KohyaSS/diffusers_fine_tuning/fine_tune_v1-ber.py

775 lines
31 KiB
Python
Raw Normal View History

# このスクリプトのライセンスは、train_dreambooth.pyと同じくApache License 2.0とします
# (c) 2022 Kohya S. @kohya_ss
import argparse
import math
import os
import random
import json
import importlib
from tqdm import tqdm
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from transformers import CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
import numpy as np
from einops import rearrange
from torch import einsum
import fine_tuning_utils_ber as fine_tuning_utils
# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
# checkpointファイル名
LAST_CHECKPOINT_NAME = "last.ckpt"
EPOCH_CHECKPOINT_NAME = "epoch-{:06d}.ckpt"
def collate_fn(examples):
return examples[0]
class FineTuningDataset(torch.utils.data.Dataset):
def __init__(self, metadata, train_data_dir, batch_size, tokenizer, max_token_length, shuffle_caption, dataset_repeats, debug) -> None:
super().__init__()
self.metadata = metadata
self.train_data_dir = train_data_dir
self.batch_size = batch_size
self.tokenizer = tokenizer
self.max_token_length = max_token_length
self.shuffle_caption = shuffle_caption
self.debug = debug
self.tokenizer_max_length = self.tokenizer.model_max_length if max_token_length is None else max_token_length + 2
print("make buckets")
# 最初に数を数える
self.bucket_resos = set()
for img_md in metadata.values():
if 'train_resolution' in img_md:
self.bucket_resos.add(tuple(img_md['train_resolution']))
self.bucket_resos = list(self.bucket_resos)
self.bucket_resos.sort()
print(f"number of buckets: {len(self.bucket_resos)}")
reso_to_index = {}
for i, reso in enumerate(self.bucket_resos):
reso_to_index[reso] = i
# bucketに割り当てていく
self.buckets = [[] for _ in range(len(self.bucket_resos))]
n = 1 if dataset_repeats is None else dataset_repeats
images_count = 0
for image_key, img_md in metadata.items():
if 'train_resolution' not in img_md:
continue
if not os.path.exists(os.path.join(self.train_data_dir, image_key + '.npz')):
continue
reso = tuple(img_md['train_resolution'])
for _ in range(n):
self.buckets[reso_to_index[reso]].append(image_key)
images_count += n
# 参照用indexを作る
self.buckets_indices = []
for bucket_index, bucket in enumerate(self.buckets):
batch_count = int(math.ceil(len(bucket) / self.batch_size))
for batch_index in range(batch_count):
self.buckets_indices.append((bucket_index, batch_index))
self.shuffle_buckets()
self._length = len(self.buckets_indices)
self.images_count = images_count
def show_buckets(self):
for i, (reso, bucket) in enumerate(zip(self.bucket_resos, self.buckets)):
print(f"bucket {i}: resolution {reso}, count: {len(bucket)}")
def shuffle_buckets(self):
random.shuffle(self.buckets_indices)
for bucket in self.buckets:
random.shuffle(bucket)
def load_latent(self, image_key):
return np.load(os.path.join(self.train_data_dir, image_key + '.npz'))['arr_0']
def __len__(self):
return self._length
def __getitem__(self, index):
if index == 0:
self.shuffle_buckets()
bucket = self.buckets[self.buckets_indices[index][0]]
image_index = self.buckets_indices[index][1] * self.batch_size
input_ids_list = []
latents_list = []
captions = []
for image_key in bucket[image_index:image_index + self.batch_size]:
img_md = self.metadata[image_key]
caption = img_md.get('caption')
tags = img_md.get('tags')
if caption is None:
caption = tags
elif tags is not None and len(tags) > 0:
caption = caption + ', ' + tags
assert caption is not None and len(caption) > 0, f"caption or tag is required / キャプションまたはタグは必須です:{image_key}"
latents = self.load_latent(image_key)
if self.shuffle_caption:
tokens = caption.strip().split(",")
random.shuffle(tokens)
caption = ",".join(tokens).strip()
captions.append(caption)
input_ids = self.tokenizer(caption, padding="max_length", truncation=True,
max_length=self.tokenizer_max_length, return_tensors="pt").input_ids
# 77以上の時は "<CLS> .... <EOS> <EOS> <EOS>" でトータル227とかになっているので、"<CLS>...<EOS>"の三連に変換する
# 1111氏のやつは , で区切る、とかしているようだが とりあえず単純に
if self.tokenizer_max_length > self.tokenizer.model_max_length:
