Add support for more options, rework UI
This commit is contained in:
parent
379ab73496
commit
0d52ff4842
149
finetune_gui.py
149
finetune_gui.py
@ -30,7 +30,11 @@ def save_variables(
|
|||||||
seed,
|
seed,
|
||||||
num_cpu_threads_per_process,
|
num_cpu_threads_per_process,
|
||||||
convert_to_safetensors,
|
convert_to_safetensors,
|
||||||
convert_to_ckpt
|
convert_to_ckpt,
|
||||||
|
cache_latent,
|
||||||
|
caption_extention,
|
||||||
|
use_safetensors,
|
||||||
|
enable_bucket
|
||||||
):
|
):
|
||||||
# Return the values of the variables as a dictionary
|
# Return the values of the variables as a dictionary
|
||||||
variables = {
|
variables = {
|
||||||
@ -54,7 +58,11 @@ def save_variables(
|
|||||||
"seed": seed,
|
"seed": seed,
|
||||||
"num_cpu_threads_per_process": num_cpu_threads_per_process,
|
"num_cpu_threads_per_process": num_cpu_threads_per_process,
|
||||||
"convert_to_safetensors": convert_to_safetensors,
|
"convert_to_safetensors": convert_to_safetensors,
|
||||||
"convert_to_ckpt": convert_to_ckpt
|
"convert_to_ckpt": convert_to_ckpt,
|
||||||
|
"cache_latent": cache_latent,
|
||||||
|
"caption_extention": caption_extention,
|
||||||
|
"use_safetensors": use_safetensors,
|
||||||
|
"enable_bucket": enable_bucket
|
||||||
}
|
}
|
||||||
|
|
||||||
# Save the data to the selected file
|
# Save the data to the selected file
|
||||||
@ -73,7 +81,6 @@ def load_variables(file_path):
|
|||||||
my_data.get("v2", None),
|
my_data.get("v2", None),
|
||||||
my_data.get("v_model", None),
|
my_data.get("v_model", None),
|
||||||
my_data.get("logging_dir", None),
|
my_data.get("logging_dir", None),
|
||||||
# my_data.get("model_list", None),
|
|
||||||
my_data.get("train_data_dir", None),
|
my_data.get("train_data_dir", None),
|
||||||
my_data.get("reg_data_dir", None),
|
my_data.get("reg_data_dir", None),
|
||||||
my_data.get("output_dir", None),
|
my_data.get("output_dir", None),
|
||||||
@ -89,7 +96,11 @@ def load_variables(file_path):
|
|||||||
my_data.get("seed", None),
|
my_data.get("seed", None),
|
||||||
my_data.get("num_cpu_threads_per_process", None),
|
my_data.get("num_cpu_threads_per_process", None),
|
||||||
my_data.get("convert_to_safetensors", None),
|
my_data.get("convert_to_safetensors", None),
|
||||||
my_data.get("convert_to_ckpt", None)
|
my_data.get("convert_to_ckpt", None),
|
||||||
|
my_data.get("cache_latent", None),
|
||||||
|
my_data.get("caption_extention", None),
|
||||||
|
my_data.get("use_safetensors", None),
|
||||||
|
my_data.get("enable_bucket", None),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -114,7 +125,10 @@ def train_model(
|
|||||||
num_cpu_threads_per_process,
|
num_cpu_threads_per_process,
|
||||||
convert_to_safetensors,
|
convert_to_safetensors,
|
||||||
convert_to_ckpt,
|
convert_to_ckpt,
|
||||||
cache_latent_input
|
cache_latent,
|
||||||
|
caption_extention,
|
||||||
|
use_safetensors,
|
||||||
|
enable_bucket
|
||||||
):
|
):
|
||||||
def save_inference_file(output_dir, v2, v_model):
|
def save_inference_file(output_dir, v2, v_model):
|
||||||
# Copy inference model for v2 if required
|
# Copy inference model for v2 if required
|
||||||
@ -170,8 +184,12 @@ def train_model(
|
|||||||
