191 lines
6.8 KiB
Python
191 lines
6.8 KiB
Python
|
# LoRA network module
|
||
|
# reference:
|
||
|
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
|
||
|
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
|
||
|
|
||
|
import math
|
||
|
import os
|
||
|
import torch
|
||
|
|
||
|
|
||
|
class LoRAModule(torch.nn.Module):
|
||
|
"""
|
||
|
replaces forward method of the original Linear, instead of replacing the original Linear module.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, lora_name, org_module: torch.nn.Module, multiplier=1.0, lora_dim=4):
|
||
|
super().__init__()
|
||
|
self.lora_name = lora_name
|
||
|
|
||
|
if org_module.__class__.__name__ == 'Conv2d':
|
||
|
in_dim = org_module.in_channels
|
||
|
out_dim = org_module.out_channels
|
||
|
self.lora_down = torch.nn.Conv2d(in_dim, lora_dim, (1, 1), bias=False)
|
||
|
self.lora_up = torch.nn.Conv2d(lora_dim, out_dim, (1, 1), bias=False)
|
||
|
else:
|
||
|
in_dim = org_module.in_features
|
||
|
out_dim = org_module.out_features
|
||
|
self.lora_down = torch.nn.Linear(in_dim, lora_dim, bias=False)
|
||
|
self.lora_up = torch.nn.Linear(lora_dim, out_dim, bias=False)
|
||
|
|
||
|
# same as microsoft's
|
||
|
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
|
||
|
torch.nn.init.zeros_(self.lora_up.weight)
|
||
|
|
||
|
self.multiplier = multiplier
|
||
|
self.org_module = org_module # remove in applying
|
||
|
|
||
|
def apply_to(self):
|
||
|
self.org_forward = self.org_module.forward
|
||
|
self.org_module.forward = self.forward
|
||
|
del self.org_module
|
||
|
|
||
|
def forward(self, x):
|
||
|
return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier
|
||
|
|
||
|
|
||
|
def create_network(multiplier, network_dim, vae, text_encoder, unet, **kwargs):
|
||
|
if network_dim is None:
|
||
|
network_dim = 4 # default
|
||
|
network = LoRANetwork(text_encoder, unet, multiplier=multiplier, lora_dim=network_dim)
|
||
|
return network
|
||
|
|
||
|
|
||
|
class LoRANetwork(torch.nn.Module):
|
||
|
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "Attention"]
|
||
|
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
|
||
|
LORA_PREFIX_UNET = 'lora_unet'
|
||
|
LORA_PREFIX_TEXT_ENCODER = 'lora_te'
|
||
|
|
||
|
def __init__(self, text_encoder, unet, multiplier=1.0, lora_dim=4) -> None:
|
||
|
super().__init__()
|
||
|
self.multiplier = multiplier
|
||
|
self.lora_dim = lora_dim
|
||
|
|
||
|
# create module instances
|
||
|
def create_modules(prefix, root_module: torch.nn.Module, target_replace_modules) -> list[LoRAModule]:
|
||
|
loras = []
|
||
|
for name, module in root_module.named_modules():
|
||
|
if module.__class__.__name__ in target_replace_modules:
|
||
|
for child_name, child_module in module.named_modules():
|
||
|
if child_module.__class__.__name__ == "Linear" or (child_module.__class__.__name__ == "Conv2d" and child_module.kernel_size == (1, 1)):
|
||
|
lora_name = prefix + '.' + name + '.' + child_name
|
||
|
lora_name = lora_name.replace('.', '_')
|
||
|
lora = LoRAModule(lora_name, child_module, self.multiplier, self.lora_dim)
|
||
|
loras.append(lora)
|
||
|
return loras
|
||
|
|
||
|
self.text_encoder_loras = create_modules(LoRANetwork.LORA_PREFIX_TEXT_ENCODER,
|
||
|
text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
|
||
|
print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
|
||
|
|
||
|
self.unet_loras = create_modules(LoRANetwork.LORA_PREFIX_UNET, unet, LoRANetwork.UNET_TARGET_REPLACE_MODULE)
|
||
|
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
|
||
|
|
||
|
self.weights_sd = None
|
||
|
|
||
|
# assertion
|
||
|
names = set()
|
||
|
