KohyaSS/networks/resize_lora.py

199 lines
6.7 KiB
Python
Raw Normal View History

2023-02-04 16:55:06 +00:00
# Convert LoRA to different rank approximation (should only be used to go to lower rank)
# This code is based off the extract_lora_from_models.py file which is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py
# Thanks to cloneofsimo and kohya
import argparse
2023-03-09 16:06:59 +00:00
import os
2023-02-04 16:55:06 +00:00
import torch
from safetensors.torch import load_file, save_file, safe_open
2023-02-04 16:55:06 +00:00
from tqdm import tqdm
from library import train_util, model_util
2023-02-04 16:55:06 +00:00
def load_state_dict(file_name, dtype):
if model_util.is_safetensors(file_name):
2023-02-04 16:55:06 +00:00
sd = load_file(file_name)
with safe_open(file_name, framework="pt") as f:
metadata = f.metadata()
2023-02-04 16:55:06 +00:00
else:
sd = torch.load(file_name, map_location='cpu')
metadata = None
2023-02-04 16:55:06 +00:00
for key in list(sd.keys()):
if type(sd[key]) == torch.Tensor:
sd[key] = sd[key].to(dtype)
return sd, metadata
2023-02-04 16:55:06 +00:00
def save_to_file(file_name, model, state_dict, dtype, metadata):
2023-02-04 16:55:06 +00:00
if dtype is not None:
for key in list(state_dict.keys()):
if type(state_dict[key]) == torch.Tensor:
state_dict[key] = state_dict[key].to(dtype)
if model_util.is_safetensors(file_name):
save_file(model, file_name, metadata)
2023-02-04 16:55:06 +00:00
else:
torch.save(model, file_name)
2023-03-09 16:06:59 +00:00
def resize_lora_model(lora_sd, new_rank, save_dtype, device, verbose):
network_alpha = None
network_dim = None
2023-02-14 23:52:08 +00:00
verbose_str = "\n"
2023-02-04 16:55:06 +00:00
2023-03-09 16:06:59 +00:00
CLAMP_QUANTILE = 0.99
2023-02-04 16:55:06 +00:00
# Extract loaded lora dim and alpha
for key, value in lora_sd.items():
if network_alpha is None and 'alpha' in key:
network_alpha = value
if network_dim is None and 'lora_down' in key and len(value.size()) == 2:
network_dim = value.size()[0]
if network_alpha is not None and network_dim is not None:
break
if network_alpha is None:
network_alpha = network_dim
2023-02-04 16:55:06 +00:00
scale = network_alpha/network_dim
2023-03-09 16:06:59 +00:00
new_alpha = float(scale*new_rank) # calculate new alpha from scale
2023-03-09 16:06:59 +00:00
print(f"old dimension: {network_dim}, old alpha: {network_alpha}, new alpha: {new_alpha}")
2023-02-04 16:55:06 +00:00
lora_down_weight = None
lora_up_weight = None
2023-02-04 16:55:06 +00:00
o_lora_sd = lora_sd.copy()
block_down_name = None
block_up_name = None
2023-02-04 16:55:06 +00:00
print("resizing lora...")