run_cmd += " --v2"
|
run_cmd += " --v2"
|
||||||
if v_model:
|
if v_model:
|
||||||
run_cmd += " --v_parameterization"
|
run_cmd += " --v_parameterization"
|
||||||
if cache_latent_input:
|
if cache_latent:
|
||||||
run_cmd += " --cache_latents"
|
run_cmd += " --cache_latents"
|
||||||
|
if use_safetensors:
|
||||||
|
run_cmd += " --use_safetensors"
|
||||||
|
if enable_bucket:
|
||||||
|
run_cmd += " --enable_bucket"
|
||||||
run_cmd += f" --pretrained_model_name_or_path={pretrained_model_name_or_path}"
|
run_cmd += f" --pretrained_model_name_or_path={pretrained_model_name_or_path}"
|
||||||
run_cmd += f" --train_data_dir={train_data_dir}"
|
run_cmd += f" --train_data_dir={train_data_dir}"
|
||||||
run_cmd += f" --reg_data_dir={reg_data_dir}"
|
run_cmd += f" --reg_data_dir={reg_data_dir}"
|
||||||
@ -189,6 +207,7 @@ def train_model(
|
|||||||
run_cmd += f" --seed={seed}"
|
run_cmd += f" --seed={seed}"
|
||||||
run_cmd += f" --save_precision={save_precision}"
|
run_cmd += f" --save_precision={save_precision}"
|
||||||
run_cmd += f" --logging_dir={logging_dir}"
|
run_cmd += f" --logging_dir={logging_dir}"
|
||||||
|
run_cmd += f" --caption_extention={caption_extention}"
|
||||||
|
|
||||||
print(run_cmd)
|
print(run_cmd)
|
||||||
# Run the command
|
# Run the command
|
||||||
@ -207,7 +226,8 @@ def train_model(
|
|||||||
save_inference_file(output_dir, v2, v_model)
|
save_inference_file(output_dir, v2, v_model)
|
||||||
|
|
||||||
if convert_to_safetensors:
|
if convert_to_safetensors:
|
||||||
print(f"Converting diffuser model {last_dir} to {last_dir}.safetensors")
|
print(
|
||||||
|
f"Converting diffuser model {last_dir} to {last_dir}.safetensors")
|
||||||
os.system(
|
os.system(
|
||||||
f"python ./tools/convert_diffusers20_original_sd.py {last_dir} {last_dir}.safetensors --{save_precision}"
|
f"python ./tools/convert_diffusers20_original_sd.py {last_dir} {last_dir}.safetensors --{save_precision}"
|
||||||
)
|
)
|
||||||
@ -223,26 +243,33 @@ def train_model(
|
|||||||
|
|
||||||
def set_pretrained_model_name_or_path_input(value, v2, v_model):
|
def set_pretrained_model_name_or_path_input(value, v2, v_model):
|
||||||
# define a list of substrings to search for
|
# define a list of substrings to search for
|
||||||
substrings_v2 = ["stable-diffusion-2-1-base", "stable-diffusion-2-base"]
|
substrings_v2 = ["stabilityai/stable-diffusion-2-1-base", "stabilityai/stable-diffusion-2-base"]
|
||||||
|
|
||||||
# check if $v2 and $v_model are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
|
# check if $v2 and $v_model are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
|
||||||
if str(value) in substrings_v2:
|
if str(value) in substrings_v2:
|
||||||
print("SD v2 model detected. Setting --v2 parameter")
|
print("SD v2 model detected. Setting --v2 parameter")
|
||||||
v2 = True
|
v2 = True
|
||||||
v_model = False
|
v_model = False
|
||||||
value = "stabilityai/{}".format(value)
|
|
||||||
|
|
||||||
return value, v2, v_model
|
return value, v2, v_model
|
||||||
|
|
||||||
# define a list of substrings to search for v-objective
|
# define a list of substrings to search for v-objective
|
||||||
substrings_v_model = ["stable-diffusion-2-1", "stable-diffusion-2"]
