- Increase max LoRA rank (dim) size to 1024.
    - Update finetune preprocessing scripts.
        - ``.bmp`` and ``.jpeg`` are supported. Thanks to breakcore2 and p1atdev!
        - The default weights of ``tag_images_by_wd14_tagger.py`` is now ``SmilingWolf/wd-v1-4-convnext-tagger-v2``. You can specify another model id from ``SmilingWolf`` by ``--repo_id`` option. Thanks to SmilingWolf for the great work.
        - To change the weight, remove ``wd14_tagger_model`` folder, and run the script again.
        - ``--max_data_loader_n_workers`` option is added to each script. This option uses the DataLoader for data loading to speed up loading, 20%~30% faster.
        - Please specify 2 or 4, depends on the number of CPU cores.
        - ``--recursive`` option is added to ``merge_dd_tags_to_metadata.py`` and ``merge_captions_to_metadata.py``, only works with ``--full_path``.
        - ``make_captions_by_git.py`` is added. It uses [GIT microsoft/git-large-textcaps](https://huggingface.co/microsoft/git-large-textcaps) for captioning.
        - ``requirements.txt`` is updated. If you use this script, [please update the libraries](https://github.com/kohya-ss/sd-scripts#upgrade).
        - Usage is almost the same as ``make_captions.py``, but batch size should be smaller.
        - ``--remove_words`` option removes as much text as possible (such as ``the word "XXXX" on it``).
        - ``--skip_existing`` option is added to ``prepare_buckets_latents.py``. Images with existing npz files are ignored by this option.
        - ``clean_captions_and_tags.py`` is updated to remove duplicated or conflicting tags, e.g. ``shirt`` is removed when ``white shirt`` exists. if ``black hair`` is with ``red hair``, both are removed.
    - Tag frequency is added to the metadata in ``train_network.py``. Thanks to space-nuko!
        - __All tags and number of occurrences of the tag are recorded.__ If you do not want it, disable metadata storing with ``--no_metadata`` option.
This commit is contained in:
bmaltais 2023-02-04 08:36:35 -05:00
parent 20e62af1a6
commit 045750b46a
6 changed files with 168 additions and 26 deletions

View File

@ -19,7 +19,7 @@ def UI(username, password):
print('Load CSS...')
css += file.read() + '\n'
interface = gr.Blocks(css=css)
interface = gr.Blocks(css=css, title="Kohya_ss GUI")
with interface:
with gr.Tab('Dreambooth'):

View File

@ -109,11 +109,11 @@ def gradio_extract_lora_tab():
)
with gr.Row():
dim = gr.Slider(
minimum=1,
maximum=128,
minimum=4,
maximum=1024,
label='Network Dimension',
value=8,
step=1,
value=128,
step=4,
interactive=True,
)
v2 = gr.Checkbox(label='v2', value=False, interactive=True)

126
library/git_caption_gui.py Normal file
View File

@ -0,0 +1,126 @@
import gradio as gr
from easygui import msgbox
import subprocess
import os
from .common_gui import get_folder_path, add_pre_postfix
def caption_images(
train_data_dir,
caption_ext,
batch_size,
max_data_loader_n_workers,
max_length,
model_id,
prefix,
postfix,
):
# Check for images_dir_input
if train_data_dir == '':
msgbox('Image folder is missing...')
return
if caption_ext == '':
msgbox('Please provide an extension for the caption files.')
return
print(f'GIT captioning files in {train_data_dir}...')
run_cmd = f'.\\venv\\Scripts\\python.exe "finetune/make_captions.py"'
if not model_id == '':
run_cmd += f' --model_id="{model_id}"'
run_cmd += f' --batch_size="{int(batch_size)}"'
run_cmd += f' --max_data_loader_n_workers="{int(max_data_loader_n_workers)}"'
run_cmd += f' --max_length="{int(max_length)}"'
if caption_ext != '':
run_cmd += f' --caption_extension="{caption_ext}"'
run_cmd += f' "{train_data_dir}"'
print(run_cmd)
# Run the command
subprocess.run(run_cmd)
# Add prefix and postfix
add_pre_postfix(
folder=train_data_dir,
caption_file_ext=caption_ext,
prefix=prefix,
postfix=postfix,
)
print('...captioning done')
###
# Gradio UI
###
def gradio_git_caption_gui_tab():
with gr.Tab('GIT Captioning'):
gr.Markdown(
'This utility will use GIT to caption files for each images in a folder.'
)
with gr.Row():
train_data_dir = gr.Textbox(
label='Image folder to caption',
placeholder='Directory containing the images to caption',
interactive=True,
)
button_train_data_dir_input = gr.Button(
'📂', elem_id='open_folder_small'
)
button_train_data_dir_input.click(
get_folder_path, outputs=train_data_dir
)
with gr.Row():
caption_ext = gr.Textbox(
label='Caption file extension',
placeholder='Extention for caption file. eg: .caption, .txt',
value='.txt',
interactive=True,
)
prefix = gr.Textbox(
label='Prefix to add to BLIP caption',
placeholder='(Optional)',
interactive=True,
)
postfix = gr.Textbox(
label='Postfix to add to BLIP caption',
placeholder='(Optional)',
interactive=True,
)
batch_size = gr.Number(
value=1, label='Batch size', interactive=True
)
with gr.Row():
max_data_loader_n_workers = gr.Number(
value=2, label='Number of workers', interactive=True
)
max_length = gr.Number(
value=75, label='Max length', interactive=True
)
model_id = gr.Textbox(
label="Model",
placeholder="(Optional) model id for GIT in Hugging Face", interactive=True
)
caption_button = gr.Button('Caption images')
caption_button.click(
caption_images,
inputs=[
train_data_dir,
caption_ext,
batch_size,
max_data_loader_n_workers,
max_length,
model_id,
prefix,
postfix,
],
)

