KohyaSS/library/common_gui.py

750 lines
25 KiB
Python
Raw Normal View History

from tkinter import filedialog, Tk
import os
import gradio as gr
from easygui import msgbox
import shutil
2023-01-16 00:59:40 +00:00
folder_symbol = '\U0001f4c2' # 📂
refresh_symbol = '\U0001f504' # 🔄
save_style_symbol = '\U0001f4be' # 💾
document_symbol = '\U0001F4C4' # 📄
2023-02-06 01:07:00 +00:00
def get_dir_and_file(file_path):
dir_path, file_name = os.path.split(file_path)
return (dir_path, file_name)
def has_ext_files(directory, extension):
# Iterate through all the files in the directory
for file in os.listdir(directory):
# If the file name ends with extension, return True
if file.endswith(extension):
return True
# If no extension files were found, return False
return False
def get_file_path(
file_path='', defaultextension='.json', extension_name='Config files'
):
current_file_path = file_path
# print(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
file_path = filedialog.askopenfilename(
filetypes=(
(f'{extension_name}', f'{defaultextension}'),
('All files', '*'),
),
defaultextension=defaultextension,
initialfile=initial_file,
initialdir=initial_dir,
)
root.destroy()
if file_path == '':
file_path = current_file_path
2022-12-16 18:16:23 +00:00
return file_path
def get_any_file_path(file_path=''):
current_file_path = file_path
# print(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
file_path = filedialog.askopenfilename(
initialdir=initial_dir,
initialfile=initial_file,
)
root.destroy()
if file_path == '':
file_path = current_file_path
return file_path
2022-12-17 01:26:26 +00:00
def remove_doublequote(file_path):
if file_path != None:
file_path = file_path.replace('"', '')
2022-12-16 18:16:23 +00:00
2022-12-17 01:26:26 +00:00
return file_path
def get_folder_path(folder_path=''):
current_folder_path = folder_path
initial_dir, initial_file = get_dir_and_file(folder_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
folder_path = filedialog.askdirectory(initialdir=initial_dir)
root.destroy()
if folder_path == '':
folder_path = current_folder_path
return folder_path
def get_saveasfile_path(
file_path='', defaultextension='.json', extension_name='Config files'
):
current_file_path = file_path
# print(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
save_file_path = filedialog.asksaveasfile(
filetypes=(
(f'{extension_name}', f'{defaultextension}'),
('All files', '*'),
),
defaultextension=defaultextension,
initialdir=initial_dir,
initialfile=initial_file,
)
root.destroy()
# print(save_file_path)
if save_file_path == None:
file_path = current_file_path
2022-12-19 14:47:35 +00:00
else:
print(save_file_path.name)
file_path = save_file_path.name
# print(file_path)
return file_path
def get_saveasfilename_path(
file_path='', extensions='*', extension_name='Config files'
):
current_file_path = file_path
# print(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
save_file_path = filedialog.asksaveasfilename(
filetypes=((f'{extension_name}', f'{extensions}'), ('All files', '*')),
defaultextension=extensions,
initialdir=initial_dir,
initialfile=initial_file,
)
root.destroy()
if save_file_path == '':
file_path = current_file_path
else:
# print(save_file_path)
file_path = save_file_path
return file_path
def add_pre_postfix(
folder='', prefix='', postfix='', caption_file_ext='.caption'
):
if not has_ext_files(folder, caption_file_ext):
msgbox(
f'No files with extension {caption_file_ext} were found in {folder}...'
)
return
2022-12-22 16:51:34 +00:00
if prefix == '' and postfix == '':
return
files = [f for f in os.listdir(folder) if f.endswith(caption_file_ext)]
if not prefix == '':
prefix = f'{prefix} '
if not postfix == '':
postfix = f' {postfix}'
for file in files:
with open(os.path.join(folder, file), 'r+') as f:
content = f.read()
content = content.rstrip()
f.seek(0, 0)
f.write(f'{prefix}{content}{postfix}')
f.close()
def find_replace(folder='', caption_file_ext='.caption', find='', replace=''):
print('Running caption find/replace')
if not has_ext_files(folder, caption_file_ext):
msgbox(
f'No files with extension {caption_file_ext} were found in {folder}...'
