KohyaSS/examples/kohya-1-folders.ps1

87 lines
2.8 KiB
PowerShell
Raw Normal View History

2022-11-19 13:49:42 +00:00
# This powershell script will create a model using the fine tuning dreambooth method. It will require landscape,
# portrait and square images.
#
# Adjust the script to your own needs
# Sylvia Ritter
# variable values
$pretrained_model_name_or_path = "D:\models\v1-5-pruned-mse-vae.ckpt"
$data_dir = "D:\test\squat"
$train_dir = "D:\test\"
$resolution = "512,512"
$image_num = Get-ChildItem $data_dir -Recurse -File -Include *.png | Measure-Object | %{$_.Count}
Write-Output "image_num: $image_num"
$learning_rate = 1e-6
$dataset_repeats = 40
$train_batch_size = 8
$epoch = 1
$save_every_n_epochs=1
$mixed_precision="fp16"
$num_cpu_threads_per_process=6
# You should not have to change values past this point
$output_dir = $train_dir + "\model"
$repeats = $image_num * $dataset_repeats
$mts = [Math]::Ceiling($repeats / $train_batch_size * $epoch)
Write-Output "Repeats: $repeats"
.\venv\Scripts\activate
accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed-ber.py `
--pretrained_model_name_or_path=$pretrained_model_name_or_path `
--train_data_dir=$data_dir `
--output_dir=$output_dir `
--resolution=$resolution `
--train_batch_size=$train_batch_size `
--learning_rate=$learning_rate `
--max_train_steps=$mts `
--use_8bit_adam `
--xformers `
--mixed_precision=$mixed_precision `
--cache_latents `
--save_every_n_epochs=$save_every_n_epochs `
--fine_tuning `
--dataset_repeats=$dataset_repeats `
--save_precision="fp16"
# 2nd pass at half the dataset repeat value
accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed.py `
--pretrained_model_name_or_path=$output_dir"\last.ckpt" `
--train_data_dir=$data_dir `
--output_dir=$output_dir"2" `
--resolution=$resolution `
--train_batch_size=$train_batch_size `
--learning_rate=$learning_rate `
--max_train_steps=$([Math]::Ceiling($mts/2)) `
--use_8bit_adam `
--xformers `
--mixed_precision=$mixed_precision `
--cache_latents `
--save_every_n_epochs=$save_every_n_epochs `
--fine_tuning `
--dataset_repeats=$([Math]::Ceiling($dataset_repeats/2)) `
--save_precision="fp16"
accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed-ber.py `
--pretrained_model_name_or_path=$output_dir"\last.ckpt" `
--train_data_dir=$data_dir `
--output_dir=$output_dir"2" `
--resolution=$resolution `
--train_batch_size=$train_batch_size `
--learning_rate=$learning_rate `
--max_train_steps=$mts `
--use_8bit_adam `
--xformers `
--mixed_precision=$mixed_precision `
--cache_latents `
--save_every_n_epochs=$save_every_n_epochs `
--fine_tuning `
--dataset_repeats=$dataset_repeats `
--save_precision="fp16"