2022-12-26 13:47:33 +00:00
|
|
|
|
import importlib
|
|
|
|
|
import argparse
|
2023-01-09 12:47:07 +00:00
|
|
|
|
import gc
|
2022-12-26 13:47:33 +00:00
|
|
|
|
import math
|
|
|
|
|
import os
|
|
|
|
|
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
import torch
|
|
|
|
|
from accelerate.utils import set_seed
|
|
|
|
|
import diffusers
|
2023-01-09 12:47:07 +00:00
|
|
|
|
from diffusers import DDPMScheduler
|
2022-12-26 13:47:33 +00:00
|
|
|
|
|
2023-01-09 12:47:07 +00:00
|
|
|
|
import library.train_util as train_util
|
|
|
|
|
from library.train_util import DreamBoothDataset, FineTuningDataset
|
2022-12-26 13:47:33 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def collate_fn(examples):
|
|
|
|
|
return examples[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def train(args):
|
2023-01-09 12:47:07 +00:00
|
|
|
|
train_util.verify_training_args(args)
|
|
|
|
|
train_util.prepare_dataset_args(args, True)
|
2022-12-26 13:47:33 +00:00
|
|
|
|
|
2023-01-09 12:47:07 +00:00
|
|
|
|
cache_latents = args.cache_latents
|
2022-12-26 13:47:33 +00:00
|
|
|
|
use_dreambooth_method = args.in_json is None
|
|
|
|
|
|
|
|
|
|
if args.seed is not None:
|
|
|
|
|
set_seed(args.seed)
|
|
|
|
|
|
2023-01-09 12:47:07 +00:00
|
|
|
|
tokenizer = train_util.load_tokenizer(args)
|
2022-12-26 13:47:33 +00:00
|
|
|
|
|
|
|
|
|
# データセットを準備する
|
|
|
|
|
if use_dreambooth_method:
|
|
|
|
|
print("Use DreamBooth method.")
|
|
|
|
|
train_dataset = DreamBoothDataset(args.train_batch_size, args.train_data_dir, args.reg_data_dir,
|
|
|
|
|
tokenizer, args.max_token_length, args.caption_extension, args.shuffle_caption, args.keep_tokens,
|
2023-01-09 12:47:07 +00:00
|
|
|
|
args.resolution, args.enable_bucket, args.min_bucket_reso, args.max_bucket_reso, args.prior_loss_weight,
|
|
|
|
|
args.flip_aug, args.color_aug, args.face_crop_aug_range, args.random_crop, args.debug_dataset)
|
2022-12-26 13:47:33 +00:00
|
|
|
|
else:
|
|
|
|
|
print("Train with captions.")
|
2023-01-09 12:47:07 +00:00
|
|
|
|
train_dataset = FineTuningDataset(args.in_json, args.train_batch_size, args.train_data_dir,
|
2022-12-26 13:47:33 +00:00
|
|
|
|
tokenizer, args.max_token_length, args.shuffle_caption, args.keep_tokens,
|
2023-01-09 12:47:07 +00:00
|
|
|
|
args.resolution, args.enable_bucket, args.min_bucket_reso, args.max_bucket_reso,
|
|
|
|
|
args.flip_aug, args.color_aug, args.face_crop_aug_range, args.random_crop,
|
|
|
|
|
args.dataset_repeats, args.debug_dataset)
|
|
|
|
|
train_dataset.make_buckets()
|
2022-12-26 13:47:33 +00:00
|
|
|
|
|
|
|
|
|
if args.debug_dataset:
|
2023-01-09 12:47:07 +00:00
