KohyaSS/networks/extract_lora_from_models.py

190 lines
7.1 KiB
Python
Raw Normal View History

# extract approximating LoRA by svd from two SD models
# The code is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py
# Thanks to cloneofsimo!
import argparse
import os
import torch
from safetensors.torch import load_file, save_file
from tqdm import tqdm
import library.model_util as model_util
import lora
CLAMP_QUANTILE = 0.99
MIN_DIFF = 1e-6
def save_to_file(file_name, model, state_dict, dtype):
if dtype is not None:
for key in list(state_dict.keys()):
if type(state_dict[key]) == torch.Tensor:
state_dict[key] = state_dict[key].to(dtype)
if os.path.splitext(file_name)[1] == '.safetensors':
save_file(model, file_name)
else:
torch.save(model, file_name)
def svd(args):
def str_to_dtype(p):
if p == 'float':
return torch.float
if p == 'fp16':
return torch.float16
if p == 'bf16':
return torch.bfloat16
return None
save_dtype = str_to_dtype(args.save_precision)
print(f"loading SD model : {args.model_org}")
text_encoder_o, _, unet_o = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.model_org)
print(f"loading SD model : {args.model_tuned}")
text_encoder_t, _, unet_t = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.model_tuned)
# create LoRA network to extract weights: Use dim (rank) as alpha
2023-03-09 16:06:59 +00:00
if args.conv_dim is None:
kwargs = {}
else:
kwargs = {"conv_dim": args.conv_dim, "conv_alpha": args.conv_dim}
lora_network_o = lora.create_network(1.0, args.dim, args.dim, None, text_encoder_o, unet_o, **kwargs)
lora_network_t = lora.create_network(1.0, args.dim, args.dim, None, text_encoder_t, unet_t, **kwargs)
assert len(lora_network_o.text_encoder_loras) == len(
lora_network_t.text_encoder_loras), f"model version is different (SD1.x vs SD2.x) / それぞれのモデルのバージョンが違いますSD1.xベースとSD2.xベース "
# get diffs
diffs = {}
text_encoder_different = False
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.text_encoder_loras, lora_network_t.text_encoder_loras)):
lora_name = lora_o.lora_name
module_o = lora_o.org_module
module_t = lora_t.org_module
diff = module_t.weight - module_o.weight
# Text Encoder might be same
if torch.max(torch.abs(diff)) > MIN_DIFF:
text_encoder_different = True
diff = diff.float()
diffs[lora_name] = diff
if not text_encoder_different:
print("Text encoder is same. Extract U-Net only.")
lora_network_o.text_encoder_loras = []
diffs = {}
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.unet_loras, lora_network_t.unet_loras)):
lora_name = lora_o.lora_name
module_o = lora_o.org_module
module_t = lora_t.org_module
diff = module_t.weight - module_o.weight
diff = diff.float()
if args.device:
diff = diff.to(args.device)
diffs[lora_name] = diff
# make LoRA with svd
print("calculating by svd")
lora_weights = {}
with torch.no_grad():
for lora_name, mat in tqdm(list(diffs.items())):
2023-03-09 16:06:59 +00:00
# if args.conv_dim is None, diffs do not include LoRAs for conv2d-3x3
conv2d = (len(mat.size()) == 4)
2023-03-09 16:06:59 +00:00
kernel_size = None if not conv2d else mat.size()[2:4]
conv2d_3x3 = conv2d and kernel_size != (1, 1)
rank = args.dim if not conv2d_3x3 or args.conv_dim is None else args.conv_dim
out_dim, in_dim = mat.size()[0:2]
if args.device:
mat = mat.to(args.device)
2023-03-10 16:44:52 +00:00
# print(lora_name, mat.size(), mat.device, rank, in_dim, out_dim)
2023-03-09 16:06:59 +00:00
rank = min(rank, in_dim, out_dim) # LoRA rank cannot exceed the original dim
if conv2d:
2023-03-09 16:06:59 +00:00
if conv2d_3x3:
mat = mat.flatten(start_dim=1)
else:
mat = mat.squeeze()
2023-03-22 00:20:57 +00:00
U, S, Vh = torch.linalg.svd(mat)
U = U[:, :rank]
S = S[:rank]
U = U @ torch.diag(S)
Vh = Vh[:rank, :]
dist = torch.cat([U.flatten(), Vh.flatten()])
2023-03-22 00:20:57 +00:00
hi_val = torch.quantile(dist, CLAMP_QUANTILE)
low_val = -hi_val
2023-03-09 16:06:59 +00:00
2023-03-22 00:20:57 +00:00
U = U.clamp(low_val, hi_val)
Vh = Vh.clamp(low_val, hi_val)
2023-03-09 16:06:59 +00:00
if conv2d:
U = U.reshape(out_dim, rank, 1, 1)
Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1])
2023-03-22 00:20:57 +00:00
U = U.to("cpu").contiguous()
Vh = Vh.to("cpu").contiguous()
lora_weights[lora_name] = (U, Vh)
# make state dict for LoRA
2023-03-10 16:44:52 +00:00
lora_sd = {}
for lora_name, (up_weight, down_weight) in lora_weights.items():
lora_sd[lora_name + '.lora_up.weight'] = up_weight
lora_sd[lora_name + '.lora_down.weight'] = down_weight
lora_sd[lora_name + '.alpha'] = torch.tensor(down_weight.size()[0])
# load state dict to LoRA and save it
2023-03-10 16:44:52 +00:00
lora_network_save = lora.create_network_from_weights(1.0, None, None, text_encoder_o, unet_o, weights_sd=lora_sd)
lora_network_save.apply_to(text_encoder_o, unet_o) # create internal module references for state_dict
info = lora_network_save.load_state_dict(lora_sd)
print(f"Loading extracted LoRA weights: {info}")
dir_name = os.path.dirname(args.save_to)
if dir_name and not os.path.exists(dir_name):
os.makedirs(dir_name, exist_ok=True)
# minimum metadata
2023-03-09 16:06:59 +00:00
metadata = {"ss_network_module": "networks.lora", "ss_network_dim": str(args.dim), "ss_network_alpha": str(args.dim)}
2023-03-10 16:44:52 +00:00
lora_network_save.save_weights(args.save_to, save_dtype, metadata)
print(f"LoRA weights are saved to: {args.save_to}")
2023-03-22 00:20:57 +00:00
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument("--v2", action='store_true',
help='load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む')
parser.add_argument("--save_precision", type=str, default=None,
choices=[None, "float", "fp16", "bf16"], help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はfloat")
parser.add_argument("--model_org", type=str, default=None,
help="Stable Diffusion original model: ckpt or safetensors file / 元モデル、ckptまたはsafetensors")
parser.add_argument("--model_tuned", type=str, default=None,
help="Stable Diffusion tuned model, LoRA is difference of `original to tuned`: ckpt or safetensors file / 派生モデル生成されるLoRAは元→派生の差分になります、ckptまたはsafetensors")
parser.add_argument("--save_to", type=str, default=None,
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors")
parser.add_argument("--dim", type=int, default=4, help="dimension (rank) of LoRA (default 4) / LoRAの次元数rankデフォルト4")
2023-03-09 16:06:59 +00:00
parser.add_argument("--conv_dim", type=int, default=None,
help="dimension (rank) of LoRA for Conv2d-3x3 (default None, disabled) / LoRAのConv2d-3x3の次元数rankデフォルトNone、適用なし")
parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う")
2023-03-22 00:20:57 +00:00
return parser
if __name__ == '__main__':
parser = setup_parser()
args = parser.parse_args()
svd(args)