)
return
if find == '':
return
files = [f for f in os.listdir(folder) if f.endswith(caption_file_ext)]
for file in files:
2023-02-06 01:07:00 +00:00
with open(os.path.join(folder, file), 'r', errors='ignore') as f:
content = f.read()
f.close
content = content.replace(find, replace)
with open(os.path.join(folder, file), 'w') as f:
f.write(content)
f.close()
def color_aug_changed(color_aug):
if color_aug:
msgbox(
'Disabling "Cache latent" because "Color augmentation" has been selected...'
)
return gr.Checkbox.update(value=False, interactive=False)
else:
return gr.Checkbox.update(value=True, interactive=True)
def save_inference_file(output_dir, v2, v_parameterization, output_name):
# List all files in the directory
files = os.listdir(output_dir)
# Iterate over the list of files
for file in files:
# Check if the file starts with the value of output_name
if file.startswith(output_name):
# Check if it is a file or a directory
if os.path.isfile(os.path.join(output_dir, file)):
# Split the file name and extension
file_name, ext = os.path.splitext(file)
# Copy the v2-inference-v.yaml file to the current file, with a .yaml extension
if v2 and v_parameterization:
print(
f'Saving v2-inference-v.yaml as {output_dir}/{file_name}.yaml'
)
shutil.copy(
f'./v2_inference/v2-inference-v.yaml',
f'{output_dir}/{file_name}.yaml',
)
elif v2:
print(
f'Saving v2-inference.yaml as {output_dir}/{file_name}.yaml'
)
shutil.copy(
f'./v2_inference/v2-inference.yaml',
f'{output_dir}/{file_name}.yaml',
)
def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
# define a list of substrings to search for
substrings_v2 = [
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
if str(value) in substrings_v2:
print('SD v2 model detected. Setting --v2 parameter')
v2 = True
v_parameterization = False
return value, v2, v_parameterization
# define a list of substrings to search for v-objective
substrings_v_parameterization = [
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list
if str(value) in substrings_v_parameterization:
print(
'SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization'
)
v2 = True
v_parameterization = True
return value, v2, v_parameterization
# define a list of substrings to v1.x
substrings_v1_model = [
'CompVis/stable-diffusion-v1-4',
'runwayml/stable-diffusion-v1-5',
]
if str(value) in substrings_v1_model:
v2 = False
v_parameterization = False
return value, v2, v_parameterization
if value == 'custom':
value = ''
v2 = False
v_parameterization = False
return value, v2, v_parameterization
###
### Gradio common GUI section
###
2023-02-06 01:07:00 +00:00
2023-01-16 00:59:40 +00:00
def gradio_config():
with gr.Accordion('Configuration file', open=False):
with gr.Row():
button_open_config = gr.Button('Open 📂', elem_id='open_folder')
button_save_config = gr.Button('Save 💾', elem_id='open_folder')
button_save_as_config = gr.Button(
'Save as... 💾', elem_id='open_folder'
)
config_file_name = gr.Textbox(
label='',
placeholder="type the configuration file path or use the 'Open' button above to select it...",
interactive=True,
)
2023-02-06 01:07:00 +00:00
return (
button_open_config,
button_save_config,
button_save_as_config,
config_file_name,
)
2023-01-16 00:59:40 +00:00
def gradio_source_model():
with gr.Tab('Source model'):
# Define the input elements
with gr.Row():
pretrained_model_name_or_path = gr.Textbox(
label='Pretrained model name or path',
placeholder='enter the path to custom model or name of pretrained model',
)
pretrained_model_name_or_path_file = gr.Button(
document_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_file.click(