|
|
|
|
train_util.debug_dataset(train_dataset)
|
2022-12-26 13:47:33 +00:00
|
|
|
|
return
|
|
|
|
|
if len(train_dataset) == 0:
|
|
|
|
|
print("No data found. Please verify arguments / 画像がありません。引数指定を確認してください")
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
# acceleratorを準備する
|
|
|
|
|
print("prepare accelerator")
|
2023-01-09 12:47:07 +00:00
|
|
|
|
accelerator, unwrap_model = train_util.prepare_accelerator(args)
|
2022-12-26 13:47:33 +00:00
|
|
|
|
|
|
|
|
|
# mixed precisionに対応した型を用意しておき適宜castする
|
2023-01-09 12:47:07 +00:00
|
|
|
|
weight_dtype, save_dtype = train_util.prepare_dtype(args)
|
2022-12-26 13:47:33 +00:00
|
|
|
|
|
|
|
|
|
# モデルを読み込む
|
2023-01-09 12:47:07 +00:00
|
|
|
|
text_encoder, vae, unet, _ = train_util.load_target_model(args, weight_dtype)
|
2022-12-26 13:47:33 +00:00
|
|
|
|
|
|
|
|
|
# モデルに xformers とか memory efficient attention を組み込む
|
2023-01-09 12:47:07 +00:00
|
|
|
|
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
|
2022-12-26 13:47:33 +00:00
|
|
|
|
|
|
|
|
|
# 学習を準備する
|
|
|
|
|
if cache_latents:
|
|
|
|
|
vae.to(accelerator.device, dtype=weight_dtype)
|
|
|
|
|
vae.requires_grad_(False)
|
|
|
|
|
vae.eval()
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
train_dataset.cache_latents(vae)
|
|
|
|
|
vae.to("cpu")
|
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
|
|
# prepare network
|
|
|
|
|
print("import network module:", args.network_module)
|
|
|
|
|
network_module = importlib.import_module(args.network_module)
|
|
|
|
|
|
|
|
|
|
net_kwargs = {}
|
|
|
|
|
if args.network_args is not None:
|
|
|
|
|
for net_arg in args.network_args:
|
|
|
|
|
key, value = net_arg.split('=')
|
|
|
|
|
net_kwargs[key] = value
|
|
|
|
|
|
|
|
|
|
network = network_module.create_network(1.0, args.network_dim, vae, text_encoder, unet, **net_kwargs)
|
|
|
|
|
if network is None:
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
if args.network_weights is not None:
|
|
|
|
|
print("load network weights from:", args.network_weights)
|
|
|
|
|
network.load_weights(args.network_weights)
|
|
|
|
|
|
|
|
|
|
train_unet = not args.network_train_text_encoder_only
|
|
|
|
|
train_text_encoder = not args.network_train_unet_only
|
|
|
|
|
network.apply_to(text_encoder, unet, train_text_encoder, train_unet)
|
|
|
|
|
|
|
|
|
|
if args.gradient_checkpointing:
|
|
|
|
|
unet.enable_gradient_checkpointing()
|
|
|
|
|
text_encoder.gradient_checkpointing_enable()
|
|
|
|
|
network.enable_gradient_checkpointing() # may have no effect
|
|
|
|
|
|
|
|
|
|
# 学習に必要なクラスを準備する
|
|
|
|
|
print("prepare optimizer, data loader etc.")
