2023-03-30 08:40:00 +00:00
import os
import shutil
2022-12-16 18:16:23 +00:00
import gradio as gr
2023-03-30 08:40:00 +00:00
2022-12-16 18:16:23 +00:00
from . common_gui import get_folder_path
2022-12-17 01:26:26 +00:00
2022-12-23 01:18:51 +00:00
def copy_info_to_Folders_tab ( training_folder ) :
2022-12-17 01:26:26 +00:00
img_folder = os . path . join ( training_folder , ' img ' )
if os . path . exists ( os . path . join ( training_folder , ' reg ' ) ) :
reg_folder = os . path . join ( training_folder , ' reg ' )
2022-12-16 18:16:23 +00:00
else :
2022-12-17 01:26:26 +00:00
reg_folder = ' '
model_folder = os . path . join ( training_folder , ' model ' )
log_folder = os . path . join ( training_folder , ' log ' )
2022-12-16 18:16:23 +00:00
return img_folder , reg_folder , model_folder , log_folder
def dreambooth_folder_preparation (
util_training_images_dir_input ,
util_training_images_repeat_input ,
util_instance_prompt_input ,
util_regularization_images_dir_input ,
util_regularization_images_repeat_input ,
util_class_prompt_input ,
util_training_dir_output ,
) :
# Check if the input variables are empty
2022-12-17 01:26:26 +00:00
if not len ( util_training_dir_output ) :
2022-12-16 18:16:23 +00:00
print (
" Destination training directory is missing... can ' t perform the required task... "
)
return
else :
# Create the util_training_dir_output directory if it doesn't exist
os . makedirs ( util_training_dir_output , exist_ok = True )
# Check for instance prompt
2022-12-17 01:26:26 +00:00
if util_instance_prompt_input == ' ' :
2023-03-30 08:40:00 +00:00
show_message_box ( ' Instance prompt missing... ' )
2022-12-16 18:16:23 +00:00
return
2022-12-17 01:26:26 +00:00
2022-12-16 18:16:23 +00:00
# Check for class prompt
2022-12-17 01:26:26 +00:00
if util_class_prompt_input == ' ' :
2023-03-30 08:40:00 +00:00
show_message_box ( ' Class prompt missing... ' )
2022-12-16 18:16:23 +00:00
return
# Create the training_dir path
2022-12-17 01:26:26 +00:00
if util_training_images_dir_input == ' ' :
2022-12-16 18:16:23 +00:00
print (
" Training images directory is missing... can ' t perform the required task... "
)
return
else :
training_dir = os . path . join (
util_training_dir_output ,
2022-12-17 01:26:26 +00:00
f ' img/ { int ( util_training_images_repeat_input ) } _ { util_instance_prompt_input } { util_class_prompt_input } ' ,
2022-12-16 18:16:23 +00:00
)
# Remove folders if they exist
if os . path . exists ( training_dir ) :
2022-12-17 01:26:26 +00:00
print ( f ' Removing existing directory { training_dir } ... ' )
2022-12-16 18:16:23 +00:00
shutil . rmtree ( training_dir )
# Copy the training images to their respective directories
2022-12-17 01:26:26 +00:00
print ( f ' Copy { util_training_images_dir_input } to { training_dir } ... ' )
2022-12-16 18:16:23 +00:00
shutil . copytree ( util_training_images_dir_input , training_dir )
2022-12-22 16:51:34 +00:00
if not util_regularization_images_dir_input == ' ' :
# Create the regularization_dir path
if not util_regularization_images_repeat_input > 0 :
print ( ' Repeats is missing... not copying regularisation images... ' )
else :
regularization_dir = os . path . join (
util_training_dir_output ,
f ' reg/ { int ( util_regularization_images_repeat_input ) } _ { util_class_prompt_input } ' ,
)
2022-12-16 18:16:23 +00:00
2022-12-22 16:51:34 +00:00
# Remove folders if they exist
if os . path . exists ( regularization_dir ) :
print ( f ' Removing existing directory { regularization_dir } ... ' )
shutil . rmtree ( regularization_dir )
2022-12-16 18:16:23 +00:00
2022-12-22 16:51:34 +00:00
# Copy the regularisation images to their respective directories
print (
f ' Copy { util_regularization_images_dir_input } to { regularization_dir } ... '
)
shutil . copytree (
util_regularization_images_dir_input , regularization_dir
)
else :
2022-12-16 18:16:23 +00:00
print (
2022-12-22 16:51:34 +00:00
' Regularization images directory is missing... not copying regularisation images... '
2022-12-16 18:16:23 +00:00
)
2022-12-20 15:07:22 +00:00
# create log and model folder
# Check if the log folder exists and create it if it doesn't
if not os . path . exists ( os . path . join ( util_training_dir_output , ' log ' ) ) :
os . makedirs ( os . path . join ( util_training_dir_output , ' log ' ) )
# Check if the model folder exists and create it if it doesn't
if not os . path . exists ( os . path . join ( util_training_dir_output , ' model ' ) ) :