input_ids = input_ids.squeeze(0)
iids_list = []
for i in range(1, self.tokenizer_max_length - self.tokenizer.model_max_length + 2, self.tokenizer.model_max_length - 2):
iid = (input_ids[0].unsqueeze(0),
input_ids[i:i + self.tokenizer.model_max_length - 2],
input_ids[-1].unsqueeze(0))
iid = torch.cat(iid)
iids_list.append(iid)
input_ids = torch.stack(iids_list) # 3,77
input_ids_list.append(input_ids)
latents_list.append(torch.FloatTensor(latents))
example = {}
example['input_ids'] = torch.stack(input_ids_list)
example['latents'] = torch.stack(latents_list)
if self.debug:
example['image_keys'] = bucket[image_index:image_index + self.batch_size]
example['captions'] = captions
return example
def save_hypernetwork(output_file, hypernetwork):
state_dict = hypernetwork.get_state_dict()
torch.save(state_dict, output_file)
def train(args):
fine_tuning = args.hypernetwork_module is None # fine tuning or hypernetwork training
# モデル形式のオプション設定を確認する
use_stable_diffusion_format = os.path.isfile(args.pretrained_model_name_or_path)
if not use_stable_diffusion_format:
assert os.path.exists(
args.pretrained_model_name_or_path), f"no pretrained model / 学習元モデルがありません : {args.pretrained_model_name_or_path}"
assert not fine_tuning or (
args.save_every_n_epochs is None or use_stable_diffusion_format), "when loading Diffusers model, save_every_n_epochs does not work / Diffusersのモデルを読み込むときにはsave_every_n_epochsオプションは無効になります"
if args.seed is not None:
set_seed(args.seed)
# メタデータを読み込む
if os.path.exists(args.in_json):
print(f"loading existing metadata: {args.in_json}")
with open(args.in_json, "rt", encoding='utf-8') as f:
metadata = json.load(f)
else:
print(f"no metadata / メタデータファイルがありません: {args.in_json}")
return
# tokenizerを読み込む
print("prepare tokenizer")
tokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH)
if args.max_token_length is not None:
print(f"update token length in tokenizer: {args.max_token_length}")
# datasetを用意する
print("prepare dataset")
train_dataset = FineTuningDataset(metadata, args.train_data_dir, args.train_batch_size,
tokenizer, args.max_token_length, args.shuffle_caption, args.dataset_repeats, args.debug_dataset)
if args.debug_dataset:
print(f"Total dataset length / データセットの長さ: {len(train_dataset)}")
print(f"Total images / 画像数: {train_dataset.images_count}")
train_dataset.show_buckets()
i = 0
for example in train_dataset:
print(f"image: {example['image_keys']}")
print(f"captions: {example['captions']}")
print(f"latents: {example['latents'].shape}")
print(f"input_ids: {example['input_ids'].shape}")
print(example['input_ids'])
i += 1
if i >= 8:
break
return
# acceleratorを準備する
print("prepare accelerator")
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision)
# モデルを読み込む
if use_stable_diffusion_format:
print("load StableDiffusion checkpoint")
text_encoder, _, unet = fine_tuning_utils.load_models_from_stable_diffusion_checkpoint(args.pretrained_model_name_or_path)
else:
print("load Diffusers pretrained models")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
# モデルに xformers とか memory efficient attention を組み込む
replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
if not fine_tuning:
# Hypernetwork
print("import hypernetwork module:", args.hypernetwork_module)
hyp_module = importlib.import_module(args.hypernetwork_module)
hypernetwork = hyp_module.Hypernetwork()
if args.hypernetwork_weights is not None:
print("load hypernetwork weights from:", args.hypernetwork_weights)
hyp_sd = torch.load(args.hypernetwork_weights, map_location='cpu')
success = hypernetwork.load_from_state_dict(hyp_sd)
assert success, "hypernetwork weights loading failed."
print("apply hypernetwork")
hypernetwork.apply_to_diffusers(None, text_encoder, unet)
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# 学習を準備する
if fine_tuning:
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
unet.requires_grad_(True) # unetは学習しない
net = unet
else:
unet.requires_grad_(False) # unetは学習しない
unet.eval()
hypernetwork.requires_grad_(True)
net = hypernetwork
# 学習に必要なクラスを準備する
print("prepare optimizer, data loader etc.")