|
|
|
|
|
|
|
|
|
|
# 8-bit Adamを使う
|
|
|
|
|
if args.use_8bit_adam:
|
|
|
|
|
try:
|
|
|
|
|
import bitsandbytes as bnb
|
|
|
|
|
except ImportError:
|
|
|
|
|
raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです")
|
|
|
|
|
print("use 8-bit Adam optimizer")
|
|
|
|
|
optimizer_class = bnb.optim.AdamW8bit
|
|
|
|
|
else:
|
|
|
|
|
optimizer_class = torch.optim.AdamW
|
|
|
|
|
|
|
|
|
|
trainable_params = network.prepare_optimizer_params(args.text_encoder_lr, args.unet_lr)
|
|
|
|
|
|
|
|
|
|
# betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略
|
|
|
|
|
optimizer = optimizer_class(trainable_params, lr=args.learning_rate)
|
|
|
|
|
|
|
|
|
|
# dataloaderを準備する
|
|
|
|
|
# DataLoaderのプロセス数:0はメインプロセスになる
|
2023-01-15 16:05:22 +00:00
|
|
|
|
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) # cpu_count-1 ただし最大で指定された数まで
|
2022-12-26 13:47:33 +00:00
|
|
|
|
train_dataloader = torch.utils.data.DataLoader(
|
|
|
|
|
train_dataset, batch_size=1, shuffle=False, collate_fn=collate_fn, num_workers=n_workers)
|
|
|
|
|
|
2023-01-15 16:05:22 +00:00
|
|
|
|
# 学習ステップ数を計算する
|
|
|
|
|
if args.max_train_epochs is not None:
|
|
|
|
|
args.max_train_steps = args.max_train_epochs * len(train_dataloader)
|
|
|
|
|
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
|
|
|
|
|
|
2022-12-26 13:47:33 +00:00
|
|
|
|
# lr schedulerを用意する
|
|
|
|
|
lr_scheduler = diffusers.optimization.get_scheduler(
|
2023-01-09 12:47:07 +00:00
|
|
|
|
args.lr_scheduler, optimizer, num_warmup_steps=args.lr_warmup_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps)
|
2022-12-26 13:47:33 +00:00
|
|
|
|
|
|
|
|
|
# 実験的機能:勾配も含めたfp16学習を行う モデル全体をfp16にする
|
|
|
|
|
if args.full_fp16:
|
|
|
|
|
assert args.mixed_precision == "fp16", "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
|
|
|
|
|
print("enable full fp16 training.")
|
|
|
|
|
network.to(weight_dtype)
|
|
|
|
|
|
|
|
|
|
# acceleratorがなんかよろしくやってくれるらしい
|
|
|
|
|
if train_unet and train_text_encoder:
|
|
|
|
|
unet, text_encoder, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
|
|
|
|
unet, text_encoder, network, optimizer, train_dataloader, lr_scheduler)
|
|
|
|
|
elif train_unet:
|
|
|
|
|
unet, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
|
|
|
|
unet, network, optimizer, train_dataloader, lr_scheduler)
|
|
|
|
|
elif train_text_encoder:
|
|
|
|
|
text_encoder, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
|
|
|
|
text_encoder, network, optimizer, train_dataloader, lr_scheduler)
|
|
|
|
|
else:
|
|
|
|
|
network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
|
|
|
|
network, optimizer, train_dataloader, lr_scheduler)
|
|
|
|
|
|
|
|
|
|
unet.requires_grad_(False)
|
|
|
|
|
unet.to(accelerator.device, dtype=weight_dtype)
|
|
|
|
|
text_encoder.requires_grad_(False)
|
|
|
|
|
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
2023-01-09 12:47:07 +00:00
|
|
|
|
if args.gradient_checkpointing: # according to TI example in Diffusers, train is required
|
|
|
|
|
unet.train()
|
|
|
|
|
text_encoder.train()
|
2023-01-19 20:47:43 +00:00
|
|
|
|
|
|
|
|
|
# set top parameter requires_grad = True for gradient checkpointing works
|
|
|
|
|
text_encoder.text_model.embeddings.requires_grad_(True)
|
2023-01-09 12:47:07 +00:00
|
