165 lines
5.6 KiB
Python
165 lines
5.6 KiB
Python
|
|
|||
|
import math
|
|||
|
import argparse
|
|||
|
import os
|
|||
|
import torch
|
|||
|
from safetensors.torch import load_file, save_file
|
|||
|
from tqdm import tqdm
|
|||
|
import library.model_util as model_util
|
|||
|
import lora
|
|||
|
|
|||
|
|
|||
|
CLAMP_QUANTILE = 0.99
|
|||
|
|
|||
|
|
|||
|
def load_state_dict(file_name, dtype):
|
|||
|
if os.path.splitext(file_name)[1] == '.safetensors':
|
|||
|
sd = load_file(file_name)
|
|||
|
else:
|
|||
|
sd = torch.load(file_name, map_location='cpu')
|
|||
|
for key in list(sd.keys()):
|
|||
|
if type(sd[key]) == torch.Tensor:
|
|||
|
sd[key] = sd[key].to(dtype)
|
|||
|
return sd
|
|||
|
|
|||
|
|
|||
|
def save_to_file(file_name, model, state_dict, dtype):
|
|||
|
if dtype is not None:
|
|||
|
for key in list(state_dict.keys()):
|
|||
|
if type(state_dict[key]) == torch.Tensor:
|
|||
|
state_dict[key] = state_dict[key].to(dtype)
|
|||
|
|
|||
|
if os.path.splitext(file_name)[1] == '.safetensors':
|
|||
|
save_file(model, file_name)
|
|||
|
else:
|
|||
|
torch.save(model, file_name)
|
|||
|
|
|||
|
|
|||
|
def merge_lora_models(models, ratios, new_rank, device, merge_dtype):
|
|||
|
merged_sd = {}
|
|||
|
for model, ratio in zip(models, ratios):
|
|||
|
print(f"loading: {model}")
|
|||
|
lora_sd = load_state_dict(model, merge_dtype)
|
|||
|
|
|||
|
# merge
|
|||
|
print(f"merging...")
|
|||
|
for key in tqdm(list(lora_sd.keys())):
|
|||
|
if 'lora_down' not in key:
|
|||
|
continue
|
|||
|
|
|||
|
lora_module_name = key[:key.rfind(".lora_down")]
|
|||
|
|
|||
|
down_weight = lora_sd[key]
|
|||
|
network_dim = down_weight.size()[0]
|
|||
|
|
|||
|
up_weight = lora_sd[lora_module_name + '.lora_up.weight']
|
|||
|
alpha = lora_sd.get(lora_module_name + '.alpha', network_dim)
|
|||
|
|
|||
|
in_dim = down_weight.size()[1]
|
|||
|
out_dim = up_weight.size()[0]
|
|||
|
conv2d = len(down_weight.size()) == 4
|
|||
|
print(lora_module_name, network_dim, alpha, in_dim, out_dim)
|
|||
|
|
|||
|
# make original weight if not exist
|
|||
|
if lora_module_name not in merged_sd:
|
|||
|
weight = torch.zeros((out_dim, in_dim, 1, 1) if conv2d else (out_dim, in_dim), dtype=merge_dtype)
|
|||
|
if device:
|
|||
|
weight = weight.to(device)
|
|||
|
else:
|
|||
|
weight = merged_sd[lora_module_name]
|
|||
|
|
|||
|
# merge to weight
|
|||
|
if device:
|
|||
|
up_weight = up_weight.to(device)
|
|||
|
down_weight = down_weight.to(device)
|
|||
|
|
|||
|
# W <- W + U * D
|
|||
|
scale = (alpha / network_dim)
|
|||
|
if not conv2d: # linear
|
|||
|
weight = weight + ratio * (up_weight @ down_weight) * scale
|
|||
|
else:
|
|||
|
weight = weight + ratio * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)
|
|||
|
).unsqueeze(2).unsqueeze(3) * scale
|
|||
|
|
|||
|
merged_sd[lora_module_name] = weight
|
|||
|
|
|||
|
# extract from merged weights
|
|||
|
print("extract new lora...")