os . makedirs ( os . path . join ( util_training_dir_output , ' model ' ) )
2022-12-16 18:16:23 +00:00
print (
2022-12-17 01:26:26 +00:00
f ' Done creating kohya_ss training folder structure at { util_training_dir_output } ... '
2022-12-16 18:16:23 +00:00
)
2022-12-17 01:26:26 +00:00
def gradio_dreambooth_folder_creation_tab (
2022-12-22 16:51:34 +00:00
train_data_dir_input = gr . Textbox ( ) ,
reg_data_dir_input = gr . Textbox ( ) ,
output_dir_input = gr . Textbox ( ) ,
logging_dir_input = gr . Textbox ( ) ,
2022-12-17 01:26:26 +00:00
) :
2022-12-30 02:17:41 +00:00
with gr . Tab ( ' Dreambooth/LoRA Folder preparation ' ) :
2022-12-16 18:16:23 +00:00
gr . Markdown (
2022-12-30 02:17:41 +00:00
' This utility will create the necessary folder structure for the training images and optional regularization images needed for the kohys_ss Dreambooth/LoRA method to function correctly. '
2022-12-16 18:16:23 +00:00
)
with gr . Row ( ) :
util_instance_prompt_input = gr . Textbox (
2022-12-17 01:26:26 +00:00
label = ' Instance prompt ' ,
placeholder = ' Eg: asd ' ,
2022-12-16 18:16:23 +00:00
interactive = True ,
)
util_class_prompt_input = gr . Textbox (
2022-12-17 01:26:26 +00:00
label = ' Class prompt ' ,
placeholder = ' Eg: person ' ,
2022-12-16 18:16:23 +00:00
interactive = True ,
)
with gr . Row ( ) :
util_training_images_dir_input = gr . Textbox (
2022-12-17 01:26:26 +00:00
label = ' Training images ' ,
placeholder = ' Directory containing the training images ' ,
2022-12-16 18:16:23 +00:00
interactive = True ,
)
button_util_training_images_dir_input = gr . Button (
2022-12-17 01:26:26 +00:00
' 📂 ' , elem_id = ' open_folder_small '
)
2022-12-16 18:16:23 +00:00
button_util_training_images_dir_input . click (
2023-03-04 23:56:22 +00:00
get_folder_path ,
outputs = util_training_images_dir_input ,
show_progress = False ,
2022-12-17 01:26:26 +00:00
)
2022-12-16 18:16:23 +00:00
util_training_images_repeat_input = gr . Number (
2022-12-17 01:26:26 +00:00
label = ' Repeats ' ,
2022-12-16 18:16:23 +00:00
value = 40 ,
interactive = True ,
2022-12-17 01:26:26 +00:00
elem_id = ' number_input ' ,
)
2022-12-16 18:16:23 +00:00
with gr . Row ( ) :
util_regularization_images_dir_input = gr . Textbox (
2022-12-17 01:26:26 +00:00
label = ' Regularisation images ' ,
placeholder = ' (Optional) Directory containing the regularisation images ' ,
2022-12-16 18:16:23 +00:00
interactive = True ,
)
button_util_regularization_images_dir_input = gr . Button (
2022-12-17 01:26:26 +00:00
' 📂 ' , elem_id = ' open_folder_small '
)
2022-12-16 18:16:23 +00:00
button_util_regularization_images_dir_input . click (
2023-03-04 23:56:22 +00:00
get_folder_path ,
outputs = util_regularization_images_dir_input ,
show_progress = False ,
2022-12-17 01:26:26 +00:00
)
2022-12-16 18:16:23 +00:00
util_regularization_images_repeat_input = gr . Number (
2022-12-17 01:26:26 +00:00
label = ' Repeats ' ,
2022-12-16 18:16:23 +00:00
value = 1 ,
interactive = True ,
2022-12-17 01:26:26 +00:00
elem_id = ' number_input ' ,
)
2022-12-16 18:16:23 +00:00
with gr . Row ( ) :
util_training_dir_output = gr . Textbox (
2022-12-17 01:26:26 +00:00
label = ' Destination training directory ' ,
placeholder = ' Directory where formatted training and regularisation folders will be placed ' ,
2022-12-16 18:16:23 +00:00
interactive = True ,
)
button_util_training_dir_output = gr . Button (
2022-12-17 01:26:26 +00:00
' 📂 ' , elem_id = ' open_folder_small '
)
2022-12-16 18:16:23 +00:00
button_util_training_dir_output . click (
2022-12-17 01:26:26 +00:00
get_folder_path , outputs = util_training_dir_output
)
button_prepare_training_data = gr . Button ( ' Prepare training data ' )
2022-12-16 18:16:23 +00:00
button_prepare_training_data . click (
dreambooth_folder_preparation ,
inputs = [
util_training_images_dir_input ,
util_training_images_repeat_input ,
util_instance_prompt_input ,
util_regularization_images_dir_input ,
util_regularization_images_repeat_input ,
util_class_prompt_input ,
util_training_dir_output ,
] ,
2023-03-04 23:56:22 +00:00
show_progress = False ,
2022-12-16 18:16:23 +00:00
)
2023-02-06 01:07:00 +00:00
button_copy_info_to_Folders_tab = gr . Button ( ' Copy info to Folders Tab ' )
2022-12-23 01:18:51 +00:00
button_copy_info_to_Folders_tab . click (
copy_info_to_Folders_tab ,
inputs = [ util_training_dir_output ] ,
outputs = [
train_data_dir_input ,
reg_data_dir_input ,
output_dir_input ,
logging_dir_input ,
] ,
2023-03-04 23:56:22 +00:00
show_progress = False ,
2022-12-23 01:18:51 +00:00
)