|
|
|
else:
|
|
|
|
|
unet.eval()
|
|
|
|
|
text_encoder.eval()
|
2022-12-26 13:47:33 +00:00
|
|
|
|
|
|
|
|
|
network.prepare_grad_etc(text_encoder, unet)
|
|
|
|
|
|
|
|
|
|
if not cache_latents:
|
|
|
|
|
vae.requires_grad_(False)
|
|
|
|
|
vae.eval()
|
|
|
|
|
vae.to(accelerator.device, dtype=weight_dtype)
|
|
|
|
|
|
|
|
|
|
# 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
|
|
|
|
|
if args.full_fp16:
|
2023-01-09 12:47:07 +00:00
|
|
|
|
train_util.patch_accelerator_for_fp16_training(accelerator)
|
2022-12-26 13:47:33 +00:00
|
|
|
|
|
|
|
|
|
# resumeする
|
|
|
|
|
if args.resume is not None:
|
|
|
|
|
print(f"resume training from state: {args.resume}")
|
|
|
|
|
accelerator.load_state(args.resume)
|
|
|
|
|
|
|
|
|
|
# epoch数を計算する
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
|
|
|
|
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
|
|
|
|
|
|
|
|
|
# 学習する
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
|
|
|
|
print("running training / 学習開始")
|
|
|
|
|
print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset.num_train_images}")
|
|
|
|
|
print(f" num reg images / 正則化画像の数: {train_dataset.num_reg_images}")
|
|
|
|
|
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
|
|
|
|
|
print(f" num epochs / epoch数: {num_train_epochs}")
|
|
|
|
|
print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
|
|
|
|
|
print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
|
2023-01-15 16:05:22 +00:00
|
|
|
|
print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
|
2022-12-26 13:47:33 +00:00
|
|
|
|
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
|
|
|
|
|
|
2023-01-15 16:05:22 +00:00
|
|
|
|
metadata = {
|
|
|
|
|
"ss_learning_rate": args.learning_rate,
|
|
|
|
|
"ss_text_encoder_lr": args.text_encoder_lr,
|
|
|
|
|
"ss_unet_lr": args.unet_lr,
|
|
|
|
|
"ss_num_train_images": train_dataset.num_train_images, # includes repeating TODO more detailed data
|
|
|
|
|
"ss_num_reg_images": train_dataset.num_reg_images,
|
|
|
|
|
"ss_num_batches_per_epoch": len(train_dataloader),
|
|
|
|
|
"ss_num_epochs": num_train_epochs,
|
|
|
|
|
"ss_batch_size_per_device": args.train_batch_size,
|
|
|
|
|
"ss_total_batch_size": total_batch_size,
|
|
|
|
|
"ss_gradient_accumulation_steps": args.gradient_accumulation_steps,
|
|
|
|
|
"ss_max_train_steps": args.max_train_steps,
|
|
|
|
|
"ss_lr_warmup_steps": args.lr_warmup_steps,
|
|
|
|
|
"ss_lr_scheduler": args.lr_scheduler,
|
|
|
|
|
"ss_network_module": args.network_module,
|
|
|
|
|
"ss_network_dim": args.network_dim, # None means default because another network than LoRA may have another default dim
|
|
|
|
|
"ss_mixed_precision": args.mixed_precision,
|
|
|
|
|
"ss_full_fp16": bool(args.full_fp16),
|
|
|
|
|
"ss_v2": bool(args.v2),
|
|
|
|
|
"ss_resolution": args.resolution,
|
|
|
|
|
"ss_clip_skip": args.clip_skip,
|
|
|
|
|
"ss_max_token_length": args.max_token_length,
|
|
|
|
|
"ss_color_aug": bool(args.color_aug),
|
|
|
|
|
"ss_flip_aug": bool(args.flip_aug),
|
|
|
|
|
"ss_random_crop": bool(args.random_crop),
|
|
|
|
|
"ss_shuffle_caption": bool(args.shuffle_caption),
|
|
|
|
|
"ss_cache_latents": bool(args.cache_latents),
|
|
|
|
|
"ss_enable_bucket": bool(train_dataset.enable_bucket), # TODO move to BaseDataset from DB/FT
