting --v2 parameter')
|
|||
|
run_cmd += ' --v2'
|
|||
|
|
|||
|
if not target_save_precision_type == 'unspecified':
|
|||
|
run_cmd += f' --{target_save_precision_type}'
|
|||
|
|
|||
|
if target_model_type == "diffuser":
|
|||
|
run_cmd += f' --reference_model="{source_model_type}"'
|
|||
|
|
|||
|
run_cmd += f' "{source_model_input}"'
|
|||
|
|
|||
|
if target_model_type == "diffuser":
|
|||
|
target_model_path = os.path.join(target_model_folder_input, target_model_name_input)
|
|||
|
run_cmd += f' "{target_model_path}"'
|
|||
|
else:
|
|||
|
target_model_path = os.path.join(target_model_folder_input, f'{target_model_name_input}.{target_model_type}')
|
|||
|
run_cmd += f' "{target_model_path}"'
|
|||
|
|
|||
|
print(run_cmd)
|
|||
|
|
|||
|
# Run the command
|
|||
|
subprocess.run(run_cmd)
|
|||
|
|
|||
|
if not target_model_type == "diffuser":
|
|||
|
|
|||
|
v2_models = ['stabilityai/stable-diffusion-2-1-base',
|
|||
|
'stabilityai/stable-diffusion-2-base',]
|
|||
|
v_parameterization =[
|
|||
|
'stabilityai/stable-diffusion-2-1',
|
|||
|
'stabilityai/stable-diffusion-2',]
|
|||
|
|
|||
|
if str(source_model_type) in v2_models:
|
|||
|
inference_file = os.path.join(target_model_folder_input, f'{target_model_name_input}.yaml')
|
|||
|
print(f'Saving v2-inference.yaml as {inference_file}')
|
|||
|
shutil.copy(
|
|||
|
f'./v2_inference/v2-inference.yaml',
|
|||
|
f'{inference_file}',
|
|||
|
)
|
|||
|
|
|||
|
if str(source_model_type) in v_parameterization:
|
|||
|
inference_file = os.path.join(target_model_folder_input, f'{target_model_name_input}.yaml')
|
|||
|
print(f'Saving v2-inference-v.yaml as {inference_file}')
|
|||
|
shutil.copy(
|
|||
|
f'./v2_inference/v2-inference-v.yaml',
|
|||
|
f'{inference_file}',
|
|||
|
)
|
|||
|
|
|||
|
# parser = argparse.ArgumentParser()
|
|||
|
# parser.add_argument("--v1", action='store_true',
|
|||
|
# help='load v1.x model (v1 or v2 is required to load checkpoint) / 1.xのモデルを読み込む')
|
|||
|
# parser.add_argument("--v2", action='store_true',
|
|||
|
# help='load v2.0 model (v1 or v2 is required to load checkpoint) / 2.0のモデルを読み込む')
|
|||
|
# parser.add_argument("--fp16", action='store_true',
|
|||
|
# help='load as fp16 (Diffusers only) and save as fp16 (checkpoint only) / fp16形式で読み込み(Diffusers形式のみ対応)、保存する(checkpointのみ対応)')
|
|||
|
# parser.add_argument("--bf16", action='store_true', help='save as bf16 (checkpoint only) / bf16形式で保存する(checkpointのみ対応)')
|
|||
|
# parser.add_argument("--float", action='store_true',
|
|||
|
# help='save as float (checkpoint only) / float(float32)形式で保存する(checkpointのみ対応)')
|
|||
|
# parser.add_argument("--epoch", type=int, default=0, help='epoch to write to checkpoint / checkpointに記録するepoch数の値')
|
|||
|
# parser.add_argument("--global_step", type=int, default=0,
|
|||
|
# help='global_step to write to checkpoint / checkpointに記録するglobal_stepの値')
|
|||
|
# parser.add_argument("--reference_model", type=str, default=None,
|
|||
|
# help="reference model for schduler/tokenizer, required in saving Diffusers, copy schduler/tokenizer from this / scheduler/tokenizerのコピー元のDiffusersモデル、Diffusers形式で保存するときに必要")
|
|||
|
|
|||
|
# parser.add_argument("model_to_load", type=str, default=None,
|
|||
|
# help="model to load: checkpoint file or Diffusers model's directory / 読み込むモデル、checkpointかDiffusers形式モデルのディレクトリ")
|
|||
|
# parser.add_argument("model_to_save", type=str, default=None,
|
|||
|
# help="model to save: checkpoint (with extension) or Diffusers model's directory (without extension) / 変換後のモデル、拡張子がある場合はcheckpoint、ない場合はDiffusesモデルとして保存")
|
|||
|
|
|||
|
|
|||
|
###
|
|||
|
# Gradio UI
|
|||
|
###
|
|||
|
|
|||
|
|
|||
|
def gradio_convert_model_tab():
|
|||
|
with gr.Tab('Convert model'):
|
|||
|
gr.Markdown(
|
|||
|
'This utility can be used to convert from one stable diffusion model format to another.'