get_any_file_path,
inputs=pretrained_model_name_or_path,
outputs=pretrained_model_name_or_path,
)
pretrained_model_name_or_path_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_folder.click(
get_folder_path,
inputs=pretrained_model_name_or_path,
outputs=pretrained_model_name_or_path,
)
model_list = gr.Dropdown(
label='(Optional) Model Quick Pick',
choices=[
'custom',
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
'runwayml/stable-diffusion-v1-5',
'CompVis/stable-diffusion-v1-4',
],
)
save_model_as = gr.Dropdown(
label='Save trained model as',
choices=[
'same as source model',
'ckpt',
'diffusers',
'diffusers_safetensors',
'safetensors',
],
value='safetensors',
2023-01-16 00:59:40 +00:00
)
with gr.Row():
v2 = gr.Checkbox(label='v2', value=True)
v_parameterization = gr.Checkbox(
label='v_parameterization', value=False
)
model_list.change(
set_pretrained_model_name_or_path_input,
inputs=[model_list, v2, v_parameterization],
outputs=[
pretrained_model_name_or_path,
v2,
v_parameterization,
],
)
2023-02-06 01:07:00 +00:00
return (
pretrained_model_name_or_path,
v2,
v_parameterization,
save_model_as,
model_list,
)
2023-01-16 00:59:40 +00:00
2023-02-06 01:07:00 +00:00
def gradio_training(
learning_rate_value='1e-6',
lr_scheduler_value='constant',
lr_warmup_value='0',
):
2023-01-16 00:59:40 +00:00
with gr.Row():
train_batch_size = gr.Slider(
minimum=1,
maximum=32,
label='Train batch size',
value=1,
step=1,
)
epoch = gr.Textbox(label='Epoch', value=1)
2023-02-06 01:07:00 +00:00
save_every_n_epochs = gr.Textbox(label='Save every N epochs', value=1)
2023-01-16 00:59:40 +00:00
caption_extension = gr.Textbox(
label='Caption Extension',
placeholder='(Optional) Extension for caption files. default: .caption',
)
with gr.Row():
mixed_precision = gr.Dropdown(
label='Mixed precision',
choices=[
'no',
'fp16',
'bf16',
],
value='fp16',
)
save_precision = gr.Dropdown(
label='Save precision',
choices=[
'float',
'fp16',
'bf16',
],
value='fp16',
)
num_cpu_threads_per_process = gr.Slider(
minimum=1,
maximum=os.cpu_count(),
step=1,
2023-01-26 21:22:58 +00:00
label='Number of CPU threads per core',
value=2,
2023-01-16 00:59:40 +00:00
)
seed = gr.Textbox(label='Seed', value=1234)
cache_latents = gr.Checkbox(label='Cache latent', value=True)
2023-01-16 00:59:40 +00:00
with gr.Row():
2023-02-06 01:07:00 +00:00
learning_rate = gr.Textbox(
label='Learning rate', value=learning_rate_value
)
2023-01-16 00:59:40 +00:00
lr_scheduler = gr.Dropdown(
label='LR Scheduler',
choices=[
'constant',
'constant_with_warmup',
'cosine',
'cosine_with_restarts',
'linear',
'polynomial',
],
value=lr_scheduler_value,
)
2023-02-06 01:07:00 +00:00
lr_warmup = gr.Textbox(
label='LR warmup (% of steps)', value=lr_warmup_value
)
optimizer = gr.Dropdown(
label='Optimizer',
choices=[
'AdamW',
2023-02-23 01:32:57 +00:00
'AdamW8bit',
'Adafactor',
'DAdaptation',
'Lion',
2023-02-23 01:32:57 +00:00
'SGDNesterov',
'SGDNesterov8bit'
],
value="AdamW",
interactive=True,
)
2023-02-23 01:32:57 +00:00
with gr.Row():
optimizer_args = gr.Textbox(
label='Optimizer extra arguments', placeholder='(Optional) eg: relative_step=True scale_parameter=True warmup_init=True'
)
2023-01-16 00:59:40 +00:00
return (
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
num_cpu_threads_per_process,
seed,
caption_extension,
cache_latents,
optimizer,
2023-02-23 01:32:57 +00:00
optimizer_args,
2023-01-16 00:59:40 +00:00
)
2023-02-06 01:07:00 +00:00
2023-01-16 00:59:40 +00:00
def run_cmd_training(**kwargs):
options = [
f' --learning_rate="{kwargs.get("learning_rate", "")}"'