|
|
|
|
|
"ss_min_bucket_reso": args.min_bucket_reso, # TODO get from dataset
|
|
|
|
|
"ss_max_bucket_reso": args.max_bucket_reso,
|
|
|
|
|
"ss_seed": args.seed
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
# uncomment if another network is added
|
|
|
|
|
# for key, value in net_kwargs.items():
|
|
|
|
|
# metadata["ss_arg_" + key] = value
|
|
|
|
|
|
|
|
|
|
if args.pretrained_model_name_or_path is not None:
|
|
|
|
|
sd_model_name = args.pretrained_model_name_or_path
|
|
|
|
|
if os.path.exists(sd_model_name):
|
|
|
|
|
metadata["ss_sd_model_hash"] = train_util.model_hash(sd_model_name)
|
|
|
|
|
sd_model_name = os.path.basename(sd_model_name)
|
|
|
|
|
metadata["ss_sd_model_name"] = sd_model_name
|
|
|
|
|
|
|
|
|
|
if args.vae is not None:
|
|
|
|
|
vae_name = args.vae
|
|
|
|
|
if os.path.exists(vae_name):
|
|
|
|
|
metadata["ss_vae_hash"] = train_util.model_hash(vae_name)
|
|
|
|
|
vae_name = os.path.basename(vae_name)
|
|
|
|
|
metadata["ss_vae_name"] = vae_name
|
|
|
|
|
|
|
|
|
|
metadata = {k: str(v) for k, v in metadata.items()}
|
|
|
|
|
|
2022-12-26 13:47:33 +00:00
|
|
|
|
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
|
|
|
|
|
global_step = 0
|
|
|
|
|
|
|
|
|
|
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
|
|
|
|
|
num_train_timesteps=1000, clip_sample=False)
|
|
|
|
|
|
|
|
|
|
if accelerator.is_main_process:
|
|
|
|
|
accelerator.init_trackers("network_train")
|
|
|
|
|
|
|
|
|
|
for epoch in range(num_train_epochs):
|
|
|
|
|
print(f"epoch {epoch+1}/{num_train_epochs}")
|
2023-01-15 16:05:22 +00:00
|
|
|
|
metadata["ss_epoch"] = str(epoch+1)
|
2022-12-26 13:47:33 +00:00
|
|
|
|
|
|
|
|
|
network.on_epoch_start(text_encoder, unet)
|
|
|
|
|
|
|
|
|
|
loss_total = 0
|
|
|
|
|
for step, batch in enumerate(train_dataloader):
|
|
|
|
|
with accelerator.accumulate(network):
|
|
|
|
|
with torch.no_grad():
|
2023-01-09 12:47:07 +00:00
|
|
|
|
if "latents" in batch and batch["latents"] is not None:
|
2022-12-26 13:47:33 +00:00
|
|
|
|
latents = batch["latents"].to(accelerator.device)
|
|
|
|
|
else:
|
2023-01-09 12:47:07 +00:00
|
|
|
|
# latentに変換
|
2022-12-26 13:47:33 +00:00
|
|
|
|
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
|
|
|
|
|
latents = latents * 0.18215
|
|
|
|
|
b_size = latents.shape[0]
|
|
|
|
|
|
|
|
|
|
with torch.set_grad_enabled(train_text_encoder):
|
|
|
|
|
# Get the text embedding for conditioning
|
|
|
|
|
input_ids = batch["input_ids"].to(accelerator.device)
|
2023-01-09 12:47:07 +00:00
|
|
|
|
encoder_hidden_states = train_util.get_hidden_states(args, input_ids, tokenizer, text_encoder, weight_dtype)
|
2022-12-26 13:47:33 +00:00
|
|
|
|
|
|
|
|
|
# Sample noise that we'll add to the latents
|
|
|
|
|
noise = torch.randn_like(latents, device=latents.device)
|
|
|
|
|
|
|
|
|
|
# Sample a random timestep for each image
|
|
|
|
|
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
|
|
|
|
|
timesteps = timesteps.long()
|
|
|
|
|
|
|
|
|
|
# Add noise to the latents according to the noise magnitude at each timestep
|
|
|
|
|
# (this is the forward diffusion process)
|
|
|
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
|
|
|
|
|
|
|
|
|
# Predict the noise residual
|
|
|
|
|
