Fix issue with lora model loading

This commit is contained in:
bmaltais 2023-01-09 17:22:42 -05:00
parent dc5afbb057
commit 11fbc63440
3 changed files with 1096 additions and 123 deletions

View File

@ -0,0 +1,180 @@
# このスクリプトのライセンスは、Apache License 2.0とします
# (c) 2022 Kohya S. @kohya_ss
import argparse
import glob
import os
import json
from tqdm import tqdm
import numpy as np
from diffusers import AutoencoderKL
from PIL import Image
import cv2
import torch
from torchvision import transforms
import library.model_util as model_util
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
IMAGE_TRANSFORMS = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def get_latents(vae, images, weight_dtype):
img_tensors = [IMAGE_TRANSFORMS(image) for image in images]
img_tensors = torch.stack(img_tensors)
img_tensors = img_tensors.to(DEVICE, weight_dtype)
with torch.no_grad():
latents = vae.encode(img_tensors).latent_dist.sample().float().to("cpu").numpy()
return latents
def main(args):
# image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + \
# glob.glob(os.path.join(args.train_data_dir, "*.png")) + glob.glob(os.path.join(args.train_data_dir, "*.webp"))
# print(f"found {len(image_paths)} images.")
if os.path.exists(args.in_json):
print(f"loading existing metadata: {args.in_json}")
with open(args.in_json, "rt", encoding='utf-8') as f:
metadata = json.load(f)
else:
print(f"no metadata / メタデータファイルがありません: {args.in_json}")
return
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
vae = model_util.load_vae(args.model_name_or_path, weight_dtype)
vae.eval()
vae.to(DEVICE, dtype=weight_dtype)
# bucketのサイズを計算する
max_reso = tuple([int(t) for t in args.max_resolution.split(',')])
assert len(max_reso) == 2, f"illegal resolution (not 'width,height') / 画像サイズに誤りがあります。'幅,高さ'で指定してください: {args.max_resolution}"
bucket_resos, bucket_aspect_ratios = model_util.make_bucket_resolutions(
max_reso, args.min_bucket_reso, args.max_bucket_reso)
# 画像をひとつずつ適切なbucketに割り当てながらlatentを計算する
bucket_aspect_ratios = np.array(bucket_aspect_ratios)
buckets_imgs = [[] for _ in range(len(bucket_resos))]
bucket_counts = [0 for _ in range(len(bucket_resos))]
img_ar_errors = []
for i, image_path in enumerate(tqdm(metadata, smoothing=0.0)):
image_key = image_path
if image_key not in metadata:
metadata[image_key] = {}
image = Image.open(image_path)
if image.mode != 'RGB':
image = image.convert("RGB")
aspect_ratio = image.width / image.height
ar_errors = bucket_aspect_ratios - aspect_ratio
bucket_id = np.abs(ar_errors).argmin()
reso = bucket_resos[bucket_id]
ar_error = ar_errors[bucket_id]
img_ar_errors.append(abs(ar_error))
# どのサイズにリサイズするか→トリミングする方向で
if ar_error <= 0: # 横が長い→縦を合わせる
scale = reso[1] / image.height
else:
scale = reso[0] / image.width
resized_size = (int(image.width * scale + .5), int(image.height * scale + .5))
# print(image.width, image.height, bucket_id, bucket_resos[bucket_id], ar_errors[bucket_id], resized_size,
# bucket_resos[bucket_id][0] - resized_size[0], bucket_resos[bucket_id][1] - resized_size[1])
assert resized_size[0] == reso[0] or resized_size[1] == reso[
1], f"internal error, resized size not match: {reso}, {resized_size}, {image.width}, {image.height}"
assert resized_size[0] >= reso[0] and resized_size[1] >= reso[
1], f"internal error, resized size too small: {reso}, {resized_size}, {image.width}, {image.height}"
# 画像をリサイズしてトリミングする
# PILにinter_areaがないのでcv2で……
image = np.array(image)
image = cv2.resize(image, resized_size, interpolation=cv2.INTER_AREA)
if resized_size[0] > reso[0]:
trim_size = resized_size[0] - reso[0]
image = image[:, trim_size//2:trim_size//2 + reso[0]]
elif resized_size[1] > reso[1]:
trim_size = resized_size[1] - reso[1]
image = image[trim_size//2:trim_size//2 + reso[1]]
assert image.shape[0] == reso[1] and image.shape[1] == reso[0], f"internal error, illegal trimmed size: {image.shape}, {reso}"
