Merge branch 'dev' into macos_gui
This commit is contained in:
commit
160e371be3
13
README.md
13
README.md
@ -213,6 +213,19 @@ This will store your a backup file with your current locally installed pip packa
|
||||
|
||||
## Change History
|
||||
|
||||
* 2023/03/29 (v21.3.7)
|
||||
- Allow for 0.1 increment in Network and Conv alpha values: https://github.com/bmaltais/kohya_ss/pull/471 Thanks to @srndpty
|
||||
- Updated Lycoris module version
|
||||
* 2023/03/28 (v21.3.6)
|
||||
- Fix issues when `--persistent_data_loader_workers` is specified.
|
||||
- The batch members of the bucket are not shuffled.
|
||||
- `--caption_dropout_every_n_epochs` does not work.
|
||||
- These issues occurred because the epoch transition was not recognized correctly. Thanks to u-haru for reporting the issue.
|
||||
- Fix an issue that images are loaded twice in Windows environment.
|
||||
- Add Min-SNR Weighting strategy. Details are in [#308](https://github.com/kohya-ss/sd-scripts/pull/308). Thank you to AI-Casanova for this great work!
|
||||
- Add `--min_snr_gamma` option to training scripts, 5 is recommended by paper.
|
||||
- The Min SNR gamma fiels can be found unser the advanced training tab in all trainers.
|
||||
- Fixed the error while images are ended with capital image extensions. Thanks to @kvzn. https://github.com/bmaltais/kohya_ss/pull/454
|
||||
* 2023/03/26 (v21.3.5)
|
||||
- Fix for https://github.com/bmaltais/kohya_ss/issues/230
|
||||
- Added detection for Google Colab to not bring up the GUI file/folder window on the platform. Instead it will only use the file/folder path provided in the input field.
|
||||
|
@ -48,67 +48,68 @@ document_symbol = '\U0001F4C4' # 📄
|
||||
|
||||
|
||||
def save_configuration(
|
||||
save_as,
|
||||
file_path,
|
||||
pretrained_model_name_or_path,
|
||||
v2,
|
||||
v_parameterization,
|
||||
logging_dir,
|
||||
train_data_dir,
|
||||
reg_data_dir,
|
||||
output_dir,
|
||||
max_resolution,
|
||||
learning_rate,
|
||||
lr_scheduler,
|
||||
lr_warmup,
|
||||
train_batch_size,
|
||||
epoch,
|
||||
save_every_n_epochs,
|
||||
mixed_precision,
|
||||
save_precision,
|
||||
seed,
|
||||
num_cpu_threads_per_process,
|
||||
cache_latents,
|
||||
caption_extension,
|
||||
enable_bucket,
|
||||
gradient_checkpointing,
|
||||
full_fp16,
|
||||
no_token_padding,
|
||||
stop_text_encoder_training,
|
||||
# use_8bit_adam,
|
||||
xformers,
|
||||
save_model_as,
|
||||
shuffle_caption,
|
||||
save_state,
|
||||
resume,
|
||||
prior_loss_weight,
|
||||
color_aug,
|
||||
flip_aug,
|
||||
clip_skip,
|
||||
vae,
|
||||
output_name,
|
||||
max_token_length,
|
||||
max_train_epochs,
|
||||
max_data_loader_n_workers,
|
||||
mem_eff_attn,
|
||||
gradient_accumulation_steps,
|
||||
model_list,
|
||||
keep_tokens,
|
||||
persistent_data_loader_workers,
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,
|
||||
noise_offset,
|
||||
sample_every_n_steps,
|
||||
sample_every_n_epochs,
|
||||
sample_sampler,
|
||||
sample_prompts,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
save_as,
|
||||
file_path,
|
||||
pretrained_model_name_or_path,
|
||||
v2,
|
||||
v_parameterization,
|
||||
logging_dir,
|
||||
train_data_dir,
|
||||
reg_data_dir,
|
||||
output_dir,
|
||||
max_resolution,
|
||||
learning_rate,
|
||||
lr_scheduler,
|
||||
lr_warmup,
|
||||
train_batch_size,
|
||||
epoch,
|
||||
save_every_n_epochs,
|
||||
mixed_precision,
|
||||
save_precision,
|
||||
seed,
|
||||
num_cpu_threads_per_process,
|
||||
cache_latents,
|
||||
caption_extension,
|
||||
enable_bucket,
|
||||
gradient_checkpointing,
|
||||
full_fp16,
|
||||
no_token_padding,
|
||||
stop_text_encoder_training,
|
||||
# use_8bit_adam,
|
||||
xformers,
|
||||
save_model_as,
|
||||
shuffle_caption,
|
||||
save_state,
|
||||
resume,
|
||||
prior_loss_weight,
|
||||
color_aug,
|
||||
flip_aug,
|
||||
clip_skip,
|
||||
vae,
|
||||
output_name,
|
||||
max_token_length,
|
||||