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
|
|
|
|
|
|
|
|
|
if args.v_parameterization:
|
|
|
|
|
# v-parameterization training
|
|
|
|
|
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
|
|
|
|
else:
|
|
|
|
|
target = noise
|
|
|
|
|
|
|
|
|
|
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
|
|
|
|
|
loss = loss.mean([1, 2, 3])
|
|
|
|
|
|
|
|
|
|
loss_weights = batch["loss_weights"] # 各sampleごとのweight
|
|
|
|
|
loss = loss * loss_weights
|
|
|
|
|
|
|
|
|
|
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
|
|
|
|
|
|
|
|
|
|
accelerator.backward(loss)
|
|
|
|
|
if accelerator.sync_gradients:
|
|
|
|
|
params_to_clip = network.get_trainable_params()
|
|
|
|
|
accelerator.clip_grad_norm_(params_to_clip, 1.0) # args.max_grad_norm)
|
|
|
|
|
|
|
|
|
|
optimizer.step()
|
|
|
|
|
lr_scheduler.step()
|
|
|
|
|
optimizer.zero_grad(set_to_none=True)
|
|
|
|
|
|
|
|
|
|
# Checks if the accelerator has performed an optimization step behind the scenes
|
|
|
|
|
if accelerator.sync_gradients:
|
|
|
|
|
progress_bar.update(1)
|
|
|
|
|
global_step += 1
|
|
|
|
|
|
|
|
|
|
current_loss = loss.detach().item()
|
|
|
|
|
if args.logging_dir is not None:
|
|
|
|
|
logs = {"loss": current_loss, "lr": lr_scheduler.get_last_lr()[0]}
|
|
|
|
|
accelerator.log(logs, step=global_step)
|
|
|
|
|
|
|
|
|
|
loss_total += current_loss
|
|
|
|
|
avr_loss = loss_total / (step+1)
|
|
|
|
|
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
|
|
|
|
|
progress_bar.set_postfix(**logs)
|
|
|
|
|
|
|
|
|
|
if global_step >= args.max_train_steps:
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
if args.logging_dir is not None:
|
|
|
|
|
logs = {"epoch_loss": loss_total / len(train_dataloader)}
|
|
|
|
|
accelerator.log(logs, step=epoch+1)
|
|
|
|
|
|
|
|
|
|
accelerator.wait_for_everyone()
|
|
|
|
|
|
|
|
|
|
if args.save_every_n_epochs is not None:
|
2023-01-09 12:47:07 +00:00
|
|
|
|
model_name = train_util.DEFAULT_EPOCH_NAME if args.output_name is None else args.output_name
|
|
|
|
|
|
|
|
|
|
def save_func():
|
|
|
|
|
ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, epoch + 1) + '.' + args.save_model_as
|
|
|
|
|
ckpt_file = os.path.join(args.output_dir, ckpt_name)
|
|
|
|
|
print(f"saving checkpoint: {ckpt_file}")
|
2023-01-15 16:05:22 +00:00
|
|
|
|
unwrap_model(network).save_weights(ckpt_file, save_dtype, None if args.no_metadata else metadata)
|
2022-12-26 13:47:33 +00:00
|
|
|
|
|
2023-01-09 12:47:07 +00:00
|
|
|
|
def remove_old_func(old_epoch_no):
|
|
|
|
|
old_ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, old_epoch_no) + '.' + args.save_model_as
|
|
|
|
|
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
|
|
|
|
|
if os.path.exists(old_ckpt_file):
|
|
|
|
|
print(f"removing old checkpoint: {old_ckpt_file}")
|
|
|
|
|
os.remove(old_ckpt_file)
|
|
|
|
|
|
2023-01-19 20:47:43 +00:00
|
|
|
|
saving = train_util.save_on_epoch_end(args, save_func, remove_old_func, epoch + 1, num_train_epochs)
|
2023-01-09 12:47:07 +00:00
|
|
|
|
if saving and args.save_state:
|
2023-01-19 20:47:43 +00:00
|
|
|
|
train_util.save_state_on_epoch_end(args, accelerator, model_name, epoch + 1)
|
2023-01-09 12:47:07 +00:00
|
|
|
|
|
|
|
|
|
# end of epoch
|
2022-12-26 13:47:33 +00:00