|
substrings_v_model = ["stabilityai/stable-diffusion-2-1", "stabilityai/stable-diffusion-2"]
|
||||||
|
|
||||||
# check if $v2 and $v_model are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_model list
|
# check if $v2 and $v_model are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_model list
|
||||||
if str(value) in substrings_v_model:
|
if str(value) in substrings_v_model:
|
||||||
print("SD v2 v_model detected. Setting --v2 parameter and --v_parameterization")
|
print("SD v2 v_model detected. Setting --v2 parameter and --v_parameterization")
|
||||||
v2 = True
|
v2 = True
|
||||||
v_model = True
|
v_model = True
|
||||||
value = "stabilityai/{}".format(value)
|
|
||||||
|
return value, v2, v_model
|
||||||
|
|
||||||
|
# define a list of substrings to v1.x
|
||||||
|
substrings_v1_model = ["CompVis/stable-diffusion-v1-4", "runwayml/stable-diffusion-v1-5"]
|
||||||
|
|
||||||
|
if str(value) in substrings_v1_model:
|
||||||
|
v2 = False
|
||||||
|
v_model = False
|
||||||
|
|
||||||
return value, v2, v_model
|
return value, v2, v_model
|
||||||
|
|
||||||
@ -263,10 +290,11 @@ with interface:
|
|||||||
gr.Markdown("Enter kohya finetuner parameter using this interface.")
|
gr.Markdown("Enter kohya finetuner parameter using this interface.")
|
||||||
with gr.Accordion("Configuration File Load/Save", open=False):
|
with gr.Accordion("Configuration File Load/Save", open=False):
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
config_file_name = gr.inputs.Textbox(label="Config file name", default="")
|
config_file_name = gr.inputs.Textbox(
|
||||||
|
label="Config file name", default="")
|
||||||
b1 = gr.Button("Load config")
|
b1 = gr.Button("Load config")
|
||||||
b2 = gr.Button("Save config")
|
b2 = gr.Button("Save config")
|
||||||
with gr.Tab("model"):
|
with gr.Tab("Source model"):
|
||||||
# Define the input elements
|
# Define the input elements
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
pretrained_model_name_or_path_input = gr.inputs.Textbox(
|
pretrained_model_name_or_path_input = gr.inputs.Textbox(
|
||||||
@ -277,10 +305,12 @@ with interface:
|
|||||||
label="Model Quick Pick",
|
label="Model Quick Pick",
|
||||||
choices=[
|
choices=[
|
||||||
"custom",
|
"custom",
|
||||||
"stable-diffusion-2-1-base",
|
"stabilityai/stable-diffusion-2-1-base",
|
||||||
"stable-diffusion-2-base",
|
"stabilityai/stable-diffusion-2-base",
|
||||||
"stable-diffusion-2-1",
|
"stabilityai/stable-diffusion-2-1",
|
||||||
"stable-diffusion-2",
|
"stabilityai/stable-diffusion-2",
|
||||||
|
"runwayml/stable-diffusion-v1-5",
|
||||||
|
"CompVis/stable-diffusion-v1-4"
|
||||||
],
|
],
|
||||||
value="custom",
|
value="custom",
|
||||||
)
|
)
|
||||||
@ -290,28 +320,30 @@ with interface:
|
|||||||
model_list.change(
|
model_list.change(
|
||||||
set_pretrained_model_name_or_path_input,
|
set_pretrained_model_name_or_path_input,
|
||||||
inputs=[model_list, v2_input, v_model_input],
|
inputs=[model_list, v2_input, v_model_input],
|
||||||
outputs=[pretrained_model_name_or_path_input, v2_input, v_model_input],
|
outputs=[pretrained_model_name_or_path_input,
|
||||||
|
v2_input, v_model_input],
|
||||||
)
|
)
|
||||||