# 8-bit Adamを使う
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです")
print("use 8-bit Adam optimizer")
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
# betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略
optimizer = optimizer_class(net.parameters(), lr=args.learning_rate)
# dataloaderを準備する
# DataLoaderのプロセス数0はメインプロセスになる
n_workers = min(8, os.cpu_count() - 1) # cpu_count-1 ただし最大8
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=1, shuffle=True, collate_fn=collate_fn, num_workers=n_workers)
# lr schedulerを用意する
lr_scheduler = diffusers.optimization.get_scheduler(
"constant", optimizer, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps)
# acceleratorがなんかよろしくやってくれるらしい
if fine_tuning:
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler)
net = unet
else:
unet, hypernetwork, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, hypernetwork, optimizer, train_dataloader, lr_scheduler)
net = hypernetwork
text_encoder.to(accelerator.device, dtype=weight_dtype)
text_encoder.requires_grad_(False) # text encoderは学習しない
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# 学習する
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
print("running training / 学習開始")
print(f" num examples / サンプル数: {train_dataset.images_count}")
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
print(f" num epochs / epoch数: {num_train_epochs}")
print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
print(f" total train batch size (with parallel & distributed) / 総バッチサイズ(並列学習含む): {total_batch_size}")
print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process, desc="steps")
global_step = 0
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
if accelerator.is_main_process:
accelerator.init_trackers("finetuning" if fine_tuning else "hypernetwork")
# 以下 train_dreambooth.py からほぼコピペ
for epoch in range(num_train_epochs):
print(f"epoch {epoch+1}/{num_train_epochs}")
net.train()
loss_total = 0
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(unet):
latents = batch["latents"].to(accelerator.device)
latents = latents * 0.18215
b_size = latents.shape[0]
with torch.no_grad():
# Get the text embedding for conditioning
input_ids = batch["input_ids"].to(accelerator.device)
input_ids = input_ids.reshape((-1, tokenizer.model_max_length)) # batch_size*3, 77
if args.clip_skip is None:
encoder_hidden_states = text_encoder(input_ids)[0]
else:
enc_out = text_encoder(input_ids, output_hidden_states=True, return_dict=True)
encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip]
encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.reshape((b_size, -1, encoder_hidden_states.shape[-1]))
if args.max_token_length is not None:
# <CLS>...<EOS> の三連を <CLS>...<EOS> へ戻す
sts_list = [encoder_hidden_states[:, 0].unsqueeze(1)]
for i in range(1, args.max_token_length, tokenizer.model_max_length):
sts_list.append(encoder_hidden_states[:, i:i + tokenizer.model_max_length - 2])
sts_list.append(encoder_hidden_states[:, -1].unsqueeze(1))
encoder_hidden_states = torch.cat(sts_list, dim=1)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents, device=latents.device)
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Predict the noise residual
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
loss = torch.nn.functional.mse_loss(noise_pred.float(), noise.float(), reduction="mean")
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(net.parameters(), 1.0) # args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
current_loss = loss.detach().item() * b_size
loss_total += current_loss
avr_loss = loss_total / (step+1)
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
# accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
accelerator.wait_for_everyone()
if args.save_every_n_epochs is not None:
if (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs:
print("saving check point.")
os.makedirs(args.output_dir, exist_ok=True)
ckpt_file = os.path.join(args.output_dir, EPOCH_CHECKPOINT_NAME.format(epoch + 1))
if fine_tuning:
fine_tuning_utils.save_stable_diffusion_checkpoint(
ckpt_file, text_encoder, accelerator.unwrap_model(net), args.pretrained_model_name_or_path, epoch + 1, global_step)
else:
save_hypernetwork(ckpt_file, accelerator.unwrap_model(net))
is_main_process = accelerator.is_main_process
if is_main_process:
net = accelerator.unwrap_model(net)
accelerator.end_training()
del accelerator # この後メモリを使うのでこれは消す
if is_main_process:
os.makedirs(args.output_dir, exist_ok=True)
if fine_tuning:
if use_stable_diffusion_format:
ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME)
print(f"save trained model as StableDiffusion checkpoint to {ckpt_file}")
fine_tuning_utils.save_stable_diffusion_checkpoint(
ckpt_file, text_encoder, unet, args.pretrained_model_name_or_path, epoch, global_step)
else:
# Create the pipeline using using the trained modules and save it.
print(f"save trained model as Diffusers to {args.output_dir}")
pipeline = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=unet,
text_encoder=text_encoder,
)
pipeline.save_pretrained(args.output_dir)
else:
ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME)
print(f"save trained model to {ckpt_file}")
save_hypernetwork(ckpt_file, net)
print("model saved.")