|
|
|
|
|
2023-01-15 16:05:22 +00:00
|
|
|
|
metadata["ss_epoch"] = str(num_train_epochs)
|
|
|
|
|
|
2022-12-26 13:47:33 +00:00
|
|
|
|
is_main_process = accelerator.is_main_process
|
|
|
|
|
if is_main_process:
|
|
|
|
|
network = unwrap_model(network)
|
|
|
|
|
|
|
|
|
|
accelerator.end_training()
|
|
|
|
|
|
|
|
|
|
if args.save_state:
|
2023-01-09 12:47:07 +00:00
|
|
|
|
train_util.save_state_on_train_end(args, accelerator)
|
2022-12-26 13:47:33 +00:00
|
|
|
|
|
|
|
|
|
del accelerator # この後メモリを使うのでこれは消す
|
|
|
|
|
|
|
|
|
|
if is_main_process:
|
|
|
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
2023-01-09 12:47:07 +00:00
|
|
|
|
|
|
|
|
|
model_name = train_util.DEFAULT_LAST_OUTPUT_NAME if args.output_name is None else args.output_name
|
|
|
|
|
ckpt_name = model_name + '.' + args.save_model_as
|
|
|
|
|
ckpt_file = os.path.join(args.output_dir, ckpt_name)
|
|
|
|
|
|
2022-12-26 13:47:33 +00:00
|
|
|
|
print(f"save trained model to {ckpt_file}")
|
2023-01-15 16:05:22 +00:00
|
|
|
|
network.save_weights(ckpt_file, save_dtype, None if args.no_metadata else metadata)
|
2022-12-26 13:47:33 +00:00
|
|
|
|
print("model saved.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
parser = argparse.ArgumentParser()
|
2023-01-09 12:47:07 +00:00
|
|
|
|
|
|
|
|
|
train_util.add_sd_models_arguments(parser)
|
|
|
|
|
train_util.add_dataset_arguments(parser, True, True)
|
|
|
|
|
train_util.add_training_arguments(parser, True)
|
|
|
|
|
|
2023-01-15 16:05:22 +00:00
|
|
|
|
parser.add_argument("--no_metadata", action='store_true', help="do not save metadata in output model / メタデータを出力先モデルに保存しない")
|
2022-12-26 13:47:33 +00:00
|
|
|
|
parser.add_argument("--save_model_as", type=str, default="pt", choices=[None, "ckpt", "pt", "safetensors"],
|
|
|
|
|
help="format to save the model (default is .pt) / モデル保存時の形式(デフォルトはpt)")
|
2023-01-09 12:47:07 +00:00
|
|
|
|
|
2022-12-26 13:47:33 +00:00
|
|
|
|
parser.add_argument("--unet_lr", type=float, default=None, help="learning rate for U-Net / U-Netの学習率")
|
|
|
|
|
parser.add_argument("--text_encoder_lr", type=float, default=None, help="learning rate for Text Encoder / Text Encoderの学習率")
|
2023-01-09 12:47:07 +00:00
|
|
|
|
|
|
|
|
|
parser.add_argument("--network_weights", type=str, default=None,
|
|
|
|
|
help="pretrained weights for network / 学習するネットワークの初期重み")
|
2022-12-26 13:47:33 +00:00
|
|
|
|
parser.add_argument("--network_module", type=str, default=None, help='network module to train / 学習対象のネットワークのモジュール')
|
|
|
|
|
parser.add_argument("--network_dim", type=int, default=None,
|
|
|
|
|
help='network dimensions (depends on each network) / モジュールの次元数(ネットワークにより定義は異なります)')
|
|
|
|
|
parser.add_argument("--network_args", type=str, default=None, nargs='*',
|
|
|
|
|
help='additional argmuments for network (key=value) / ネットワークへの追加の引数')
|
|
|
|
|
parser.add_argument("--network_train_unet_only", action="store_true", help="only training U-Net part / U-Net関連部分のみ学習する")
|
|
|
|
|
parser.add_argument("--network_train_text_encoder_only", action="store_true",
|
|
|
|
|
help="only training Text Encoder part / Text Encoder関連部分のみ学習する")
|
|
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
2023-01-09 12:47:07 +00:00
|
|
|
|
train(args)
|