# # debug
# cv2.imwrite(f"r:\\test\\img_{i:05d}.jpg", image[:, :, ::-1])
# バッチへ追加
buckets_imgs[bucket_id].append((image_key, reso, image))
bucket_counts[bucket_id] += 1
metadata[image_key]['train_resolution'] = reso
# バッチを推論するか判定して推論する
is_last = i == len(metadata) - 1
for j in range(len(buckets_imgs)):
bucket = buckets_imgs[j]
if (is_last and len(bucket) > 0) or len(bucket) >= args.batch_size:
latents = get_latents(vae, [img for _, _, img in bucket], weight_dtype)
for (image_key, reso, _), latent in zip(bucket, latents):
npz_file_name = os.path.splitext(os.path.basename(image_key))[0]
np.savez(os.path.join(os.path.dirname(image_key), npz_file_name), latent)
# flip
if args.flip_aug:
latents = get_latents(vae, [img[:, ::-1].copy() for _, _, img in bucket], weight_dtype) # copyがないとTensor変換できない
for (image_key, reso, _), latent in zip(bucket, latents):
npz_file_name = os.path.splitext(os.path.basename(image_key))[0]
np.savez(os.path.join(os.path.dirname(image_key), npz_file_name + '_flip'), latent)
bucket.clear()
for i, (reso, count) in enumerate(zip(bucket_resos, bucket_counts)):
print(f"bucket {i} {reso}: {count}")
img_ar_errors = np.array(img_ar_errors)
print(f"mean ar error: {np.mean(img_ar_errors)}")
# metadataを書き出して終わり
print(f"writing metadata: {args.out_json}")
with open(args.out_json, "wt", encoding='utf-8') as f:
json.dump(metadata, f, indent=2)
print("done!")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ")
parser.add_argument("in_json", type=str, help="metadata file to input / 読み込むメタデータファイル")
parser.add_argument("out_json", type=str, help="metadata file to output / メタデータファイル書き出し先")
parser.add_argument("model_name_or_path", type=str, help="model name or path to encode latents / latentを取得するためのモデル")
parser.add_argument("--v2", action='store_true',
help='load Stable Diffusion v2.0 model / Stable Diffusion 2.0のモデルを読み込む')
parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ")
parser.add_argument("--max_resolution", type=str, default="512,512",
help="max resolution in fine tuning (width,height) / fine tuning時の最大画像サイズ 「幅,高さ」(使用メモリ量に関係します)")
parser.add_argument("--min_bucket_reso", type=int, default=256, help="minimum resolution for buckets / bucketの最小解像度")
parser.add_argument("--max_bucket_reso", type=int, default=1024, help="maximum resolution for buckets / bucketの最小解像度")
parser.add_argument("--mixed_precision", type=str, default="no",
choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度")
parser.add_argument("--full_path", action="store_true",
help="use full path as image-key in metadata (supports multiple directories) / メタデータで画像キーをフルパスにする(複数の学習画像ディレクトリに対応)")
parser.add_argument("--flip_aug", action="store_true",
help="flip augmentation, save latents for flipped images / 左右反転した画像もlatentを取得、保存する")
args = parser.parse_args()
main(args)

789
finetune_gui copy.py Normal file
View File

@ -0,0 +1,789 @@
import gradio as gr
import json
import math
import os
import subprocess
import pathlib
import shutil
import argparse
from library.common_gui import (
get_folder_path,
get_file_path,
get_any_file_path,
get_saveasfile_path,
)
from library.utilities import utilities_tab
folder_symbol = '\U0001f4c2' # 📂
refresh_symbol = '\U0001f504' # 🔄
save_style_symbol = '\U0001f4be' # 💾
document_symbol = '\U0001F4C4' # 📄
def save_configuration(
save_as,
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
train_dir,
image_folder,
output_dir,
logging_dir,
max_resolution,
min_bucket_reso,
max_bucket_reso,
batch_size,
flip_aug,
caption_metadata_filename,
latent_metadata_filename,
full_path,
learning_rate,
lr_scheduler,
lr_warmup,
dataset_repeats,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
train_text_encoder,
create_caption,
create_buckets,
save_model_as,
caption_extension,
use_8bit_adam,
xformers,
clip_skip,
):
original_file_path = file_path
save_as_bool = True if save_as.get('label') == 'True' else False
if save_as_bool:
print('Save as...')
file_path = get_saveasfile_path(file_path)
else:
print('Save...')