with torch.no_grad():
for key, value in tqdm(lora_sd.items()):
if 'lora_down' in key:
block_down_name = key.split(".")[0]
lora_down_weight = value
if 'lora_up' in key:
block_up_name = key.split(".")[0]
lora_up_weight = value
2023-02-04 16:55:06 +00:00
weights_loaded = (lora_down_weight is not None and lora_up_weight is not None)
2023-02-04 16:55:06 +00:00
if (block_down_name == block_up_name) and weights_loaded:
2023-02-04 16:55:06 +00:00
conv2d = (len(lora_down_weight.size()) == 4)
2023-02-04 16:55:06 +00:00
if conv2d:
lora_down_weight = lora_down_weight.squeeze()
lora_up_weight = lora_up_weight.squeeze()
2023-02-04 16:55:06 +00:00
if device:
org_device = lora_up_weight.device
lora_up_weight = lora_up_weight.to(args.device)
lora_down_weight = lora_down_weight.to(args.device)
2023-02-04 16:55:06 +00:00
full_weight_matrix = torch.matmul(lora_up_weight, lora_down_weight)
2023-02-04 16:55:06 +00:00
U, S, Vh = torch.linalg.svd(full_weight_matrix)
2023-02-04 16:55:06 +00:00
2023-02-14 23:52:08 +00:00
if verbose:
s_sum = torch.sum(torch.abs(S))
s_rank = torch.sum(torch.abs(S[:new_rank]))
2023-03-09 16:06:59 +00:00
verbose_str+=f"{block_down_name:76} | "
verbose_str+=f"sum(S) retained: {(s_rank)/s_sum:.1%}, max(S) ratio: {S[0]/S[new_rank]:0.1f}\n"
2023-02-14 23:52:08 +00:00
U = U[:, :new_rank]
S = S[:new_rank]
U = U @ torch.diag(S)
2023-02-04 16:55:06 +00:00
Vh = Vh[:new_rank, :]
2023-02-04 16:55:06 +00:00
dist = torch.cat([U.flatten(), Vh.flatten()])
hi_val = torch.quantile(dist, CLAMP_QUANTILE)
low_val = -hi_val
2023-02-04 16:55:06 +00:00
U = U.clamp(low_val, hi_val)
Vh = Vh.clamp(low_val, hi_val)
2023-02-04 16:55:06 +00:00
if conv2d:
U = U.unsqueeze(2).unsqueeze(3)
Vh = Vh.unsqueeze(2).unsqueeze(3)
2023-02-04 16:55:06 +00:00
2023-02-14 23:52:08 +00:00
if device:
U = U.to(org_device)
Vh = Vh.to(org_device)
2023-02-04 16:55:06 +00:00
o_lora_sd[block_down_name + "." + "lora_down.weight"] = Vh.to(save_dtype).contiguous()
o_lora_sd[block_up_name + "." + "lora_up.weight"] = U.to(save_dtype).contiguous()
o_lora_sd[block_up_name + "." "alpha"] = torch.tensor(new_alpha).to(save_dtype)
2023-02-04 16:55:06 +00:00
block_down_name = None
block_up_name = None
lora_down_weight = None
lora_up_weight = None
weights_loaded = False
2023-02-04 16:55:06 +00:00
2023-02-14 23:52:08 +00:00
if verbose:
print(verbose_str)
print("resizing complete")
return o_lora_sd, network_dim, new_alpha
2023-02-04 16:55:06 +00:00
def resize(args):
2023-02-04 16:55:06 +00:00
def str_to_dtype(p):
if p == 'float':
return torch.float
if p == 'fp16':
return torch.float16
if p == 'bf16':
return torch.bfloat16
return None
merge_dtype = str_to_dtype('float') # matmul method above only seems to work in float32
save_dtype = str_to_dtype(args.save_precision)
if save_dtype is None:
save_dtype = merge_dtype
print("loading Model...")
lora_sd, metadata = load_state_dict(args.model, merge_dtype)
print("resizing rank...")
2023-03-09 16:06:59 +00:00
state_dict, old_dim, new_alpha = resize_lora_model(lora_sd, args.new_rank, save_dtype, args.device, args.verbose)
# update metadata
if metadata is None:
metadata = {}
comment = metadata.get("ss_training_comment", "")
2023-03-09 16:06:59 +00:00
metadata["ss_training_comment"] = f"dimension is resized from {old_dim} to {args.new_rank}; {comment}"
metadata["ss_network_dim"] = str(args.new_rank)
metadata["ss_network_alpha"] = str(new_alpha)
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
print(f"saving model to: {args.save_to}")
save_to_file(args.save_to, state_dict, state_dict, save_dtype, metadata)
2023-02-04 16:55:06 +00:00
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--save_precision", type=str, default=None,
choices=[None, "float", "fp16", "bf16"], help="precision in saving, float if omitted / 保存時の精度、未指定時はfloat")
parser.add_argument("--new_rank", type=int, default=4,
help="Specify rank of output LoRA / 出力するLoRAのrank (dim)")
parser.add_argument("--save_to", type=str, default=None,
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors")
parser.add_argument("--model", type=str, default=None,
help="LoRA model to resize at to new rank: ckpt or safetensors file / 読み込むLoRAモデル、ckptまたはsafetensors")
parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う")
2023-02-14 23:52:08 +00:00
parser.add_argument("--verbose", action="store_true",
help="Display verbose resizing information / rank変更時の詳細情報を出力する")
2023-02-04 16:55:06 +00:00
args = parser.parse_args()
2023-03-09 16:06:59 +00:00
resize(args)