max_train_epochs,
|
||||
max_data_loader_n_workers,
|
||||
mem_eff_attn,
|
||||
gradient_accumulation_steps,
|
||||
model_list,
|
||||
keep_tokens,
|
||||
persistent_data_loader_workers,
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,
|
||||
noise_offset,
|
||||
sample_every_n_steps,
|
||||
sample_every_n_epochs,
|
||||
sample_sampler,
|
||||
sample_prompts,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
min_snr_gamma,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -156,67 +157,68 @@ def save_configuration(
|
||||
|
||||
|
||||
def open_configuration(
|
||||
ask_for_file,
|
||||
file_path,
|
||||
pretrained_model_name_or_path,
|
||||
v2,
|
||||
v_parameterization,
|
||||
logging_dir,
|
||||
train_data_dir,
|
||||
reg_data_dir,
|
||||
output_dir,
|
||||
max_resolution,
|
||||
learning_rate,
|
||||
lr_scheduler,
|
||||
lr_warmup,
|
||||
train_batch_size,
|
||||
epoch,
|
||||
save_every_n_epochs,
|
||||
mixed_precision,
|
||||
save_precision,
|
||||
seed,
|
||||
num_cpu_threads_per_process,
|
||||
cache_latents,
|
||||
caption_extension,
|
||||
enable_bucket,
|
||||
gradient_checkpointing,
|
||||
full_fp16,
|
||||
no_token_padding,
|
||||
stop_text_encoder_training,
|
||||
# use_8bit_adam,
|
||||
xformers,
|
||||
save_model_as,
|
||||
shuffle_caption,
|
||||
save_state,
|
||||
resume,
|
||||
prior_loss_weight,
|
||||
color_aug,
|
||||
flip_aug,
|
||||
clip_skip,
|
||||
vae,
|
||||
output_name,
|
||||
max_token_length,
|
||||
max_train_epochs,
|
||||
max_data_loader_n_workers,
|
||||
mem_eff_attn,
|
||||
gradient_accumulation_steps,
|
||||
model_list,
|
||||
keep_tokens,
|
||||
persistent_data_loader_workers,
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,
|
||||
noise_offset,
|
||||
sample_every_n_steps,
|
||||
sample_every_n_epochs,
|
||||
sample_sampler,
|
||||
sample_prompts,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
ask_for_file,
|
||||
file_path,
|
||||
pretrained_model_name_or_path,
|
||||
v2,
|
||||
v_parameterization,
|
||||
logging_dir,
|
||||
train_data_dir,
|
||||
reg_data_dir,
|
||||
output_dir,
|
||||
max_resolution,
|
||||
learning_rate,
|
||||
lr_scheduler,
|
||||
lr_warmup,
|
||||
train_batch_size,
|
||||
epoch,
|
||||
save_every_n_epochs,
|
||||
mixed_precision,
|
||||
save_precision,
|
||||
seed,
|
||||
num_cpu_threads_per_process,
|
||||
cache_latents,
|
||||
caption_extension,
|
||||
enable_bucket,
|
||||
gradient_checkpointing,
|
||||
full_fp16,
|
||||
no_token_padding,
|
||||
stop_text_encoder_training,
|
||||
# use_8bit_adam,
|
||||
xformers,
|
||||
save_model_as,
|
||||
shuffle_caption,
|
||||
save_state,
|
||||
resume,
|
||||
prior_loss_weight,
|
||||
color_aug,
|
||||
flip_aug,
|
||||
clip_skip,
|
||||
vae,
|
||||
output_name,
|
||||
max_token_length,
|
||||
max_train_epochs,
|
||||
max_data_loader_n_workers,
|
||||
mem_eff_attn,
|
||||
gradient_accumulation_steps,
|
||||
model_list,
|
||||
keep_tokens,
|
||||
persistent_data_loader_workers,
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,
|
||||
noise_offset,
|
||||
sample_every_n_steps,
|
||||
sample_every_n_epochs,
|
||||
sample_sampler,
|
||||
sample_prompts,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
min_snr_gamma,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -251,65 +253,66 @@ def open_configuration(
|
||||
|
||||
|
||||
def train_model(
|
||||
pretrained_model_name_or_path,
|
||||
v2,
|
||||
v_parameterization,
|
||||
logging_dir,
|
||||
train_data_dir,
|
||||
reg_data_dir,
|
||||
output_dir,
|
||||
max_resolution,
|
||||
learning_rate,
|
||||
lr_scheduler,
|
||||
lr_warmup,
|
||||
train_batch_size,
|
||||
epoch,
|
||||
save_every_n_epochs,
|
||||
mixed_precision,
|
||||
save_precision,
|
||||
seed,
|
||||
num_cpu_threads_per_process,
|
||||
cache_latents,
|
||||
caption_extension,
|
||||
enable_bucket,
|
||||
gradient_checkpointing,
|
||||
full_fp16,
|
||||
no_token_padding,
|
||||
stop_text_encoder_training_pct,