if kwargs.get('learning_rate')
else '',
f' --lr_scheduler="{kwargs.get("lr_scheduler", "")}"'
if kwargs.get('lr_scheduler')
else '',
f' --lr_warmup_steps="{kwargs.get("lr_warmup_steps", "")}"'
if kwargs.get('lr_warmup_steps')
else '',
f' --train_batch_size="{kwargs.get("train_batch_size", "")}"'
if kwargs.get('train_batch_size')
else '',
f' --max_train_steps="{kwargs.get("max_train_steps", "")}"'
if kwargs.get('max_train_steps')
else '',
f' --save_every_n_epochs="{kwargs.get("save_every_n_epochs", "")}"'
if kwargs.get('save_every_n_epochs')
else '',
f' --mixed_precision="{kwargs.get("mixed_precision", "")}"'
if kwargs.get('mixed_precision')
else '',
f' --save_precision="{kwargs.get("save_precision", "")}"'
if kwargs.get('save_precision')
else '',
2023-02-06 01:07:00 +00:00
f' --seed="{kwargs.get("seed", "")}"' if kwargs.get('seed') else '',
2023-01-16 00:59:40 +00:00
f' --caption_extension="{kwargs.get("caption_extension", "")}"'
if kwargs.get('caption_extension')
else '',
' --cache_latents' if kwargs.get('cache_latents') else '',
2023-02-23 01:32:57 +00:00
# ' --use_lion_optimizer' if kwargs.get('optimizer') == 'Lion' else '',
f' --optimizer_type="{kwargs.get("optimizer", "AdamW")}"',
f' --optimizer_args {kwargs.get("optimizer_args", "")}' if not kwargs.get('optimizer_args') == '' else '',
2023-01-16 00:59:40 +00:00
]
run_cmd = ''.join(options)
return run_cmd
# # This function takes a dictionary of keyword arguments and returns a string that can be used to run a command-line training script
# def run_cmd_training(**kwargs):
# arg_map = {
# 'learning_rate': ' --learning_rate="{}"',
# 'lr_scheduler': ' --lr_scheduler="{}"',
# 'lr_warmup_steps': ' --lr_warmup_steps="{}"',
# 'train_batch_size': ' --train_batch_size="{}"',
# 'max_train_steps': ' --max_train_steps="{}"',
# 'save_every_n_epochs': ' --save_every_n_epochs="{}"',
# 'mixed_precision': ' --mixed_precision="{}"',
# 'save_precision': ' --save_precision="{}"',
# 'seed': ' --seed="{}"',
# 'caption_extension': ' --caption_extension="{}"',
# 'cache_latents': ' --cache_latents',
# 'optimizer': ' --use_lion_optimizer' if kwargs.get('optimizer') == 'Lion' else '',
# }
# options = [arg_map[key].format(value) for key, value in kwargs.items() if key in arg_map and value]
# cmd = ''.join(options)
# return cmd
def gradio_advanced_training():
with gr.Row():
2023-02-04 16:55:06 +00:00
keep_tokens = gr.Slider(
label='Keep n tokens', value='0', minimum=0, maximum=32, step=1
)
clip_skip = gr.Slider(
label='Clip skip', value='1', minimum=1, maximum=12, step=1
)
max_token_length = gr.Dropdown(
label='Max Token Length',
choices=[
'75',
'150',
'225',
],
value='75',
)
full_fp16 = gr.Checkbox(
label='Full fp16 training (experimental)', value=False
)
2023-02-04 16:55:06 +00:00
with gr.Row():
gradient_checkpointing = gr.Checkbox(
label='Gradient checkpointing', value=False
)
2023-02-06 01:07:00 +00:00
shuffle_caption = gr.Checkbox(label='Shuffle caption', value=False)
2023-02-04 16:55:06 +00:00
persistent_data_loader_workers = gr.Checkbox(
label='Persistent data loader', value=False
2023-01-27 12:33:44 +00:00
)
2023-02-04 16:55:06 +00:00
mem_eff_attn = gr.Checkbox(
label='Memory efficient attention', value=False
)
with gr.Row():
use_8bit_adam = gr.Checkbox(label='Use 8bit adam', value=True)
xformers = gr.Checkbox(label='Use xformers', value=True)
2023-02-06 01:07:00 +00:00
color_aug = gr.Checkbox(label='Color augmentation', value=False)
flip_aug = gr.Checkbox(label='Flip augmentation', value=False)
2023-02-06 01:07:00 +00:00
with gr.Row():
bucket_no_upscale = gr.Checkbox(