# region モジュール入れ替え部
"""
高速化のためのモジュール入れ替え
"""
# FlashAttentionを使うCrossAttention
# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py
# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE
# constants
EPSILON = 1e-6
# helper functions
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
# flash attention forwards and backwards
# https://arxiv.org/abs/2205.14135
class FlashAttentionFunction(torch.autograd.function.Function):
@ staticmethod
@ torch.no_grad()
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
""" Algorithm 2 in the paper """
device = q.device
dtype = q.dtype
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
o = torch.zeros_like(q)
all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device)
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device)
scale = (q.shape[-1] ** -0.5)
if not exists(mask):
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
else:
mask = rearrange(mask, 'b n -> b 1 1 n')
mask = mask.split(q_bucket_size, dim=-1)
row_splits = zip(
q.split(q_bucket_size, dim=-2),
o.split(q_bucket_size, dim=-2),
mask,
all_row_sums.split(q_bucket_size, dim=-2),
all_row_maxes.split(q_bucket_size, dim=-2),
)
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim=-2),
v.split(k_bucket_size, dim=-2),
)
for k_ind, (kc, vc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale
if exists(row_mask):
attn_weights.masked_fill_(~row_mask, max_neg_value)
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool,
device=device).triu(q_start_index - k_start_index + 1)
attn_weights.masked_fill_(causal_mask, max_neg_value)
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
attn_weights -= block_row_maxes
exp_weights = torch.exp(attn_weights)
if exists(row_mask):
exp_weights.masked_fill_(~row_mask, 0.)
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON)
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc)
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values)
row_maxes.copy_(new_row_maxes)
row_sums.copy_(new_row_sums)
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes)
return o
@ staticmethod
@ torch.no_grad()
def backward(ctx, do):
""" Algorithm 4 in the paper """
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
q, k, v, o, l, m = ctx.saved_tensors
device = q.device
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
dq = torch.zeros_like(q)
dk = torch.zeros_like(k)
dv = torch.zeros_like(v)
row_splits = zip(
q.split(q_bucket_size, dim=-2),
o.split(q_bucket_size, dim=-2),
do.split(q_bucket_size, dim=-2),
mask,
l.split(q_bucket_size, dim=-2),
m.split(q_bucket_size, dim=-2),
dq.split(q_bucket_size, dim=-2)
)
for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim=-2),
v.split(k_bucket_size, dim=-2),
dk.split(k_bucket_size, dim=-2),
dv.split(k_bucket_size, dim=-2),
)
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool,
device=device).triu(q_start_index - k_start_index + 1)
attn_weights.masked_fill_(causal_mask, max_neg_value)
exp_attn_weights = torch.exp(attn_weights - mc)
if exists(row_mask):
exp_attn_weights.masked_fill_(~row_mask, 0.)
p = exp_attn_weights / lc
dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc)
dp = einsum('... i d, ... j d -> ... i j', doc, vc)
D = (doc * oc).sum(dim=-1, keepdims=True)
ds = p * scale * (dp - D)
dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc)
dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc)
dqc.add_(dq_chunk)
dkc.add_(dk_chunk)
dvc.add_(dv_chunk)
return dq, dk, dv, None, None, None, None
def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers):
if mem_eff_attn:
replace_unet_cross_attn_to_memory_efficient()
elif xformers:
replace_unet_cross_attn_to_xformers()
def replace_unet_cross_attn_to_memory_efficient():
print("Replace CrossAttention.forward to use FlashAttention")
flash_func = FlashAttentionFunction
def forward_flash_attn(self, x, context=None, mask=None):
q_bucket_size = 512
k_bucket_size = 1024
h = self.heads
q = self.to_q(x)
context = context if context is not None else x
context = context.to(x.dtype)
if hasattr(self, 'hypernetwork') and self.hypernetwork is not None:
context_k, context_v = self.hypernetwork.forward(x, context)
context_k = context_k.to(x.dtype)
context_v = context_v.to(x.dtype)
else:
context_k = context
context_v = context
k = self.to_k(context_k)
v = self.to_v(context_v)
del context, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size)
out = rearrange(out, 'b h n d -> b n (h d)')
# diffusers 0.6.0
if type(self.to_out) is torch.nn.Sequential:
return self.to_out(out)
