KohyaSS/fine_tune.py

472 lines
16 KiB
Python
Raw Normal View History

# training with captions
# XXX dropped option: hypernetwork training
import argparse
import gc
import math
import os
from tqdm import tqdm
import torch
from accelerate.utils import set_seed
import diffusers
from diffusers import DDPMScheduler
import library.train_util as train_util
def collate_fn(examples):
return examples[0]
def train(args):
train_util.verify_training_args(args)
train_util.prepare_dataset_args(args, True)
cache_latents = args.cache_latents
if args.seed is not None:
set_seed(args.seed) # 乱数系列を初期化する
tokenizer = train_util.load_tokenizer(args)
train_dataset = train_util.FineTuningDataset(
args.in_json,
args.train_batch_size,
args.train_data_dir,
tokenizer,
args.max_token_length,
args.shuffle_caption,
args.keep_tokens,
args.resolution,
args.enable_bucket,
args.min_bucket_reso,
args.max_bucket_reso,
args.flip_aug,
args.color_aug,
args.face_crop_aug_range,
args.random_crop,
args.dataset_repeats,
args.debug_dataset,
)
train_dataset.make_buckets()
if args.debug_dataset:
train_util.debug_dataset(train_dataset)
return
if len(train_dataset) == 0:
print(
'No data found. Please verify the metadata file and train_data_dir option. / 画像がありません。メタデータおよびtrain_data_dirオプションを確認してください。'
)
return
# acceleratorを準備する
print('prepare accelerator')
accelerator, unwrap_model = train_util.prepare_accelerator(args)
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype, save_dtype = train_util.prepare_dtype(args)
# モデルを読み込む
(
text_encoder,
vae,
unet,
load_stable_diffusion_format,
) = train_util.load_target_model(args, weight_dtype)
# verify load/save model formats
if load_stable_diffusion_format:
src_stable_diffusion_ckpt = args.pretrained_model_name_or_path
src_diffusers_model_path = None
else:
src_stable_diffusion_ckpt = None
src_diffusers_model_path = args.pretrained_model_name_or_path
2023-01-01 18:10:32 +00:00
if args.save_model_as is None:
save_stable_diffusion_format = load_stable_diffusion_format
use_safetensors = args.use_safetensors
else:
save_stable_diffusion_format = (
args.save_model_as.lower() == 'ckpt'
or args.save_model_as.lower() == 'safetensors'
)
use_safetensors = args.use_safetensors or (
'safetensors' in args.save_model_as.lower()
)
# Diffusers版のxformers使用フラグを設定する関数
def set_diffusers_xformers_flag(model, valid):
# model.set_use_memory_efficient_attention_xformers(valid) # 次のリリースでなくなりそう
# pipeが自動で再帰的にset_use_memory_efficient_attention_xformersを探すんだって(;´Д`)
# U-Netだけ使う時にはどうすればいいのか……仕方ないからコピって使うか
# 0.10.2でなんか巻き戻って個別に指定するようになった(;^ω^)
# Recursively walk through all the children.
# Any children which exposes the set_use_memory_efficient_attention_xformers method
# gets the message
def fn_recursive_set_mem_eff(module: torch.nn.Module):
if hasattr(module, 'set_use_memory_efficient_attention_xformers'):
module.set_use_memory_efficient_attention_xformers(valid)
for child in module.children():
fn_recursive_set_mem_eff(child)
fn_recursive_set_mem_eff(model)
# モデルに xformers とか memory efficient attention を組み込む
if args.diffusers_xformers:
print('Use xformers by Diffusers')
set_diffusers_xformers_flag(unet, True)
else:
# Windows版のxformersはfloatで学習できないのでxformersを使わない設定も可能にしておく必要がある
print("Disable Diffusers' xformers")
set_diffusers_xformers_flag(unet, False)
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
# 学習を準備する
if cache_latents:
vae.to(accelerator.device, dtype=weight_dtype)
vae.requires_grad_(False)
vae.eval()
with torch.no_grad():
train_dataset.cache_latents(vae)
vae.to('cpu')
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
# 学習を準備する:モデルを適切な状態にする
training_models = []
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
training_models.append(unet)
if args.train_text_encoder:
print('enable text encoder training')
if args.gradient_checkpointing:
text_encoder.gradient_checkpointing_enable()
training_models.append(text_encoder)
else:
text_encoder.to(accelerator.device, dtype=weight_dtype)
text_encoder.requires_grad_(False) # text encoderは学習しない
if args.gradient_checkpointing:
text_encoder.gradient_checkpointing_enable()
text_encoder.train() # required for gradient_checkpointing
2023-01-01 18:10:32 +00:00
else:
text_encoder.eval()
if not cache_latents:
vae.requires_grad_(False)
vae.eval()
vae.to(accelerator.device, dtype=weight_dtype)
for m in training_models:
m.requires_grad_(True)
params = []
for m in training_models:
params.extend(m.parameters())
params_to_optimize = params
# 学習に必要なクラスを準備する
print('prepare optimizer, data loader etc.')