label="Don't upscale bucket resolution", value=True
)
bucket_reso_steps = gr.Number(
label='Bucket resolution steps', value=64
)
* 2023/02/06 (v20.7.0) - ``--bucket_reso_steps`` and ``--bucket_no_upscale`` options are added to training scripts (fine tuning, DreamBooth, LoRA and Textual Inversion) and ``prepare_buckets_latents.py``. - ``--bucket_reso_steps`` takes the steps for buckets in aspect ratio bucketing. Default is 64, same as before. - Any value greater than or equal to 1 can be specified; 64 is highly recommended and a value divisible by 8 is recommended. - If less than 64 is specified, padding will occur within U-Net. The result is unknown. - If you specify a value that is not divisible by 8, it will be truncated to divisible by 8 inside VAE, because the size of the latent is 1/8 of the image size. - If ``--bucket_no_upscale`` option is specified, images smaller than the bucket size will be processed without upscaling. - Internally, a bucket smaller than the image size is created (for example, if the image is 300x300 and ``bucket_reso_steps=64``, the bucket is 256x256). The image will be trimmed. - Implementation of [#130](https://github.com/kohya-ss/sd-scripts/issues/130). - Images with an area larger than the maximum size specified by ``--resolution`` are downsampled to the max bucket size. - Now the number of data in each batch is limited to the number of actual images (not duplicated). Because a certain bucket may contain smaller number of actual images, so the batch may contain same (duplicated) images. - ``--random_crop`` now also works with buckets enabled. - Instead of always cropping the center of the image, the image is shifted left, right, up, and down to be used as the training data. This is expected to train to the edges of the image. - Implementation of discussion [#34](https://github.com/kohya-ss/sd-scripts/discussions/34).
2023-02-06 16:04:07 +00:00
random_crop = gr.Checkbox(
label='Random crop instead of center crop', value=False
)
2023-02-23 01:32:57 +00:00
noise_offset = gr.Textbox(
label='Noise offset (0 - 1)', placeholder='(Oprional) eg: 0.1'
)
2023-02-08 01:58:35 +00:00
with gr.Row():
caption_dropout_every_n_epochs = gr.Number(
label="Dropout caption every n epochs",
value=0
)
caption_dropout_rate = gr.Slider(
2023-02-08 01:58:35 +00:00
label="Rate of caption dropout",
value=0,
minimum=0,
maximum=1
2023-02-08 01:58:35 +00:00
)
with gr.Row():
save_state = gr.Checkbox(label='Save training state', value=False)
resume = gr.Textbox(
label='Resume from saved training state',
placeholder='path to "last-state" state folder to resume from',
)
resume_button = gr.Button('📂', elem_id='open_folder_small')
resume_button.click(get_folder_path, outputs=resume)
max_train_epochs = gr.Textbox(
label='Max train epoch',
placeholder='(Optional) Override number of epoch',
)
max_data_loader_n_workers = gr.Textbox(
label='Max num workers for DataLoader',
placeholder='(Optional) Override number of epoch. Default: 8',
)
return (
use_8bit_adam,
xformers,
full_fp16,
gradient_checkpointing,
shuffle_caption,
color_aug,
flip_aug,
clip_skip,
mem_eff_attn,
save_state,
resume,
max_token_length,
max_train_epochs,
max_data_loader_n_workers,
2023-01-27 12:33:44 +00:00
keep_tokens,
2023-02-04 16:55:06 +00:00
persistent_data_loader_workers,
2023-02-06 01:07:00 +00:00
bucket_no_upscale,
random_crop,
bucket_reso_steps,
2023-02-23 01:32:57 +00:00
caption_dropout_every_n_epochs, caption_dropout_rate,noise_offset,
)
2023-02-06 01:07:00 +00:00
def run_cmd_advanced_training(**kwargs):
options = [
f' --max_train_epochs="{kwargs.get("max_train_epochs", "")}"'
