KohyaSS/library/extract_lora_gui.py

179 lines
5.1 KiB
Python
Raw Normal View History

import gradio as gr
from easygui import msgbox
import subprocess
import os
from .common_gui import (
get_saveasfilename_path,
get_any_file_path,
get_file_path,
2023-02-06 01:07:00 +00:00
)
folder_symbol = '\U0001f4c2' # 📂
refresh_symbol = '\U0001f504' # 🔄
save_style_symbol = '\U0001f4be' # 💾
document_symbol = '\U0001F4C4' # 📄
2023-03-04 23:56:22 +00:00
PYTHON = 'python3' if os.name == 'posix' else './venv/Scripts/python.exe'
def extract_lora(
model_tuned,
model_org,
save_to,
save_precision,
dim,
v2,
conv_dim,
device,
):
# Check for caption_text_input
if model_tuned == '':
msgbox('Invalid finetuned model file')
return
2023-02-06 01:07:00 +00:00
if model_org == '':
msgbox('Invalid base model file')
return
# Check if source model exist
if not os.path.isfile(model_tuned):
msgbox('The provided finetuned model is not a file')
return
2023-02-06 01:07:00 +00:00
if not os.path.isfile(model_org):
msgbox('The provided base model is not a file')
return
2023-02-06 01:07:00 +00:00
run_cmd = (
f'{PYTHON} "{os.path.join("networks","extract_lora_from_models.py")}"'
2023-02-06 01:07:00 +00:00
)
run_cmd += f' --save_precision {save_precision}'
run_cmd += f' --save_to "{save_to}"'
run_cmd += f' --model_org "{model_org}"'
run_cmd += f' --model_tuned "{model_tuned}"'
run_cmd += f' --dim {dim}'
2023-03-22 16:55:30 +00:00
run_cmd += f' --device {device}'
2023-03-09 16:06:59 +00:00
if conv_dim > 0:
run_cmd += f' --conv_dim {conv_dim}'
if v2:
run_cmd += f' --v2'
print(run_cmd)
# Run the command
2023-03-05 16:43:59 +00:00
if os.name == 'posix':
os.system(run_cmd)
else:
subprocess.run(run_cmd)
###
# Gradio UI
###
def gradio_extract_lora_tab():
with gr.Tab('Extract LoRA'):
gr.Markdown(
'This utility can extract a LoRA network from a finetuned model.'
)
2023-03-09 16:06:59 +00:00
lora_ext = gr.Textbox(value='*.safetensors *.pt', visible=False)
lora_ext_name = gr.Textbox(value='LoRA model types', visible=False)
model_ext = gr.Textbox(value='*.ckpt *.safetensors', visible=False)
model_ext_name = gr.Textbox(value='Model types', visible=False)
2023-02-06 01:07:00 +00:00
with gr.Row():
model_tuned = gr.Textbox(
label='Finetuned model',
placeholder='Path to the finetuned model to extract',
interactive=True,
)
button_model_tuned_file = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
button_model_tuned_file.click(
get_file_path,
inputs=[model_tuned, model_ext, model_ext_name],
outputs=model_tuned,
2023-03-04 23:56:22 +00:00
show_progress=False,
)
2023-02-06 01:07:00 +00:00
model_org = gr.Textbox(
label='Stable Diffusion base model',
placeholder='Stable Diffusion original model: ckpt or safetensors file',
interactive=True,
)
button_model_org_file = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
button_model_org_file.click(
get_file_path,
inputs=[model_org, model_ext, model_ext_name],
outputs=model_org,
2023-03-04 23:56:22 +00:00
show_progress=False,
)
with gr.Row():
save_to = gr.Textbox(
label='Save to',
placeholder='path where to save the extracted LoRA model...',
interactive=True,
)
button_save_to = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
button_save_to.click(
get_saveasfilename_path,
2023-02-06 01:07:00 +00:00
inputs=[save_to, lora_ext, lora_ext_name],
outputs=save_to,
2023-03-04 23:56:22 +00:00
show_progress=False,
)
save_precision = gr.Dropdown(
2023-03-02 00:20:05 +00:00
label='Save precision',
choices=['fp16', 'bf16', 'float'],
value='float',
interactive=True,
)
with gr.Row():
dim = gr.Slider(