|
|||
|
)
|
|||
|
with gr.Row():
|
|||
|
source_model_input = gr.Textbox(
|
|||
|
label='Source model',
|
|||
|
placeholder='path to source model folder of file to convert...',
|
|||
|
interactive=True,
|
|||
|
)
|
|||
|
button_source_model_dir = gr.Button(
|
|||
|
folder_symbol, elem_id='open_folder_small'
|
|||
|
)
|
|||
|
button_source_model_dir.click(
|
|||
|
get_folder_path, outputs=source_model_input
|
|||
|
)
|
|||
|
|
|||
|
button_source_model_file = gr.Button(
|
|||
|
document_symbol, elem_id='open_folder_small'
|
|||
|
)
|
|||
|
button_source_model_file.click(
|
|||
|
get_file_path, inputs=[source_model_input], outputs=source_model_input
|
|||
|
)
|
|||
|
|
|||
|
source_model_type = gr.Dropdown(label="Source model type", choices=[
|
|||
|
'stabilityai/stable-diffusion-2-1-base',
|
|||
|
'stabilityai/stable-diffusion-2-base',
|
|||
|
'stabilityai/stable-diffusion-2-1',
|
|||
|
'stabilityai/stable-diffusion-2',
|
|||
|
'runwayml/stable-diffusion-v1-5',
|
|||
|
'CompVis/stable-diffusion-v1-4',
|
|||
|
],)
|
|||
|
with gr.Row():
|
|||
|
target_model_folder_input = gr.Textbox(
|
|||
|
label='Target model folder',
|
|||
|
placeholder='path to target model folder of file name to create...',
|
|||
|
interactive=True,
|
|||
|
)
|
|||
|
button_target_model_folder = gr.Button(
|
|||
|
folder_symbol, elem_id='open_folder_small'
|
|||
|
)
|
|||
|
button_target_model_folder.click(
|
|||
|
get_folder_path, outputs=target_model_folder_input
|
|||
|
)
|
|||
|
|
|||
|
target_model_name_input = gr.Textbox(
|
|||
|
label='Target model name',
|
|||
|
placeholder='target model name...',
|
|||
|
interactive=True,
|
|||
|
)
|
|||
|
target_model_type = gr.Dropdown(label="Target model type", choices=[
|
|||
|
'diffuser',
|
|||
|
'ckpt',
|
|||
|
'safetensors',
|
|||
|
],)
|
|||
|
target_save_precision_type = gr.Dropdown(label="Target model precison", choices=[
|
|||
|
'unspecified',
|
|||
|
'fp16',
|
|||
|
'bf16',
|
|||
|
'float'
|
|||
|
], value='unspecified')
|
|||
|
|
|||
|
|
|||
|
convert_button = gr.Button('Convert model')
|
|||
|
|
|||
|
convert_button.click(
|
|||
|
convert_model,
|
|||
|
inputs=[source_model_input, source_model_type, target_model_folder_input, target_model_name_input, target_model_type, target_save_precision_type
|
|||
|
],
|
|||
|
)
|