with gr.Tab("training dataset and output directory"):
|
with gr.Tab("Directories"):
|
||||||
train_data_dir_input = gr.inputs.Textbox(
|
|
||||||
label="Image folder", placeholder="directory where the training folders containing the images are located"
|
|
||||||
)
|
|
||||||
reg_data_dir_input = gr.inputs.Textbox(
|
|
||||||
label="Regularisation folder", placeholder="directory where where the regularization folders containing the images are located"
|
|
||||||
)
|
|
||||||
output_dir_input = gr.inputs.Textbox(
|
|
||||||
label="Output directory",
|
|
||||||
placeholder="directory to output trained model",
|
|
||||||
)
|
|
||||||
logging_dir_input = gr.inputs.Textbox(
|
|
||||||
label="Logging directory", placeholder="Optional: enable logging and output TensorBoard log to this directory"
|
|
||||||
)
|
|
||||||
max_resolution_input = gr.inputs.Textbox(
|
|
||||||
label="Max resolution", default="512,512"
|
|
||||||
)
|
|
||||||
with gr.Tab("training parameters"):
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
learning_rate_input = gr.inputs.Textbox(label="Learning rate", default=1e-6)
|
train_data_dir_input = gr.inputs.Textbox(
|
||||||
|
label="Image folder", placeholder="directory where the training folders containing the images are located"
|
||||||
|
)
|
||||||
|
reg_data_dir_input = gr.inputs.Textbox(
|
||||||
|
label="Regularisation folder", placeholder="directory where where the regularization folders containing the images are located"
|
||||||
|
)
|
||||||
|
|
||||||
|
with gr.Row():
|
||||||
|
output_dir_input = gr.inputs.Textbox(
|
||||||
|
label="Output directory",
|
||||||
|
placeholder="directory to output trained model",
|
||||||
|
)
|
||||||
|
logging_dir_input = gr.inputs.Textbox(
|
||||||
|
label="Logging directory", placeholder="Optional: enable logging and output TensorBoard log to this directory"
|
||||||
|
)
|
||||||
|
with gr.Tab("Training parameters"):
|
||||||
|
with gr.Row():
|
||||||
|
learning_rate_input = gr.inputs.Textbox(
|
||||||
|
label="Learning rate", default=1e-6)
|
||||||
lr_scheduler_input = gr.Dropdown(
|
lr_scheduler_input = gr.Dropdown(
|
||||||
label="LR Scheduler",
|
label="LR Scheduler",
|
||||||
choices=[
|
choices=[
|
||||||
@ -330,10 +362,10 @@ with interface:
|
|||||||
label="Train batch size", default=1
|
label="Train batch size", default=1
|
||||||
)
|
)
|
||||||
epoch_input = gr.inputs.Textbox(label="Epoch", default=1)
|
epoch_input = gr.inputs.Textbox(label="Epoch", default=1)
|
||||||
with gr.Row():
|
|
||||||
save_every_n_epochs_input = gr.inputs.Textbox(
|
save_every_n_epochs_input = gr.inputs.Textbox(
|
||||||
label="Save every N epochs", default=1
|
label="Save every N epochs", default=1
|
||||||
)
|
)
|
||||||
|
with gr.Row():
|
||||||
mixed_precision_input = gr.Dropdown(
|
mixed_precision_input = gr.Dropdown(
|
||||||
label="Mixed precision",
|
label="Mixed precision",
|
||||||
choices=[
|
choices=[
|
||||||
@ -352,22 +384,36 @@ with interface:
|
|||||||
],
|
],
|
||||||
value="fp16",
|
value="fp16",
|
||||||
)
|
)
|
||||||
with gr.Row():
|
|
||||||
seed_input = gr.inputs.Textbox(label="Seed", default=1234)
|
|
||||||
num_cpu_threads_per_process_input = gr.inputs.Textbox(
|
