2022-10-30 15:15:09 +00:00
# HOWTO
2022-10-30 17:51:28 +00:00
This repo provide all the required config to run the Dreambooth version found in this note: https://note.com/kohya_ss/n/nee3ed1649fb6
2022-10-30 15:15:09 +00:00
2022-10-30 15:40:55 +00:00
2022-10-30 17:37:42 +00:00
## Required Dependencies
Python 3.10.6 and Git:
2022-10-30 17:39:00 +00:00
- Python 3.10.6: https://www.python.org/ftp/python/3.10.6/python-3.10.6-amd64.exe
- git: https://git-scm.com/download/win
2022-10-30 17:37:42 +00:00
2022-11-01 11:46:55 +00:00
Give unrestricted script access to powershell so venv can work:
- Open an administrator powershell window
- Type `Set-ExecutionPolicy Unrestricted` and answer A
- Close admin powershell window
2022-10-30 17:37:42 +00:00
## Installation
2022-11-01 11:46:55 +00:00
Open a regular Powershell terminal and type the following inside:
2022-10-30 18:00:04 +00:00
```powershell
2022-10-30 15:19:24 +00:00
git clone https://github.com/bmaltais/kohya_ss.git
cd kohya_ss
2022-10-30 15:15:09 +00:00
python -m venv --system-site-packages venv
.\venv\Scripts\activate
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116
pip install --upgrade diffusers
pip install -r requirements.txt
pip install OmegaConf
pip install pytorch_lightning
pip install -U -I --no-deps https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl
2022-10-30 15:40:55 +00:00
# Setup bitsandbytes with Adam8bit support for windows: https://note.com/kohya_ss/n/n47f654dc161e
2022-10-30 15:15:09 +00:00
pip install bitsandbytes==0.35.0
cp .\bitsandbytes_windows\*.dll .\venv\Lib\site-packages\bitsandbytes\
cp .\bitsandbytes_windows\cextension.py .\venv\Lib\site-packages\bitsandbytes\cextension.py
cp .\bitsandbytes_windows\main.py .\venv\Lib\site-packages\bitsandbytes\cuda_setup\main.py
2022-10-30 15:18:20 +00:00
accelerate config:
- 0
- 0
2022-10-30 15:40:55 +00:00
- NO
- NO
2022-10-30 15:18:20 +00:00
- All
2022-10-30 15:40:55 +00:00
- fp16
2022-10-30 17:37:42 +00:00
```
2022-10-30 17:51:28 +00:00
## Folders configuration
Refer to the note to understand how to create the folde structure. In short it should look like:
```
< wathever top folder name >
|- reg_< class >
|- < repeat count > _< prompt >
|- train_< class >
|- < repeat count > _< prompt >
```
Example for `sks dog`
```
my_sks_dog_dreambooth
|- reg_dog
|- 1_sks dog
|- train_dog
|- 20_sks dog
```
2022-10-30 17:37:42 +00:00
## Execution
2022-10-30 15:15:09 +00:00
2022-10-30 18:01:12 +00:00
Edit and paste the following in a Powershell terminal:
2022-10-30 18:00:04 +00:00
```powershell
2022-11-07 23:40:34 +00:00
accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v7.py `
2022-10-30 18:06:20 +00:00
--pretrained_model_name_or_path="D:\models\last.ckpt" `
2022-10-30 17:37:42 +00:00
--train_data_dir="D:\dreambooth\train_bernard\train_man" `
2022-10-30 18:06:20 +00:00
--reg_data_dir="D:\dreambooth\train_bernard\reg_man" `
2022-10-30 17:37:42 +00:00
--output_dir="D:\dreambooth\train_bernard" `
2022-10-30 15:15:09 +00:00
--prior_loss_weight=1.0 `
--resolution=512 `
--train_batch_size=1 `
--learning_rate=1e-6 `
2022-10-30 17:37:42 +00:00
--max_train_steps=2100 `
2022-10-30 15:15:09 +00:00
--use_8bit_adam `
--xformers `
--mixed_precision="fp16" `
--cache_latents `
--gradient_checkpointing `
2022-10-30 17:37:42 +00:00
--save_every_n_epochs=1
2022-11-05 20:56:34 +00:00
## Finetuning
If you would rather use model finetuning rather than the dreambooth method you can use a command similat to the following. The advantage of fine tuning is that you do not need to worry about regularization images... but you need to provide captions for every images. The caption will be used to train the model. You can use auto1111 to preprocess your training images and add either BLIP or danbooru captions to them. You then need to edit those to add the name of the model and correct any wrong description.
```
2022-11-07 23:40:34 +00:00
accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v7-ber.py `
--pretrained_model_name_or_path="D:\models\alexandrine_teissier_and_bernard_maltais-400-kohya-sd15-v1.ckpt" `
2022-11-05 20:56:34 +00:00
--train_data_dir="D:\dreambooth\source\alet_et_bernard\landscape-pp" `
--output_dir="D:\dreambooth\train_alex_and_bernard" `
--resolution="640,448" `
2022-11-07 23:40:34 +00:00
--train_batch_size=1 `
2022-11-05 20:56:34 +00:00
--learning_rate=1e-6 `
--max_train_steps=550 `
--use_8bit_adam `
--xformers `
--mixed_precision="fp16" `
--cache_latents `
--save_every_n_epochs=1 `
--fine_tuning `
2022-11-07 23:40:34 +00:00
--dataset_repeats=200 `
2022-11-05 20:56:34 +00:00
--seed=23 `
--save_half
```
Refer to this url for more details about finetuning: https://note.com/kohya_ss/n/n1269f1e1a54e
2022-11-07 23:40:34 +00:00
## Change history
2022-11-10 01:48:27 +00:00
* 11/7 (v7): Text Encoder supports checkpoint files in different storage formats (it is converted at the time of import, so export will be in normal format). Changed the average value of EPOCH loss to output to the screen. Added a function to save epoch and global step in checkpoint in SD format (add values if there is existing data). The reg_data_dir option is enabled during fine tuning (fine tuning while mixing regularized images). Added dataset_repeats option that is valid for fine tuning (specified when the number of teacher images is small and the epoch is extremely short).
* 11/9 (v8): supports Diffusers 0.7.2. To upgrade diffusers run `pip install --upgrade diffusers[torch]`