if file_path == None or file_path == '':
file_path = get_saveasfile_path(file_path)
# print(file_path)
if file_path == None:
return original_file_path
# Return the values of the variables as a dictionary
variables = {
'pretrained_model_name_or_path': pretrained_model_name_or_path,
'v2': v2,
'v_parameterization': v_parameterization,
'train_dir': train_dir,
'image_folder': image_folder,
'output_dir': output_dir,
'logging_dir': logging_dir,
'max_resolution': max_resolution,
'min_bucket_reso': min_bucket_reso,
'max_bucket_reso': max_bucket_reso,
'batch_size': batch_size,
'flip_aug': flip_aug,
'caption_metadata_filename': caption_metadata_filename,
'latent_metadata_filename': latent_metadata_filename,
'full_path': full_path,
'learning_rate': learning_rate,
'lr_scheduler': lr_scheduler,
'lr_warmup': lr_warmup,
'dataset_repeats': dataset_repeats,
'train_batch_size': train_batch_size,
'epoch': epoch,
'save_every_n_epochs': save_every_n_epochs,
'mixed_precision': mixed_precision,
'save_precision': save_precision,
'seed': seed,
'num_cpu_threads_per_process': num_cpu_threads_per_process,
'train_text_encoder': train_text_encoder,
'create_buckets': create_buckets,
'create_caption': create_caption,
'save_model_as': save_model_as,
'caption_extension': caption_extension,
'use_8bit_adam': use_8bit_adam,
'xformers': xformers,
'clip_skip': clip_skip,
}
# Save the data to the selected file
with open(file_path, 'w') as file:
json.dump(variables, file)
return file_path
def open_config_file(
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
train_dir,
image_folder,
output_dir,
logging_dir,
max_resolution,
min_bucket_reso,
max_bucket_reso,
batch_size,
flip_aug,
caption_metadata_filename,
latent_metadata_filename,
full_path,
learning_rate,
lr_scheduler,
lr_warmup,
dataset_repeats,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
train_text_encoder,
create_caption,
create_buckets,
save_model_as,
caption_extension,
use_8bit_adam,
xformers,
clip_skip,
):
original_file_path = file_path
file_path = get_file_path(file_path)
if file_path != '' and file_path != None:
print(file_path)
# load variables from JSON file
with open(file_path, 'r') as f:
my_data = json.load(f)
else:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
my_data = {}
# Return the values of the variables as a dictionary
return (
file_path,
my_data.get(
'pretrained_model_name_or_path', pretrained_model_name_or_path
),
my_data.get('v2', v2),
my_data.get('v_parameterization', v_parameterization),
my_data.get('train_dir', train_dir),
my_data.get('image_folder', image_folder),
my_data.get('output_dir', output_dir),
my_data.get('logging_dir', logging_dir),
my_data.get('max_resolution', max_resolution),
my_data.get('min_bucket_reso', min_bucket_reso),
my_data.get('max_bucket_reso', max_bucket_reso),
my_data.get('batch_size', batch_size),
my_data.get('flip_aug', flip_aug),
my_data.get('caption_metadata_filename', caption_metadata_filename),
my_data.get('latent_metadata_filename', latent_metadata_filename),
my_data.get('full_path', full_path),
my_data.get('learning_rate', learning_rate),
my_data.get('lr_scheduler', lr_scheduler),
my_data.get('lr_warmup', lr_warmup),
my_data.get('dataset_repeats', dataset_repeats),
my_data.get('train_batch_size', train_batch_size),
my_data.get('epoch', epoch),
my_data.get('save_every_n_epochs', save_every_n_epochs),
my_data.get('mixed_precision', mixed_precision),
my_data.get('save_precision', save_precision),
my_data.get('seed', seed),
my_data.get(
'num_cpu_threads_per_process', num_cpu_threads_per_process
),
my_data.get('train_text_encoder', train_text_encoder),
my_data.get('create_buckets', create_buckets),
my_data.get('create_caption', create_caption),
my_data.get('save_model_as', save_model_as),
my_data.get('caption_extension', caption_extension),
my_data.get('use_8bit_adam', use_8bit_adam),
my_data.get('xformers', xformers),
my_data.get('clip_skip', clip_skip),
)
def train_model(
pretrained_model_name_or_path,
v2,
v_parameterization,
train_dir,
image_folder,
output_dir,
logging_dir,
max_resolution,
min_bucket_reso,
max_bucket_reso,
batch_size,
flip_aug,
caption_metadata_filename,
latent_metadata_filename,
full_path,
learning_rate,
lr_scheduler,
lr_warmup,
dataset_repeats,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
train_text_encoder,
generate_caption_database,
generate_image_buckets,
save_model_as,
caption_extension,
use_8bit_adam,
xformers,
clip_skip,
):
def save_inference_file(output_dir, v2, v_parameterization):
# Copy inference model for v2 if required
if v2 and v_parameterization:
print(f'Saving v2-inference-v.yaml as {output_dir}/last.yaml')
shutil.copy(
f'./v2_inference/v2-inference-v.yaml',
f'{output_dir}/last.yaml',
)
elif v2:
print(f'Saving v2-inference.yaml as {output_dir}/last.yaml')
shutil.copy(
f'./v2_inference/v2-inference.yaml',
f'{output_dir}/last.yaml',
)
# create caption json file
if generate_caption_database:
if not os.path.exists(train_dir):
os.mkdir(train_dir)
for root, dirs, files in os.walk(image_folder):
for dir in dirs:
print(os.path.join(root, dir))
run_cmd = (
f'./venv/Scripts/python.exe finetune/merge_captions_to_metadata.py'
)
if caption_extension == '':
run_cmd += f' --caption_extension=".txt"'
else:
run_cmd += f' --caption_extension={caption_extension}'
run_cmd += f' "{os.path.join(root, dir)}"'
run_cmd += f' "{train_dir}/{caption_metadata_filename}"'