if kwargs.get('max_train_epochs')
else '',
f' --max_data_loader_n_workers="{kwargs.get("max_data_loader_n_workers", "")}"'
if kwargs.get('max_data_loader_n_workers')
else '',
f' --max_token_length={kwargs.get("max_token_length", "")}'
if int(kwargs.get('max_token_length', 75)) > 75
else '',
f' --clip_skip={kwargs.get("clip_skip", "")}'
if int(kwargs.get('clip_skip', 1)) > 1
else '',
f' --resume="{kwargs.get("resume", "")}"'
if kwargs.get('resume')
else '',
2023-01-27 12:33:44 +00:00
f' --keep_tokens="{kwargs.get("keep_tokens", "")}"'
if int(kwargs.get('keep_tokens', 0)) > 0
else '',
2023-02-08 01:58:35 +00:00
f' --caption_dropout_every_n_epochs="{kwargs.get("caption_dropout_every_n_epochs", "")}"'
if int(kwargs.get('caption_dropout_every_n_epochs', 0)) > 0
else '',
f' --caption_dropout_rate="{kwargs.get("caption_dropout_rate", "")}"'
if float(kwargs.get('caption_dropout_rate', 0)) > 0
else '',
2023-01-27 12:33:44 +00:00
2023-02-06 01:07:00 +00:00
f' --bucket_reso_steps={int(kwargs.get("bucket_reso_steps", 1))}'
if int(kwargs.get('bucket_reso_steps', 64)) >= 1
else '',
2023-02-06 01:07:00 +00:00
' --save_state' if kwargs.get('save_state') else '',
' --mem_eff_attn' if kwargs.get('mem_eff_attn') else '',
' --color_aug' if kwargs.get('color_aug') else '',
' --flip_aug' if kwargs.get('flip_aug') else '',
' --shuffle_caption' if kwargs.get('shuffle_caption') else '',
2023-02-06 01:07:00 +00:00
' --gradient_checkpointing'
if kwargs.get('gradient_checkpointing')
else '',
' --full_fp16' if kwargs.get('full_fp16') else '',
' --xformers' if kwargs.get('xformers') else '',
' --use_8bit_adam' if kwargs.get('use_8bit_adam') else '',
2023-02-06 01:07:00 +00:00
' --persistent_data_loader_workers'
if kwargs.get('persistent_data_loader_workers')
else '',
' --bucket_no_upscale' if kwargs.get('bucket_no_upscale') else '',
' --random_crop' if kwargs.get('random_crop') else '',
2023-02-23 01:32:57 +00:00
f' --noise_offset={float(kwargs.get("noise_offset", 0))}'
if not kwargs.get('noise_offset', '') == ''
else '',
]
run_cmd = ''.join(options)
return run_cmd
# def run_cmd_advanced_training(**kwargs):
# arg_map = {
# 'max_train_epochs': ' --max_train_epochs="{}"',
# 'max_data_loader_n_workers': ' --max_data_loader_n_workers="{}"',
# 'max_token_length': ' --max_token_length={}' if int(kwargs.get('max_token_length', 75)) > 75 else '',
# 'clip_skip': ' --clip_skip={}' if int(kwargs.get('clip_skip', 1)) > 1 else '',
# 'resume': ' --resume="{}"',
# 'keep_tokens': ' --keep_tokens="{}"' if int(kwargs.get('keep_tokens', 0)) > 0 else '',
# 'caption_dropout_every_n_epochs': ' --caption_dropout_every_n_epochs="{}"' if int(kwargs.get('caption_dropout_every_n_epochs', 0)) > 0 else '',
# 'caption_dropout_rate': ' --caption_dropout_rate="{}"' if float(kwargs.get('caption_dropout_rate', 0)) > 0 else '',
# 'bucket_reso_steps': ' --bucket_reso_steps={:d}' if int(kwargs.get('bucket_reso_steps', 64)) >= 1 else '',
# 'save_state': ' --save_state',
# 'mem_eff_attn': ' --mem_eff_attn',
# 'color_aug': ' --color_aug',
# 'flip_aug': ' --flip_aug',
# 'shuffle_caption': ' --shuffle_caption',
# 'gradient_checkpointing': ' --gradient_checkpointing',
# 'full_fp16': ' --full_fp16',
# 'xformers': ' --xformers',
# 'use_8bit_adam': ' --use_8bit_adam',
# 'persistent_data_loader_workers': ' --persistent_data_loader_workers',
# 'bucket_no_upscale': ' --bucket_no_upscale',
# 'random_crop': ' --random_crop',
# }
# options = [arg_map[key].format(value) for key, value in kwargs.items() if key in arg_map and value]
# cmd = ''.join(options)
# return cmd