v20.6.0 - Increase max LoRA rank (dim) size to 1024. - Update finetune preprocessing scripts. - ``.bmp`` and ``.jpeg`` are supported. Thanks to breakcore2 and p1atdev! - The default weights of ``tag_images_by_wd14_tagger.py`` is now ``SmilingWolf/wd-v1-4-convnext-tagger-v2``. You can specify another model id from ``SmilingWolf`` by ``--repo_id`` option. Thanks to SmilingWolf for the great work. - To change the weight, remove ``wd14_tagger_model`` folder, and run the script again. - ``--max_data_loader_n_workers`` option is added to each script. This option uses the DataLoader for data loading to speed up loading, 20%~30% faster. - Please specify 2 or 4, depends on the number of CPU cores. - ``--recursive`` option is added to ``merge_dd_tags_to_metadata.py`` and ``merge_captions_to_metadata.py``, only works with ``--full_path``. - ``make_captions_by_git.py`` is added. It uses [GIT microsoft/git-large-textcaps](https://huggingface.co/microsoft/git-large-textcaps) for captioning. - ``requirements.txt`` is updated. If you use this script, [please update the libraries](https://github.com/kohya-ss/sd-scripts#upgrade). - Usage is almost the same as ``make_captions.py``, but batch size should be smaller. - ``--remove_words`` option removes as much text as possible (such as ``the word "XXXX" on it``). - ``--skip_existing`` option is added to ``prepare_buckets_latents.py``. Images with existing npz files are ignored by this option. - ``clean_captions_and_tags.py`` is updated to remove duplicated or conflicting tags, e.g. ``shirt`` is removed when ``white shirt`` exists. if ``black hair`` is with ``red hair``, both are removed. - Tag frequency is added to the metadata in ``train_network.py``. Thanks to space-nuko! - __All tags and number of occurrences of the tag are recorded.__ If you do not want it, disable metadata storing with ``--no_metadata`` option.
2023-02-04 13:36:35 +00:00
minimum=4,
maximum=1024,
2023-03-27 17:24:48 +00:00
label='Network Dimension (Rank)',
v20.6.0 - Increase max LoRA rank (dim) size to 1024. - Update finetune preprocessing scripts. - ``.bmp`` and ``.jpeg`` are supported. Thanks to breakcore2 and p1atdev! - The default weights of ``tag_images_by_wd14_tagger.py`` is now ``SmilingWolf/wd-v1-4-convnext-tagger-v2``. You can specify another model id from ``SmilingWolf`` by ``--repo_id`` option. Thanks to SmilingWolf for the great work. - To change the weight, remove ``wd14_tagger_model`` folder, and run the script again. - ``--max_data_loader_n_workers`` option is added to each script. This option uses the DataLoader for data loading to speed up loading, 20%~30% faster. - Please specify 2 or 4, depends on the number of CPU cores. - ``--recursive`` option is added to ``merge_dd_tags_to_metadata.py`` and ``merge_captions_to_metadata.py``, only works with ``--full_path``. - ``make_captions_by_git.py`` is added. It uses [GIT microsoft/git-large-textcaps](https://huggingface.co/microsoft/git-large-textcaps) for captioning. - ``requirements.txt`` is updated. If you use this script, [please update the libraries](https://github.com/kohya-ss/sd-scripts#upgrade). - Usage is almost the same as ``make_captions.py``, but batch size should be smaller. - ``--remove_words`` option removes as much text as possible (such as ``the word "XXXX" on it``). - ``--skip_existing`` option is added to ``prepare_buckets_latents.py``. Images with existing npz files are ignored by this option. - ``clean_captions_and_tags.py`` is updated to remove duplicated or conflicting tags, e.g. ``shirt`` is removed when ``white shirt`` exists. if ``black hair`` is with ``red hair``, both are removed. - Tag frequency is added to the metadata in ``train_network.py``. Thanks to space-nuko! - __All tags and number of occurrences of the tag are recorded.__ If you do not want it, disable metadata storing with ``--no_metadata`` option.
2023-02-04 13:36:35 +00:00
value=128,
2023-03-09 16:06:59 +00:00
step=1,
interactive=True,
)
conv_dim = gr.Slider(
minimum=0,
maximum=1024,
2023-03-27 17:24:48 +00:00
label='Conv Dimension (Rank)',
value=128,
2023-03-09 16:06:59 +00:00
step=1,
interactive=True,
)
v2 = gr.Checkbox(label='v2', value=False, interactive=True)
2023-03-22 16:55:30 +00:00
device = gr.Dropdown(
label='Device',
choices=[
'cpu',
'cuda',
],
value='cuda',
interactive=True,
)
extract_button = gr.Button('Extract LoRA model')
extract_button.click(
extract_lora,
2023-03-20 12:47:00 +00:00
inputs=[
model_tuned,
model_org,
save_to,
save_precision,
dim,
v2,
conv_dim,
2023-03-22 16:55:30 +00:00
device
2023-03-20 12:47:00 +00:00
],
2023-03-04 23:56:22 +00:00
show_progress=False,
)