|
|||
|
merged_lora_sd = {}
|
|||
|
with torch.no_grad():
|
|||
|
for lora_module_name, mat in tqdm(list(merged_sd.items())):
|
|||
|
conv2d = (len(mat.size()) == 4)
|
|||
|
if conv2d:
|
|||
|
mat = mat.squeeze()
|
|||
|
|
|||
|
U, S, Vh = torch.linalg.svd(mat)
|
|||
|
|
|||
|
U = U[:, :new_rank]
|
|||
|
S = S[:new_rank]
|
|||
|
U = U @ torch.diag(S)
|
|||
|
|
|||
|
Vh = Vh[:new_rank, :]
|
|||
|
|
|||
|
dist = torch.cat([U.flatten(), Vh.flatten()])
|
|||
|
hi_val = torch.quantile(dist, CLAMP_QUANTILE)
|
|||
|
low_val = -hi_val
|
|||
|
|
|||
|
U = U.clamp(low_val, hi_val)
|
|||
|
Vh = Vh.clamp(low_val, hi_val)
|
|||
|
|
|||
|
up_weight = U
|
|||
|
down_weight = Vh
|
|||
|
|
|||
|
if conv2d:
|
|||
|
up_weight = up_weight.unsqueeze(2).unsqueeze(3)
|
|||
|
down_weight = down_weight.unsqueeze(2).unsqueeze(3)
|
|||
|
|
|||
|
merged_lora_sd[lora_module_name + '.lora_up.weight'] = up_weight.to("cpu").contiguous()
|
|||
|
merged_lora_sd[lora_module_name + '.lora_down.weight'] = down_weight.to("cpu").contiguous()
|
|||
|
merged_lora_sd[lora_module_name + '.alpha'] = torch.tensor(new_rank)
|
|||
|
|
|||
|
return merged_lora_sd
|
|||
|
|
|||
|
|
|||
|
def merge(args):
|
|||
|
assert len(args.models) == len(args.ratios), f"number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください"
|
|||
|
|
|||
|
def str_to_dtype(p):
|
|||
|
if p == 'float':
|
|||
|
return torch.float
|
|||
|
if p == 'fp16':
|
|||
|
return torch.float16
|
|||
|
if p == 'bf16':
|
|||
|
return torch.bfloat16
|
|||
|
return None
|
|||
|
|
|||
|
merge_dtype = str_to_dtype(args.precision)
|
|||
|
save_dtype = str_to_dtype(args.save_precision)
|
|||
|
if save_dtype is None:
|
|||
|
save_dtype = merge_dtype
|
|||
|
|
|||
|
state_dict = merge_lora_models(args.models, args.ratios, args.new_rank, args.device, merge_dtype)
|
|||
|
|
|||
|
print(f"saving model to: {args.save_to}")
|
|||
|
save_to_file(args.save_to, state_dict, state_dict, save_dtype)
|
|||
|
|
|||
|
|
|||
|
if __name__ == '__main__':
|
|||
|
parser = argparse.ArgumentParser()
|
|||
|
parser.add_argument("--save_precision", type=str, default=None,
|
|||
|
choices=[None, "float", "fp16", "bf16"], help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ")
|
|||
|
parser.add_argument("--precision", type=str, default="float",
|
|||
|
choices=["float", "fp16", "bf16"], help="precision in merging (float is recommended) / マージの計算時の精度(floatを推奨)")
|
|||
|
parser.add_argument("--save_to", type=str, default=None,
|
|||
|
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors")
|
|||
|
parser.add_argument("--models", type=str, nargs='*',
|
|||
|
help="LoRA models to merge: ckpt or safetensors file / マージするLoRAモデル、ckptまたはsafetensors")
|
|||
|
parser.add_argument("--ratios", type=float, nargs='*',
|
|||
|
help="ratios for each model / それぞれのLoRAモデルの比率")
|
|||
|
parser.add_argument("--new_rank", type=int, default=4,
|
|||
|
help="Specify rank of output LoRA / 出力するLoRAのrank (dim)")
|
|||
|
parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う")
|
|||
|
|
|||
|
args = parser.parse_args()
|
|||
|
merge(args)
|