if full_path:
run_cmd += f' --full_path'
print(run_cmd)
# Run the command
subprocess.run(run_cmd)
# create images buckets
if generate_image_buckets:
run_cmd = (
f'./venv/Scripts/python.exe finetune/prepare_buckets_latents.py'
)
run_cmd += f' "crap"'
run_cmd += f' "{train_dir}/{caption_metadata_filename}"'
run_cmd += f' "{train_dir}/{latent_metadata_filename}"'
run_cmd += f' "{pretrained_model_name_or_path}"'
run_cmd += f' --batch_size={batch_size}'
run_cmd += f' --max_resolution={max_resolution}'
run_cmd += f' --min_bucket_reso={min_bucket_reso}'
run_cmd += f' --max_bucket_reso={max_bucket_reso}'
run_cmd += f' --mixed_precision={mixed_precision}'
if flip_aug:
run_cmd += f' --flip_aug'
if full_path:
run_cmd += f' --full_path'
print(run_cmd)
# Run the command
subprocess.run(run_cmd)
image_num = 0
for root, dirs, files in os.walk(image_folder):
for dir in dirs:
image_num += len(
[f for f in os.listdir(os.path.join(root, dir)) if f.endswith('.npz')]
)
print(f'image_num = {image_num}')
repeats = int(image_num) * int(dataset_repeats)
print(f'repeats = {str(repeats)}')
# calculate max_train_steps
max_train_steps = int(
math.ceil(float(repeats) / int(train_batch_size) * int(epoch))
)
# Divide by two because flip augmentation create two copied of the source images
if flip_aug:
max_train_steps = int(math.ceil(float(max_train_steps) / 2))
print(f'max_train_steps = {max_train_steps}')
lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100))
print(f'lr_warmup_steps = {lr_warmup_steps}')
run_cmd = f'accelerate launch --num_cpu_threads_per_process={num_cpu_threads_per_process} "./fine_tune.py"'
if v2:
run_cmd += ' --v2'
if v_parameterization:
run_cmd += ' --v_parameterization'
if train_text_encoder:
run_cmd += ' --train_text_encoder'
if use_8bit_adam:
run_cmd += f' --use_8bit_adam'
if xformers:
run_cmd += f' --xformers'
run_cmd += (
f' --pretrained_model_name_or_path="{pretrained_model_name_or_path}"'
)
run_cmd += f' --in_json="{train_dir}/{latent_metadata_filename}"'
run_cmd += f' --train_data_dir="{image_folder}"'
run_cmd += f' --output_dir="{output_dir}"'
if not logging_dir == '':
run_cmd += f' --logging_dir="{logging_dir}"'
run_cmd += f' --train_batch_size={train_batch_size}'
run_cmd += f' --dataset_repeats={dataset_repeats}'
run_cmd += f' --learning_rate={learning_rate}'
run_cmd += f' --lr_scheduler={lr_scheduler}'
run_cmd += f' --lr_warmup_steps={lr_warmup_steps}'
run_cmd += f' --max_train_steps={max_train_steps}'
run_cmd += f' --mixed_precision={mixed_precision}'
run_cmd += f' --save_every_n_epochs={save_every_n_epochs}'
run_cmd += f' --seed={seed}'
run_cmd += f' --save_precision={save_precision}'
if not save_model_as == 'same as source model':
run_cmd += f' --save_model_as={save_model_as}'
if int(clip_skip) > 1:
run_cmd += f' --clip_skip={str(clip_skip)}'
print(run_cmd)
# Run the command
subprocess.run(run_cmd)
# check if output_dir/last is a folder... therefore it is a diffuser model
last_dir = pathlib.Path(f'{output_dir}/last')
if not last_dir.is_dir():
# Copy inference model for v2 if required
save_inference_file(output_dir, v2, v_parameterization)
def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
# define a list of substrings to search for
substrings_v2 = [
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
if str(value) in substrings_v2:
print('SD v2 model detected. Setting --v2 parameter')
v2 = True
v_parameterization = False
return value, v2, v_parameterization
# define a list of substrings to search for v-objective
substrings_v_parameterization = [
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list
if str(value) in substrings_v_parameterization:
print(
'SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization'
)
v2 = True
v_parameterization = True
return value, v2, v_parameterization
# define a list of substrings to v1.x
substrings_v1_model = [
'CompVis/stable-diffusion-v1-4',
'runwayml/stable-diffusion-v1-5',
]
if str(value) in substrings_v1_model:
v2 = False
v_parameterization = False
return value, v2, v_parameterization
if value == 'custom':
value = ''
v2 = False
v_parameterization = False
return value, v2, v_parameterization
def remove_doublequote(file_path):
if file_path != None:
file_path = file_path.replace('"', '')
return file_path
def UI(username, password):
css = ''
if os.path.exists('./style.css'):
with open(os.path.join('./style.css'), 'r', encoding='utf8') as file:
print('Load CSS...')
css += file.read() + '\n'
interface = gr.Blocks(css=css)
with interface:
with gr.Tab('Finetune'):
finetune_tab()
with gr.Tab('Utilities'):
utilities_tab(enable_dreambooth_tab=False)
# Show the interface
if not username == '':
interface.launch(auth=(username, password))
else:
interface.launch()
def finetune_tab():
dummy_ft_true = gr.Label(value=True, visible=False)
dummy_ft_false = gr.Label(value=False, visible=False)
gr.Markdown('Train a custom model using kohya finetune python code...')
with gr.Accordion('Configuration file', open=False):
with gr.Row():
button_open_config = gr.Button(
f'Open {folder_symbol}', elem_id='open_folder'
)
button_save_config = gr.Button(
f'Save {save_style_symbol}', elem_id='open_folder'
)
button_save_as_config = gr.Button(
f'Save as... {save_style_symbol}',
elem_id='open_folder',
)
config_file_name = gr.Textbox(
label='', placeholder='type file path or use buttons...'
