KohyaSS/examples/kohya_bucket.ps1

69 lines
2.1 KiB
PowerShell
Raw Normal View History

2022-12-13 19:59:33 +00:00
# This powershell script will create a model using the fine tuning dreambooth method. It will require landscape,
# portrait and square images.
#
# Adjust the script to your own needs
# Sylvia Ritter
# variable values
$pretrained_model_name_or_path = "D:\models\v1-5-pruned-mse-vae.ckpt"
$train_dir = "D:\dreambooth\train_bernard\v3"
$folder_name = "dataset"
$learning_rate = 1e-6
$dataset_repeats = 80
$train_batch_size = 6
$epoch = 1
$save_every_n_epochs=1
$mixed_precision="fp16"
$num_cpu_threads_per_process=6
# You should not have to change values past this point
$data_dir = $train_dir + "\" + $folder_name
$output_dir = $train_dir + "\model"
# stop script on error
$ErrorActionPreference = "Stop"
.\venv\Scripts\activate
$data_dir_buckets = $data_dir + "-buckets"
python .\diffusers_fine_tuning\create_buckets.py $data_dir $data_dir_buckets --max_resolution "768,512"
foreach($directory in Get-ChildItem -path $data_dir_buckets -Directory)
{
if (Test-Path -Path $output_dir-$directory)
{
Write-Host "The folder $output_dir-$directory already exists, skipping bucket."
}
else
{
Write-Host $directory
$dir_img_num = Get-ChildItem "$data_dir_buckets\$directory" -Recurse -File -Include *.jpg | Measure-Object | %{$_.Count}
$repeats = $dir_img_num * $dataset_repeats
$mts = [Math]::Ceiling($repeats / $train_batch_size * $epoch)
Write-Host
accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed-ber.py `
--pretrained_model_name_or_path=$pretrained_model_name_or_path `
--train_data_dir=$data_dir_buckets\$directory `
--output_dir=$output_dir-$directory `
--resolution=$directory `
--train_batch_size=$train_batch_size `
--learning_rate=$learning_rate `
--max_train_steps=$mts `
--use_8bit_adam `
--xformers `
--mixed_precision=$mixed_precision `
--save_every_n_epochs=$save_every_n_epochs `
--fine_tuning `
--dataset_repeats=$dataset_repeats `
--save_precision="fp16"
}
$pretrained_model_name_or_path = "$output_dir-$directory\last.ckpt"
}