2022-12-01 19:06:33 -05:00
|
|
|
import argparse
|
|
|
|
import torch
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description="Prune a model")
|
|
|
|
parser.add_argument("model_prune", type=str, help="Path to model to prune")
|
|
|
|
parser.add_argument("prune_output", type=str, help="Path to pruned ckpt output")
|
|
|
|
parser.add_argument("--half", action="store_true", help="Save weights in half precision.")
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
print("Loading model...")
|
|
|
|
model_prune = torch.load(args.model_prune)
|
|
|
|
theta_prune = model_prune["state_dict"]
|
|
|
|
theta = {}
|
|
|
|
|
|
|
|
print("Pruning model...")
|
|
|
|
for key in tqdm(theta_prune.keys(), desc="Pruning keys"):
|
|
|
|
if "model" in key:
|
|
|
|
theta.update({key: theta_prune[key]})
|
|
|
|
|
|
|
|
del theta_prune
|
|
|
|
|
|
|
|
if args.half:
|
|
|
|
print("Halving model...")
|
2022-12-13 13:49:14 -05:00
|
|
|
state_dict = {k: v.half() for k, v in tqdm(theta.items(), desc="Halving weights")}
|
2022-12-01 19:06:33 -05:00
|
|
|
else:
|
|
|
|
state_dict = theta
|
|
|
|
|
|
|
|
del theta
|
|
|
|
|
|
|
|
print("Saving pruned model...")
|
|
|
|
|
|
|
|
torch.save({"state_dict": state_dict}, args.prune_output)
|
|
|
|
|
|
|
|
del state_dict
|
|
|
|
|
|
|
|
print("Done pruning!")
|