)
config_file_name.change(
remove_doublequote,
inputs=[config_file_name],
outputs=[config_file_name],
)
with gr.Tab('Source model'):
# Define the input elements
with gr.Row():
pretrained_model_name_or_path_input = gr.Textbox(
label='Pretrained model name or path',
placeholder='enter the path to custom model or name of pretrained model',
)
pretrained_model_name_or_path_file = gr.Button(
document_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_file.click(
get_any_file_path,
inputs=pretrained_model_name_or_path_input,
outputs=pretrained_model_name_or_path_input,
)
pretrained_model_name_or_path_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_folder.click(
get_folder_path,
inputs=pretrained_model_name_or_path_input,
outputs=pretrained_model_name_or_path_input,
)
model_list = gr.Dropdown(
label='(Optional) Model Quick Pick',
choices=[
'custom',
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
'runwayml/stable-diffusion-v1-5',
'CompVis/stable-diffusion-v1-4',
],
)
save_model_as_dropdown = gr.Dropdown(
label='Save trained model as',
choices=[
'same as source model',
'ckpt',
'diffusers',
'diffusers_safetensors',
'safetensors',
],
value='same as source model',
)
with gr.Row():
v2_input = gr.Checkbox(label='v2', value=True)
v_parameterization_input = gr.Checkbox(
label='v_parameterization', value=False
)
model_list.change(
set_pretrained_model_name_or_path_input,
inputs=[model_list, v2_input, v_parameterization_input],
outputs=[
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
],
)
with gr.Tab('Folders'):
with gr.Row():
train_dir_input = gr.Textbox(
label='Training config folder',
placeholder='folder where the training configuration files will be saved',
)
train_dir_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
train_dir_folder.click(get_folder_path, outputs=train_dir_input)
image_folder_input = gr.Textbox(
label='Training Image folder',
placeholder='folder where the training images are located',
)
image_folder_input_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
image_folder_input_folder.click(
get_folder_path, outputs=image_folder_input
)
with gr.Row():
output_dir_input = gr.Textbox(
label='Output folder',
placeholder='folder where the model will be saved',
)
output_dir_input_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
output_dir_input_folder.click(
get_folder_path, outputs=output_dir_input
)
logging_dir_input = gr.Textbox(
label='Logging folder',
placeholder='Optional: enable logging and output TensorBoard log to this folder',
)
logging_dir_input_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
logging_dir_input_folder.click(
get_folder_path, outputs=logging_dir_input
)
train_dir_input.change(
remove_doublequote,
inputs=[train_dir_input],
outputs=[train_dir_input],
)
image_folder_input.change(
remove_doublequote,
inputs=[image_folder_input],
outputs=[image_folder_input],
)
output_dir_input.change(
remove_doublequote,
inputs=[output_dir_input],
outputs=[output_dir_input],
)
with gr.Tab('Dataset preparation'):
with gr.Row():
max_resolution_input = gr.Textbox(
label='Resolution (width,height)', value='512,512'
)
min_bucket_reso = gr.Textbox(
label='Min bucket resolution', value='256'
)
max_bucket_reso = gr.Textbox(
label='Max bucket resolution', value='1024'
)
batch_size = gr.Textbox(label='Batch size', value='1')
with gr.Accordion('Advanced parameters', open=False):
with gr.Row():
caption_metadata_filename = gr.Textbox(
label='Caption metadata filename', value='meta_cap.json'
)
latent_metadata_filename = gr.Textbox(
label='Latent metadata filename', value='meta_lat.json'
)
full_path = gr.Checkbox(label='Use full path', value=True)
flip_aug = gr.Checkbox(label='Flip augmentation', value=False)
with gr.Tab('Training parameters'):
with gr.Row():
learning_rate_input = gr.Textbox(label='Learning rate', value=1e-6)
lr_scheduler_input = gr.Dropdown(
label='LR Scheduler',
choices=[
'constant',
'constant_with_warmup',
'cosine',
'cosine_with_restarts',
'linear',
'polynomial',
],
value='constant',
)
lr_warmup_input = gr.Textbox(label='LR warmup', value=0)
with gr.Row():
dataset_repeats_input = gr.Textbox(
label='Dataset repeats', value=40
)
train_batch_size_input = gr.Slider(
minimum=1,
