KohyaSS/networks/svd_merge_lora.py

182 lines
6.6 KiB
Python
Raw Normal View History

import math
import argparse
import os
import torch
from safetensors.torch import load_file, save_file
from tqdm import tqdm
import library.model_util as model_util
import lora
CLAMP_QUANTILE = 0.99
def load_state_dict(file_name, dtype):
if os.path.splitext(file_name)[1] == '.safetensors':
sd = load_file(file_name)
else:
sd = torch.load(file_name, map_location='cpu')
for key in list(sd.keys()):
if type(sd[key]) == torch.Tensor:
sd[key] = sd[key].to(dtype)
return sd
def save_to_file(file_name, model, state_dict, dtype):
if dtype is not None:
for key in list(state_dict.keys()):
if type(state_dict[key]) == torch.Tensor:
state_dict[key] = state_dict[key].to(dtype)
if os.path.splitext(file_name)[1] == '.safetensors':
save_file(model, file_name)
else:
torch.save(model, file_name)
2023-03-09 16:06:59 +00:00
def merge_lora_models(models, ratios, new_rank, new_conv_rank, device, merge_dtype):
print(f"new rank: {new_rank}, new conv rank: {new_conv_rank}")
merged_sd = {}
for model, ratio in zip(models, ratios):
print(f"loading: {model}")
lora_sd = load_state_dict(model, merge_dtype)
# merge
print(f"merging...")
for key in tqdm(list(lora_sd.keys())):
if 'lora_down' not in key:
continue
lora_module_name = key[:key.rfind(".lora_down")]
down_weight = lora_sd[key]
network_dim = down_weight.size()[0]
up_weight = lora_sd[lora_module_name + '.lora_up.weight']
alpha = lora_sd.get(lora_module_name + '.alpha', network_dim)
in_dim = down_weight.size()[1]
out_dim = up_weight.size()[0]
conv2d = len(down_weight.size()) == 4
2023-03-09 16:06:59 +00:00
kernel_size = None if not conv2d else down_weight.size()[2:4]
# print(lora_module_name, network_dim, alpha, in_dim, out_dim, kernel_size)
# make original weight if not exist
if lora_module_name not in merged_sd:
2023-03-09 16:06:59 +00:00
weight = torch.zeros((out_dim, in_dim, *kernel_size) if conv2d else (out_dim, in_dim), dtype=merge_dtype)
if device:
weight = weight.to(device)
else:
weight = merged_sd[lora_module_name]
# merge to weight
if device:
up_weight = up_weight.to(device)
down_weight = down_weight.to(device)
# W <- W + U * D
scale = (alpha / network_dim)
if not conv2d: # linear
weight = weight + ratio * (up_weight @ down_weight) * scale
2023-03-09 16:06:59 +00:00
elif kernel_size == (1, 1):
weight = weight + ratio * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)
).unsqueeze(2).unsqueeze(3) * scale
2023-03-09 16:06:59 +00:00
else:
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
weight = weight + ratio * conved * scale
merged_sd[lora_module_name] = weight
# extract from merged weights
print("extract new lora...")
merged_lora_sd = {}
with torch.no_grad():
for lora_module_name, mat in tqdm(list(merged_sd.items())):
conv2d = (len(mat.size()) == 4)
2023-03-09 16:06:59 +00:00
kernel_size = None if not conv2d else mat.size()[2:4]
conv2d_3x3 = conv2d and kernel_size != (1, 1)
out_dim, in_dim = mat.size()[0:2]
if conv2d:
2023-03-09 16:06:59 +00:00
if conv2d_3x3:
mat = mat.flatten(start_dim=1)
else:
mat = mat.squeeze()
module_new_rank = new_conv_rank if conv2d_3x3 else new_rank
U, S, Vh = torch.linalg.svd(mat)
2023-03-09 16:06:59 +00:00
U = U[:, :module_new_rank]
S = S[:module_new_rank]
U = U @ torch.diag(S)
2023-03-09 16:06:59 +00:00
Vh = Vh[:module_new_rank, :]
dist = torch.cat([U.flatten(), Vh.flatten()])
hi_val = torch.quantile(dist, CLAMP_QUANTILE)
low_val = -hi_val
U = U.clamp(low_val, hi_val)
Vh = Vh.clamp(low_val, hi_val)
2023-03-09 16:06:59 +00:00
if conv2d:
U = U.reshape(out_dim, module_new_rank, 1, 1)
Vh = Vh.reshape(module_new_rank, in_dim, kernel_size[0], kernel_size[1])
up_weight = U
down_weight = Vh
merged_lora_sd[lora_module_name + '.lora_up.weight'] = up_weight.to("cpu").contiguous()
merged_lora_sd[lora_module_name + '.lora_down.weight'] = down_weight.to("cpu").contiguous()
2023-03-09 16:06:59 +00:00
merged_lora_sd[lora_module_name + '.alpha'] = torch.tensor(module_new_rank)
return merged_lora_sd
def merge(args):
assert len(args.models) == len(args.ratios), f"number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください"
def str_to_dtype(p):
if p == 'float':
return torch.float
if p == 'fp16':
return torch.float16
if p == 'bf16':
return torch.bfloat16
return None
merge_dtype = str_to_dtype(args.precision)
save_dtype = str_to_dtype(args.save_precision)
if save_dtype is None:
save_dtype = merge_dtype
2023-03-09 16:06:59 +00:00
new_conv_rank = args.new_conv_rank if args.new_conv_rank is not None else args.new_rank
state_dict = merge_lora_models(args.models, args.ratios, args.new_rank, new_conv_rank, args.device, merge_dtype)
print(f"saving model to: {args.save_to}")
save_to_file(args.save_to, state_dict, state_dict, save_dtype)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--save_precision", type=str, default=None,
choices=[None, "float", "fp16", "bf16"], help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ")
parser.add_argument("--precision", type=str, default="float",
choices=["float", "fp16", "bf16"], help="precision in merging (float is recommended) / マージの計算時の精度floatを推奨")
parser.add_argument("--save_to", type=str, default=None,
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors")
parser.add_argument("--models", type=str, nargs='*',
help="LoRA models to merge: ckpt or safetensors file / マージするLoRAモデル、ckptまたはsafetensors")
parser.add_argument("--ratios", type=float, nargs='*',
help="ratios for each model / それぞれのLoRAモデルの比率")
parser.add_argument("--new_rank", type=int, default=4,
help="Specify rank of output LoRA / 出力するLoRAのrank (dim)")
2023-03-09 16:06:59 +00:00
parser.add_argument("--new_conv_rank", type=int, default=None,
help="Specify rank of output LoRA for Conv2d 3x3, None for same as new_rank / 出力するConv2D 3x3 LoRAのrank (dim)、Noneでnew_rankと同じ")
parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う")
args = parser.parse_args()
merge(args)