for lora in self.text_encoder_loras + self.unet_loras:
|
||
|
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
|
||
|
names.add(lora.lora_name)
|
||
|
|
||
|
def load_weights(self, file):
|
||
|
if os.path.splitext(file)[1] == '.safetensors':
|
||
|
from safetensors.torch import load_file
|
||
|
self.weights_sd = load_file(file)
|
||
|
else:
|
||
|
self.weights_sd = torch.load(file, map_location='cpu')
|
||
|
|
||
|
def apply_to(self, text_encoder, unet, apply_text_encoder=None, apply_unet=None):
|
||
|
if self.weights_sd:
|
||
|
weights_has_text_encoder = weights_has_unet = False
|
||
|
for key in self.weights_sd.keys():
|
||
|
if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER):
|
||
|
weights_has_text_encoder = True
|
||
|
elif key.startswith(LoRANetwork.LORA_PREFIX_UNET):
|
||
|
weights_has_unet = True
|
||
|
|
||
|
if apply_text_encoder is None:
|
||
|
apply_text_encoder = weights_has_text_encoder
|
||
|
else:
|
||
|
assert apply_text_encoder == weights_has_text_encoder, f"text encoder weights: {weights_has_text_encoder} but text encoder flag: {apply_text_encoder} / 重みとText Encoderのフラグが矛盾しています"
|
||
|
|
||
|
if apply_unet is None:
|
||
|
apply_unet = weights_has_unet
|
||
|
else:
|
||
|
assert apply_unet == weights_has_unet, f"u-net weights: {weights_has_unet} but u-net flag: {apply_unet} / 重みとU-Netのフラグが矛盾しています"
|
||
|
else:
|
||
|
assert apply_text_encoder is not None and apply_unet is not None, f"internal error: flag not set"
|
||
|
|
||
|
if apply_text_encoder:
|
||
|
print("enable LoRA for text encoder")
|
||
|
else:
|
||
|
self.text_encoder_loras = []
|
||
|
|
||
|
if apply_unet:
|
||
|
print("enable LoRA for U-Net")
|
||
|
else:
|
||
|
self.unet_loras = []
|
||
|
|
||
|
for lora in self.text_encoder_loras + self.unet_loras:
|
||
|
lora.apply_to()
|
||
|
self.add_module(lora.lora_name, lora)
|
||
|
|
||
|
if self.weights_sd:
|
||
|
# if some weights are not in state dict, it is ok because initial LoRA does nothing (lora_up is initialized by zeros)
|
||
|
info = self.load_state_dict(self.weights_sd, False)
|
||
|
print(f"weights are loaded: {info}")
|
||
|
|
||
|
def enable_gradient_checkpointing(self):
|
||
|
# not supported
|
||
|
pass
|
||
|
|
||
|
def prepare_optimizer_params(self, text_encoder_lr, unet_lr):
|
||
|
def enumerate_params(loras):
|
||
|
params = []
|
||
|
for lora in loras:
|
||
|
params.extend(lora.parameters())
|
||
|
return params
|
||
|
|
||
|
self.requires_grad_(True)
|
||
|
params = []
|
||
|
|
||
|
if self.text_encoder_loras:
|
||
|
param_data = {'params': enumerate_params(self.text_encoder_loras)}
|
||
|
if text_encoder_lr is not None:
|
||
|
param_data['lr'] = text_encoder_lr
|
||
|
params.append(param_data)
|
||
|
|
||
|
if self.unet_loras:
|
||
|
param_data = {'params': enumerate_params(self.unet_loras)}
|
||
|
if unet_lr is not None:
|
||
|
param_data['lr'] = unet_lr
|
||
|
params.append(param_data)
|
||
|
|
||
|
return params
|
||
|
|
||
|
def prepare_grad_etc(self, text_encoder, unet):
|
||
|
self.requires_grad_(True)
|
||
|
|
||
|
def on_epoch_start(self, text_encoder, unet):
|
||
|
self.train()
|
||
|
|
||
|
def get_trainable_params(self):
|
||
|
return self.parameters()
|
||
|
|
||
|
def save_weights(self, file, dtype):
|
||
|
state_dict = self.state_dict()
|
||
|
|
||
|
if dtype is not None:
|
||
|
for key in list(state_dict.keys()):
|
||
|
v = state_dict[key]
|
||
|
v = v.detach().clone().to("cpu").to(dtype)
|
||
|
state_dict[key] = v
|
||
|
|
||
|
if os.path.splitext(file)[1] == '.safetensors':
|
||
|
from safetensors.torch import save_file
|
||
|
save_file(state_dict, file)
|
||
|
else:
|
||
|
torch.save(state_dict, file)
|