maximum=32,
label='Train batch size',
value=1,
step=1,
)
epoch_input = gr.Textbox(label='Epoch', value=1)
save_every_n_epochs_input = gr.Textbox(
label='Save every N epochs', value=1
)
with gr.Row():
mixed_precision_input = gr.Dropdown(
label='Mixed precision',
choices=[
'no',
'fp16',
'bf16',
],
value='fp16',
)
save_precision_input = gr.Dropdown(
label='Save precision',
choices=[
'float',
'fp16',
'bf16',
],
value='fp16',
)
num_cpu_threads_per_process_input = gr.Slider(
minimum=1,
maximum=os.cpu_count(),
step=1,
label='Number of CPU threads per process',
value=os.cpu_count(),
)
seed_input = gr.Textbox(label='Seed', value=1234)
with gr.Row():
caption_extention_input = gr.Textbox(
label='Caption Extension',
placeholder='(Optional) Extension for caption files. default: .txt',
)
train_text_encoder_input = gr.Checkbox(
label='Train text encoder', value=True
)
with gr.Accordion('Advanced parameters', open=False):
with gr.Row():
use_8bit_adam = gr.Checkbox(label='Use 8bit adam', value=True)
xformers = gr.Checkbox(label='Use xformers', value=True)
clip_skip = gr.Slider(
label='Clip skip', value='1', minimum=1, maximum=12, step=1
)
with gr.Box():
with gr.Row():
create_caption = gr.Checkbox(
label='Generate caption metadata', value=True
)
create_buckets = gr.Checkbox(
label='Generate image buckets metadata', value=True
)
button_run = gr.Button('Train model')
settings_list = [
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
train_dir_input,
image_folder_input,
output_dir_input,
logging_dir_input,
max_resolution_input,
min_bucket_reso,
max_bucket_reso,
batch_size,
flip_aug,
caption_metadata_filename,
latent_metadata_filename,
full_path,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
dataset_repeats_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
train_text_encoder_input,
create_caption,
create_buckets,
save_model_as_dropdown,
caption_extention_input,
use_8bit_adam,
xformers,
clip_skip,
]
button_run.click(train_model, inputs=settings_list)
button_open_config.click(
open_config_file,
inputs=[config_file_name] + settings_list,
outputs=[config_file_name] + settings_list,
)
button_save_config.click(
save_configuration,
inputs=[dummy_ft_false, config_file_name] + settings_list,
outputs=[config_file_name],
)
button_save_as_config.click(
save_configuration,
inputs=[dummy_ft_true, config_file_name] + settings_list,
outputs=[config_file_name],
)
if __name__ == '__main__':
# torch.cuda.set_per_process_memory_fraction(0.48)
parser = argparse.ArgumentParser()
parser.add_argument(
'--username', type=str, default='', help='Username for authentication'
)
parser.add_argument(
'--password', type=str, default='', help='Password for authentication'
)
args = parser.parse_args()
UI(username=args.username, password=args.password)

View File

@ -79,6 +79,7 @@ def save_configuration(
gradient_accumulation_steps,
mem_eff_attn,
output_name,
model_list,
):
# Get list of function parameters and values
parameters = list(locals().items())
@ -120,32 +121,32 @@ def save_configuration(
def open_configuration(
file_path,
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
logging_dir_input,
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
max_resolution_input,
lr_scheduler_input,
lr_warmup_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
cache_latent_input,
caption_extention_input,
enable_bucket_input,
pretrained_model_name_or_path,
v2,
v_parameterization,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latent,
caption_extention,
enable_bucket,
gradient_checkpointing,
full_fp16_input,
no_token_padding_input,
stop_text_encoder_training_input,
use_8bit_adam_input,
xformers_input,
full_fp16,
no_token_padding,
stop_text_encoder_training,
use_8bit_adam,
xformers,
save_model_as_dropdown,
shuffle_caption,
save_state,
@ -161,6 +162,7 @@ def open_configuration(
gradient_accumulation_steps,
mem_eff_attn,
output_name,
model_list,
):
# Get list of function parameters and values
parameters = list(locals().items())
@ -171,17 +173,17 @@ def open_configuration(
if not file_path == '' and not file_path == None:
# load variables from JSON file
with open(file_path, 'r') as f:
my_data_lora = json.load(f)
my_data = json.load(f)
print("Loading config...")
else:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
my_data_lora = {}
my_data = {}
values = [file_path]
for key, value in parameters:
# Set the value in the dictionary to the corresponding value in `my_data`, or the default value if not found
if not key in ['file_path']:
values.append(my_data_lora.get(key, value))
values.append(my_data.get(key, value))
return tuple(values)
@ -227,6 +229,7 @@ def train_model(
gradient_accumulation_steps,
mem_eff_attn,
output_name,
model_list,
):
if pretrained_model_name_or_path == '':
msgbox('Source model information is missing')
@ -480,7 +483,7 @@ def lora_tab(
with gr.Tab('Source model'):
# Define the input elements
with gr.Row():
pretrained_model_name_or_path_input = gr.Textbox(
pretrained_model_name_or_path = gr.Textbox(
label='Pretrained model name or path',
placeholder='enter the path to custom model or name of pretrained model',
)
@ -489,15 +492,15 @@ def lora_tab(
)
pretrained_model_name_or_path_file.click(
get_any_file_path,
inputs=[pretrained_model_name_or_path_input],
outputs=pretrained_model_name_or_path_input,
inputs=[pretrained_model_name_or_path],
outputs=pretrained_model_name_or_path,
)
pretrained_model_name_or_path_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_folder.click(
get_folder_path,
outputs=pretrained_model_name_or_path_input,
outputs=pretrained_model_name_or_path,
)
model_list = gr.Dropdown(
label='(Optional) Model Quick Pick',
@ -524,67 +527,67 @@ def lora_tab(
)
with gr.Row():
v2_input = gr.Checkbox(label='v2', value=True)
v_parameterization_input = gr.Checkbox(
v2 = gr.Checkbox(label='v2', value=True)
v_parameterization = gr.Checkbox(
label='v_parameterization', value=False
)
pretrained_model_name_or_path_input.change(
pretrained_model_name_or_path.change(
remove_doublequote,
inputs=[pretrained_model_name_or_path_input],
outputs=[pretrained_model_name_or_path_input],
inputs=[pretrained_model_name_or_path],
outputs=[pretrained_model_name_or_path],
)
model_list.change(
set_pretrained_model_name_or_path_input,
inputs=[model_list, v2_input, v_parameterization_input],
inputs=[model_list, v2, v_parameterization],
outputs=[
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
pretrained_model_name_or_path,
v2,
v_parameterization,
],
)
with gr.Tab('Folders'):
with gr.Row():
train_data_dir_input = gr.Textbox(
train_data_dir = gr.Textbox(
label='Image folder',
placeholder='Folder where the training folders containing the images are located',
)
train_data_dir_input_folder = gr.Button(
train_data_dir_folder = gr.Button(
'📂', elem_id='open_folder_small'
)
train_data_dir_input_folder.click(
get_folder_path, outputs=train_data_dir_input
train_data_dir_folder.click(
get_folder_path, outputs=train_data_dir
)
reg_data_dir_input = gr.Textbox(
reg_data_dir = gr.Textbox(
label='Regularisation folder',
placeholder='(Optional) Folder where where the regularization folders containing the images are located',
)
reg_data_dir_input_folder = gr.Button(
reg_data_dir_folder = gr.Button(
'📂', elem_id='open_folder_small'
)
reg_data_dir_input_folder.click(
get_folder_path, outputs=reg_data_dir_input
reg_data_dir_folder.click(
get_folder_path, outputs=reg_data_dir
)
with gr.Row():
output_dir_input = gr.Textbox(
output_dir = gr.Textbox(
label='Output folder',
placeholder='Folder to output trained model',
)
output_dir_input_folder = gr.Button(
output_dir_folder = gr.Button(
'📂', elem_id='open_folder_small'
)
output_dir_input_folder.click(
get_folder_path, outputs=output_dir_input
output_dir_folder.click(
get_folder_path, outputs=output_dir
)
logging_dir_input = gr.Textbox(
logging_dir = gr.Textbox(
label='Logging folder',
placeholder='Optional: enable logging and output TensorBoard log to this folder',
)
logging_dir_input_folder = gr.Button(
logging_dir_folder = gr.Button(
'📂', elem_id='open_folder_small'
)
logging_dir_input_folder.click(
get_folder_path, outputs=logging_dir_input
logging_dir_folder.click(
get_folder_path, outputs=logging_dir
)
with gr.Row():
output_name = gr.Textbox(
@ -593,25 +596,25 @@ def lora_tab(
value='last',
interactive=True,
)
train_data_dir_input.change(
train_data_dir.change(
remove_doublequote,
inputs=[train_data_dir_input],
outputs=[train_data_dir_input],
inputs=[train_data_dir],
outputs=[train_data_dir],
)
reg_data_dir_input.change(
reg_data_dir.change(
remove_doublequote,
inputs=[reg_data_dir_input],
outputs=[reg_data_dir_input],
inputs=[reg_data_dir],
outputs=[reg_data_dir],
)
output_dir_input.change(
output_dir.change(
remove_doublequote,
inputs=[output_dir_input],
outputs=[output_dir_input],
inputs=[output_dir],
outputs=[output_dir],
)
logging_dir_input.change(
logging_dir.change(
remove_doublequote,
inputs=[logging_dir_input],
outputs=[logging_dir_input],