num_cpu_threads_per_process_input = gr.inputs.Textbox(
|
||||||
label="Number of CPU threads per process", default=4
|
label="Number of CPU threads per process", default=4
|
||||||
)
|
)
|
||||||
|
with gr.Row():
|
||||||
|
seed_input = gr.inputs.Textbox(label="Seed", default=1234)
|
||||||
|
max_resolution_input = gr.inputs.Textbox(
|
||||||
|
label="Max resolution", default="512,512"
|
||||||
|
)
|
||||||
|
caption_extention_input = gr.inputs.Textbox(
|
||||||
|
label="Caption Extension", placeholder="(Optional) Extension for caption files. default: .caption")
|
||||||
|
|
||||||
|
with gr.Row():
|
||||||
|
use_safetensors_input = gr.inputs.Checkbox(
|
||||||
|
label="Use safetensor when saving checkpoint", default=False
|
||||||
|
)
|
||||||
|
enable_bucket_input = gr.inputs.Checkbox(
|
||||||
|
label="Enable buckets", default=False
|
||||||
|
)
|
||||||
cache_latent_input = gr.inputs.Checkbox(
|
cache_latent_input = gr.inputs.Checkbox(
|
||||||
label="Cache latent", default=True
|
label="Cache latent", default=True
|
||||||
)
|
)
|
||||||
with gr.Tab("model conveersion"):
|
|
||||||
|
with gr.Tab("Model conversion"):
|
||||||
convert_to_safetensors_input = gr.inputs.Checkbox(
|
convert_to_safetensors_input = gr.inputs.Checkbox(
|
||||||
label="Convert to SafeTensors", default=False
|
label="Convert to SafeTensors", default=False
|
||||||
)
|
)
|
||||||
convert_to_ckpt_input = gr.inputs.Checkbox(
|
convert_to_ckpt_input = gr.inputs.Checkbox(
|
||||||
label="Convert to CKPT", default=False
|
label="Convert to CKPT", default=False
|
||||||
)
|
)
|
||||||
|
|
||||||
b3 = gr.Button("Run")
|
b3 = gr.Button("Run")
|
||||||
|
|
||||||
b1.click(
|
b1.click(
|
||||||
@ -393,10 +439,14 @@ with interface:
|
|||||||
seed_input,
|
seed_input,
|
||||||
num_cpu_threads_per_process_input,
|
num_cpu_threads_per_process_input,
|
||||||
convert_to_safetensors_input,
|
convert_to_safetensors_input,
|
||||||
convert_to_ckpt_input
|
convert_to_ckpt_input,
|
||||||
|
cache_latent_input,
|
||||||
|
caption_extention_input,
|
||||||
|
use_safetensors_input,
|
||||||
|
enable_bucket_input
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
|
||||||
b2.click(
|
b2.click(
|
||||||
save_variables,
|
save_variables,
|
||||||
inputs=[
|
inputs=[
|
||||||
@ -420,7 +470,11 @@ with interface:
|
|||||||
seed_input,
|
seed_input,
|
||||||
num_cpu_threads_per_process_input,
|
num_cpu_threads_per_process_input,
|
||||||
convert_to_safetensors_input,
|
convert_to_safetensors_input,
|
||||||
convert_to_ckpt_input
|
convert_to_ckpt_input,
|
||||||
|
cache_latent_input,
|
||||||
|
caption_extention_input,
|
||||||
|
use_safetensors_input,
|
||||||
|
enable_bucket_input
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
b3.click(
|
b3.click(
|
||||||
@ -446,7 +500,10 @@ with interface:
|
|||||||
num_cpu_threads_per_process_input,
|
num_cpu_threads_per_process_input,
|
||||||
convert_to_safetensors_input,
|
convert_to_safetensors_input,
|
||||||
convert_to_ckpt_input,
|
convert_to_ckpt_input,
|
||||||
cache_latent_input
|
cache_latent_input,
|
||||||
|
caption_extention_input,
|
||||||
|
use_safetensors_input,
|
||||||
|
enable_bucket_input
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user