View File

@ -9,6 +9,7 @@ import argparse
from library.basic_caption_gui import gradio_basic_caption_gui_tab
from library.convert_model_gui import gradio_convert_model_tab
from library.blip_caption_gui import gradio_blip_caption_gui_tab
from library.git_caption_gui import gradio_git_caption_gui_tab
from library.wd14_caption_gui import gradio_wd14_caption_gui_tab
@ -23,6 +24,7 @@ def utilities_tab(
with gr.Tab('Captioning'):
gradio_basic_caption_gui_tab()
gradio_blip_caption_gui_tab()
gradio_git_caption_gui_tab()
gradio_wd14_caption_gui_tab()
gradio_convert_model_tab()

View File

@ -291,11 +291,11 @@ def train_model(
if unet_lr == '':
unet_lr = 0
if (float(text_encoder_lr) == 0) and (float(unet_lr) == 0):
msgbox(
'At least one Learning Rate value for "Text encoder" or "Unet" need to be provided'
)
return
# if (float(text_encoder_lr) == 0) and (float(unet_lr) == 0):
# msgbox(
# 'At least one Learning Rate value for "Text encoder" or "Unet" need to be provided'
# )
# return
# Get a list of all subfolders in train_data_dir
subfolders = [
@ -383,15 +383,26 @@ def train_model(
if not float(prior_loss_weight) == 1.0:
run_cmd += f' --prior_loss_weight={prior_loss_weight}'
run_cmd += f' --network_module=networks.lora'
if not float(text_encoder_lr) == 0:
if not (float(text_encoder_lr) == 0) or not (float(unet_lr) == 0):
if not (float(text_encoder_lr) == 0) and not (float(unet_lr) == 0):
run_cmd += f' --text_encoder_lr={text_encoder_lr}'
else:
run_cmd += f' --network_train_unet_only'
if not float(unet_lr) == 0:
run_cmd += f' --unet_lr={unet_lr}'
else:
elif not (float(text_encoder_lr) == 0):
run_cmd += f' --text_encoder_lr={text_encoder_lr}'
run_cmd += f' --network_train_text_encoder_only'
else:
run_cmd += f' --unet_lr={unet_lr}'
run_cmd += f' --network_train_unet_only'
else:
if float(text_encoder_lr) == 0:
msgbox(
'Please input learning rate values.'
)
return
run_cmd += f' --network_dim={network_dim}'
if not lora_network_weights == '':
run_cmd += f' --network_weights="{lora_network_weights}"'
if int(gradient_accumulation_steps) > 1:
@ -400,6 +411,8 @@ def train_model(
run_cmd += f' --output_name="{output_name}"'
if not lr_scheduler_num_cycles == '':
run_cmd += f' --lr_scheduler_num_cycles="{lr_scheduler_num_cycles}"'
else:
run_cmd += f' --lr_scheduler_num_cycles="{epoch}"'
if not lr_scheduler_power == '':
run_cmd += f' --output_name="{lr_scheduler_power}"'
@ -612,19 +625,19 @@ def lora_tab(
placeholder='Optional',
)
network_dim = gr.Slider(
minimum=1,
maximum=128,
minimum=4,
maximum=1024,
label='Network Rank (Dimension)',
value=8,
step=1,
step=4,
interactive=True,
)
network_alpha = gr.Slider(
minimum=1,
maximum=128,
minimum=4,
maximum=1024,
label='Network Alpha',
value=1,
step=1,
step=4,
interactive=True,
)
with gr.Row():

View File

@ -9,13 +9,14 @@ pytorch_lightning
bitsandbytes==0.35.0
tensorboard
safetensors==0.2.6
gradio
gradio==3.16.2
altair
easygui
tk
# for BLIP captioning
requests
timm==0.4.12
fairscale==0.4.4
timm
fairscale
# for WD14 captioning
tensorflow<2.11
huggingface-hub