inputs=[logging_dir],
outputs=[logging_dir],
)
with gr.Tab('Training parameters'):
with gr.Row():
@ -628,7 +631,7 @@ def lora_tab(
outputs=lora_network_weights,
)
with gr.Row():
lr_scheduler_input = gr.Dropdown(
lr_scheduler = gr.Dropdown(
label='LR Scheduler',
choices=[
'constant',
@ -640,7 +643,7 @@ def lora_tab(
],
value='cosine',
)
lr_warmup_input = gr.Textbox(label='LR warmup (% of steps)', value=10)
lr_warmup = gr.Textbox(label='LR warmup (% of steps)', value=10)
with gr.Row():
text_encoder_lr = gr.Textbox(
label='Text Encoder learning rate',
@ -659,19 +662,19 @@ def lora_tab(
interactive=True,
)
with gr.Row():
train_batch_size_input = gr.Slider(
train_batch_size = gr.Slider(
minimum=1,
maximum=32,
label='Train batch size',
value=1,
step=1,
)
epoch_input = gr.Textbox(label='Epoch', value=1)
save_every_n_epochs_input = gr.Textbox(
epoch = gr.Textbox(label='Epoch', value=1)
save_every_n_epochs = gr.Textbox(
label='Save every N epochs', value=1
)
with gr.Row():
mixed_precision_input = gr.Dropdown(
mixed_precision = gr.Dropdown(
label='Mixed precision',
choices=[
'no',
@ -680,7 +683,7 @@ def lora_tab(
],
value='fp16',
)
save_precision_input = gr.Dropdown(
save_precision = gr.Dropdown(
label='Save precision',
choices=[
'float',
@ -689,7 +692,7 @@ def lora_tab(
],
value='fp16',
)
num_cpu_threads_per_process_input = gr.Slider(
num_cpu_threads_per_process = gr.Slider(
minimum=1,
maximum=os.cpu_count(),
step=1,
@ -697,18 +700,18 @@ def lora_tab(
value=os.cpu_count(),
)
with gr.Row():
seed_input = gr.Textbox(label='Seed', value=1234)
max_resolution_input = gr.Textbox(
seed = gr.Textbox(label='Seed', value=1234)
max_resolution = gr.Textbox(
label='Max resolution',
value='512,512',
placeholder='512,512',
)
with gr.Row():
caption_extention_input = gr.Textbox(
caption_extention = gr.Textbox(
label='Caption Extension',
placeholder='(Optional) Extension for caption files. default: .caption',
)
stop_text_encoder_training_input = gr.Slider(
stop_text_encoder_training = gr.Slider(
minimum=0,
maximum=100,
value=0,
@ -716,20 +719,20 @@ def lora_tab(
label='Stop text encoder training',
)
with gr.Row():
enable_bucket_input = gr.Checkbox(
enable_bucket = gr.Checkbox(
label='Enable buckets', value=True
)
cache_latent_input = gr.Checkbox(label='Cache latent', value=True)
use_8bit_adam_input = gr.Checkbox(
cache_latent = gr.Checkbox(label='Cache latent', value=True)
use_8bit_adam = gr.Checkbox(
label='Use 8bit adam', value=True
)
xformers_input = gr.Checkbox(label='Use xformers', value=True)
xformers = gr.Checkbox(label='Use xformers', value=True)
with gr.Accordion('Advanced Configuration', open=False):
with gr.Row():
full_fp16_input = gr.Checkbox(
full_fp16 = gr.Checkbox(
label='Full fp16 training (experimental)', value=False
)
no_token_padding_input = gr.Checkbox(
no_token_padding = gr.Checkbox(
label='No token padding', value=False
)
@ -754,7 +757,7 @@ def lora_tab(
color_aug.change(
color_aug_changed,
inputs=[color_aug],
outputs=[cache_latent_input],
outputs=[cache_latent],
)
clip_skip = gr.Slider(
label='Clip skip', value='1', minimum=1, maximum=12, step=1
@ -783,10 +786,10 @@ def lora_tab(
'This section provide Dreambooth tools to help setup your dataset...'
)
gradio_dreambooth_folder_creation_tab(
train_data_dir_input=train_data_dir_input,
reg_data_dir_input=reg_data_dir_input,
output_dir_input=output_dir_input,
logging_dir_input=logging_dir_input,
train_data_dir_input=train_data_dir,
reg_data_dir_input=reg_data_dir,
output_dir_input=output_dir,
logging_dir_input=logging_dir,
)
gradio_dataset_balancing_tab()
gradio_merge_lora_tab()
@ -794,32 +797,32 @@ def lora_tab(
button_run = gr.Button('Train model')
settings_list = [
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
logging_dir_input,
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
max_resolution_input,
lr_scheduler_input,
lr_warmup_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
cache_latent_input,
caption_extention_input,
enable_bucket_input,
pretrained_model_name_or_path,
v2,
v_parameterization,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latent,
caption_extention,
enable_bucket,
gradient_checkpointing,
full_fp16_input,
no_token_padding_input,
stop_text_encoder_training_input,
use_8bit_adam_input,
xformers_input,
full_fp16,
no_token_padding,
stop_text_encoder_training,
use_8bit_adam,
xformers,
save_model_as_dropdown,
shuffle_caption,
save_state,
@ -835,6 +838,7 @@ def lora_tab(
gradient_accumulation_steps,
mem_eff_attn,
output_name,
model_list,
]
button_open_config.click(
@ -861,10 +865,10 @@ def lora_tab(
)
return (
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
logging_dir_input,
train_data_dir,
reg_data_dir,
output_dir,
logging_dir,
)