# 8-bit Adamを使う
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
'No bitsand bytes / bitsandbytesがインストールされていないようです'
)
print('use 8-bit Adam optimizer')
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
# betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略
optimizer = optimizer_class(params_to_optimize, lr=args.learning_rate)
# dataloaderを準備する
# DataLoaderのプロセス数0はメインプロセスになる
n_workers = min(8, os.cpu_count() - 1) # cpu_count-1 ただし最大8
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=1,
shuffle=False,
collate_fn=collate_fn,
num_workers=n_workers,
)
# lr schedulerを用意する
lr_scheduler = diffusers.optimization.get_scheduler(
args.lr_scheduler,
optimizer,
num_warmup_steps=args.lr_warmup_steps,
num_training_steps=args.max_train_steps
* args.gradient_accumulation_steps,
)
# 実験的機能勾配も含めたfp16学習を行う モデル全体をfp16にする
if args.full_fp16:
assert (
args.mixed_precision == 'fp16'
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
print('enable full fp16 training.')
unet.to(weight_dtype)
text_encoder.to(weight_dtype)
# acceleratorがなんかよろしくやってくれるらしい
if args.train_text_encoder:
(
unet,
text_encoder,
optimizer,
train_dataloader,
lr_scheduler,
) = accelerator.prepare(
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
)
else:
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_dataloader, lr_scheduler
)
# 実験的機能勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
if args.full_fp16:
train_util.patch_accelerator_for_fp16_training(accelerator)
# resumeする
if args.resume is not None:
print(f'resume training from state: {args.resume}')
accelerator.load_state(args.resume)
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / args.gradient_accumulation_steps
)
num_train_epochs = math.ceil(
args.max_train_steps / num_update_steps_per_epoch
)
# 学習する
total_batch_size = (
args.train_batch_size
* accelerator.num_processes
* args.gradient_accumulation_steps
)
print('running training / 学習開始')
print(f' num examples / サンプル数: {train_dataset.num_train_images}')
print(f' num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}')
print(f' num epochs / epoch数: {num_train_epochs}')
print(f' batch size per device / バッチサイズ: {args.train_batch_size}')
print(
f' total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}'
)
print(
f' gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}'
)
print(f' total optimization steps / 学習ステップ数: {args.max_train_steps}')
progress_bar = tqdm(
range(args.max_train_steps),
smoothing=0,
disable=not accelerator.is_local_main_process,
desc='steps',
)
global_step = 0
noise_scheduler = DDPMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule='scaled_linear',
num_train_timesteps=1000,
clip_sample=False,
)
if accelerator.is_main_process:
accelerator.init_trackers('finetuning')
for epoch in range(num_train_epochs):
print(f'epoch {epoch+1}/{num_train_epochs}')
for m in training_models:
m.train()
loss_total = 0
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(
training_models[0]
): # 複数モデルに対応していない模様だがとりあえずこうしておく
with torch.no_grad():
if 'latents' in batch and batch['latents'] is not None:
latents = batch['latents'].to(accelerator.device)
else:
# latentに変換
latents = vae.encode(
batch['images'].to(dtype=weight_dtype)
).latent_dist.sample()
latents = latents * 0.18215
b_size = latents.shape[0]
with torch.set_grad_enabled(args.train_text_encoder):
# Get the text embedding for conditioning
input_ids = batch['input_ids'].to(accelerator.device)
encoder_hidden_states = train_util.get_hidden_states(
args,
input_ids,
tokenizer,
text_encoder,
None if not args.full_fp16 else weight_dtype,
)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents, device=latents.device)
# Sample a random timestep for each image
timesteps = torch.randint(
0,
noise_scheduler.config.num_train_timesteps,
(b_size,),
device=latents.device,
)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(
latents, noise, timesteps
)
# Predict the noise residual
noise_pred = unet(
noisy_latents, timesteps, encoder_hidden_states
).sample
if args.v_parameterization:
# v-parameterization training
target = noise_scheduler.get_velocity(
latents, noise, timesteps
)
else:
target = noise
loss = torch.nn.functional.mse_loss(
noise_pred.float(), target.float(), reduction='mean'
)
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = []
for m in training_models:
params_to_clip.extend(m.parameters())
accelerator.clip_grad_norm_(
params_to_clip, 1.0
) # args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
current_loss = loss.detach().item() # 平均なのでbatch sizeは関係ないはず
if args.logging_dir is not None:
logs = {
'loss': current_loss,
'lr': lr_scheduler.get_last_lr()[0],
}
accelerator.log(logs, step=global_step)
loss_total += current_loss
avr_loss = loss_total / (step + 1)
logs = {'loss': avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step >= args.max_train_steps:
break
if args.logging_dir is not None:
logs = {'epoch_loss': loss_total / len(train_dataloader)}
accelerator.log(logs, step=epoch + 1)
accelerator.wait_for_everyone()
if args.save_every_n_epochs is not None:
src_path = (
src_stable_diffusion_ckpt
if save_stable_diffusion_format
else src_diffusers_model_path
)
train_util.save_sd_model_on_epoch_end(
args,
accelerator,
src_path,
save_stable_diffusion_format,
use_safetensors,
save_dtype,
epoch,
num_train_epochs,
global_step,
unwrap_model(text_encoder),
unwrap_model(unet),
vae,
)
is_main_process = accelerator.is_main_process
if is_main_process:
unet = unwrap_model(unet)
text_encoder = unwrap_model(text_encoder)
accelerator.end_training()
if args.save_state:
train_util.save_state_on_train_end(args, accelerator)
del accelerator # この後メモリを使うのでこれは消す
if is_main_process:
src_path = (
src_stable_diffusion_ckpt
if save_stable_diffusion_format
else src_diffusers_model_path
)
train_util.save_sd_model_on_train_end(
args,
src_path,
save_stable_diffusion_format,
use_safetensors,
save_dtype,
epoch,
global_step,
text_encoder,
unet,
vae,
)
print('model saved.')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
train_util.add_sd_models_arguments(parser)
train_util.add_dataset_arguments(parser, False, True)
train_util.add_training_arguments(parser, False)
train_util.add_sd_saving_arguments(parser)
parser.add_argument(
'--diffusers_xformers',
action='store_true',
help='use xformers by diffusers / Diffusersでxformersを使用する',
)
parser.add_argument(
'--train_text_encoder',
action='store_true',
help='train text encoder / text encoderも学習する',
)
args = parser.parse_args()
train(args)