# diffusers 0.7.0~ わざわざ変えるなよ (;´Д`)
out = self.to_out[0](out)
out = self.to_out[1](out)
return out
diffusers.models.attention.CrossAttention.forward = forward_flash_attn
def replace_unet_cross_attn_to_xformers():
print("Replace CrossAttention.forward to use xformers")
try:
import xformers.ops
except ImportError:
raise ImportError("No xformers / xformersがインストールされていないようです")
def forward_xformers(self, x, context=None, mask=None):
h = self.heads
q_in = self.to_q(x)
context = default(context, x)
context = context.to(x.dtype)
if hasattr(self, 'hypernetwork') and self.hypernetwork is not None:
context_k, context_v = self.hypernetwork.forward(x, context)
context_k = context_k.to(x.dtype)
context_v = context_v.to(x.dtype)
else:
context_k = context
context_v = context
k_in = self.to_k(context_k)
v_in = self.to_v(context_v)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
q = q.contiguous()
k = k.contiguous()
v = v.contiguous()
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる
out = rearrange(out, 'b n h d -> b n (h d)', h=h)
# diffusers 0.6.0
if type(self.to_out) is torch.nn.Sequential:
return self.to_out(out)
# diffusers 0.7.0~
out = self.to_out[0](out)
out = self.to_out[1](out)
return out
diffusers.models.attention.CrossAttention.forward = forward_xformers
# endregion
if __name__ == '__main__':
# torch.cuda.set_per_process_memory_fraction(0.48)
parser = argparse.ArgumentParser()
parser.add_argument("--pretrained_model_name_or_path", type=str, default=None,
help="pretrained model to train, directory to Diffusers model or StableDiffusion checkpoint / 学習元モデル、Diffusers形式モデルのディレクトリまたはStableDiffusionのckptファイル")
parser.add_argument("--in_json", type=str, default=None, help="metadata file to input / 読みこむメタデータファイル")
parser.add_argument("--shuffle_caption", action="store_true",
help="shuffle comma-separated caption when fine tuning / fine tuning時にコンマで区切られたcaptionの各要素をshuffleする")
parser.add_argument("--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ")
parser.add_argument("--dataset_repeats", type=int, default=None, help="num times to repeat dataset / 学習にデータセットを繰り返す回数")
parser.add_argument("--output_dir", type=str, default=None,
help="directory to output trained model, save as same format as input / 学習後のモデル出力先ディレクトリ(入力と同じ形式で保存)")
parser.add_argument("--hypernetwork_module", type=str, default=None,
help='train hypernetwork instead of fine tuning, module to use / fine tuningの代わりにHypernetworkの学習をする場合、そのモジュール')
parser.add_argument("--hypernetwork_weights", type=str, default=None,
help='hypernetwork weights to initialize for additional training / Hypernetworkの学習時に読み込む重みHypernetworkの追加学習')
parser.add_argument("--save_every_n_epochs", type=int, default=None,
help="save checkpoint every N epochs (only supports in StableDiffusion checkpoint) / 学習中のモデルを指定エポックごとに保存するStableDiffusion形式のモデルを読み込んだ場合のみ有効")
parser.add_argument("--max_token_length", type=int, default=None, choices=[None, 150, 225],
help="max token length of text encoder (default for 75, 150 or 225) / text encoderのトークンの最大長未指定で75、150または225が指定可")
parser.add_argument("--train_batch_size", type=int, default=1,
help="batch size for training / 学習時のバッチサイズ")
parser.add_argument("--use_8bit_adam", action="store_true",
help="use 8bit Adam optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使うbitsandbytesのインストールが必要")
parser.add_argument("--mem_eff_attn", action="store_true",
help="use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う")
parser.add_argument("--xformers", action="store_true",
help="use xformers for CrossAttention / CrossAttentionにxformersを使う")
parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率")
parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数")
parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed")
parser.add_argument("--gradient_checkpointing", action="store_true",
help="enable gradient checkpointing / grandient checkpointingを有効にする")
parser.add_argument("--gradient_accumulation_steps", type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass / 学習時に逆伝播をする前に勾配を合計するステップ数")
parser.add_argument("--mixed_precision", type=str, default="no",
choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度")
parser.add_argument("--clip_skip", type=int, default=None,
help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いるnは1以上")
parser.add_argument("--debug_dataset", action="store_true",
help="show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)")
parser.add_argument("--save_half", action="store_true",
help="save ckpt model with fp16 precision")
args = parser.parse_args()
train(args)