|
||||
# use_8bit_adam,
|
||||
xformers,
|
||||
save_model_as,
|
||||
shuffle_caption,
|
||||
save_state,
|
||||
resume,
|
||||
prior_loss_weight,
|
||||
color_aug,
|
||||
flip_aug,
|
||||
clip_skip,
|
||||
vae,
|
||||
output_name,
|
||||
max_token_length,
|
||||
max_train_epochs,
|
||||
max_data_loader_n_workers,
|
||||
mem_eff_attn,
|
||||
gradient_accumulation_steps,
|
||||
model_list, # Keep this. Yes, it is unused here but required given the common list used
|
||||
keep_tokens,
|
||||
persistent_data_loader_workers,
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,
|
||||
noise_offset,
|
||||
sample_every_n_steps,
|
||||
sample_every_n_epochs,
|
||||
sample_sampler,
|
||||
sample_prompts,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
pretrained_model_name_or_path,
|
||||
v2,
|
||||
v_parameterization,
|
||||
logging_dir,
|
||||
train_data_dir,
|
||||
reg_data_dir,
|
||||
output_dir,
|
||||
max_resolution,
|
||||
learning_rate,
|
||||
lr_scheduler,
|
||||
lr_warmup,
|
||||
train_batch_size,
|
||||
epoch,
|
||||
save_every_n_epochs,
|
||||
mixed_precision,
|
||||
save_precision,
|
||||
seed,
|
||||
num_cpu_threads_per_process,
|
||||
cache_latents,
|
||||
caption_extension,
|
||||
enable_bucket,
|
||||
gradient_checkpointing,
|
||||
full_fp16,
|
||||
no_token_padding,
|
||||
stop_text_encoder_training_pct,
|
||||
# use_8bit_adam,
|
||||
xformers,
|
||||
save_model_as,
|
||||
shuffle_caption,
|
||||
save_state,
|
||||
resume,
|
||||
prior_loss_weight,
|
||||
color_aug,
|
||||
flip_aug,
|
||||
clip_skip,
|
||||
vae,
|
||||
output_name,
|
||||
max_token_length,
|
||||
max_train_epochs,
|
||||
max_data_loader_n_workers,
|
||||
mem_eff_attn,
|
||||
gradient_accumulation_steps,
|
||||
model_list, # Keep this. Yes, it is unused here but required given the common list used
|
||||
keep_tokens,
|
||||
persistent_data_loader_workers,
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,
|
||||
noise_offset,
|
||||
sample_every_n_steps,
|
||||
sample_every_n_epochs,
|
||||
sample_sampler,
|
||||
sample_prompts,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
min_snr_gamma,
|
||||
):
|
||||
if pretrained_model_name_or_path == '':
|
||||
show_message_box('Source model information is missing')
|
||||
@ -339,12 +342,17 @@ def train_model(
|
||||
subfolders = [
|
||||
f
|
||||
for f in os.listdir(train_data_dir)
|
||||
if os.path.isdir(os.path.join(train_data_dir, f)) and not f.startswith('.')
|
||||
if os.path.isdir(os.path.join(train_data_dir, f))
|
||||
and not f.startswith('.')
|
||||
]
|
||||
|
||||
# Check if subfolders are present. If not let the user know and return
|
||||
if not subfolders:
|
||||
print('\033[33mNo subfolders were found in', train_data_dir, ' can\'t train\...033[0m')
|
||||
print(
|
||||
'\033[33mNo subfolders were found in',
|
||||
train_data_dir,
|
||||
" can't train\...033[0m",
|
||||
)
|
||||
return
|
||||
|
||||
total_steps = 0
|
||||
@ -355,19 +363,24 @@ def train_model(
|
||||
try:
|
||||
repeats = int(folder.split('_')[0])
|
||||
except ValueError:
|
||||
print('\033[33mSubfolder', folder,
|
||||
'does not have a proper repeat value, please correct the name or remove it... can\'t train...\033[0m')
|
||||
print(
|
||||
'\033[33mSubfolder',
|
||||
folder,
|
||||
"does not have a proper repeat value, please correct the name or remove it... can't train...\033[0m",
|
||||
)
|
||||
continue
|
||||
|
||||
# Count the number of images in the folder
|
||||
num_images = len(
|
||||
[
|
||||
f
|
||||
for f in os.listdir(os.path.join(train_data_dir, folder))
|
||||
if f.endswith('.jpg')
|
||||
or f.endswith('.jpeg')
|
||||
or f.endswith('.png')
|
||||
or f.endswith('.webp')
|
||||
for f, lower_f in (
|
||||
(file, file.lower())
|
||||
for file in os.listdir(
|
||||
os.path.join(train_data_dir, folder)
|
||||
)
|
||||
)
|
||||
if lower_f.endswith(('.jpg', '.jpeg', '.png', '.webp'))
|
||||
]
|
||||
)
|
||||
|
||||
@ -382,7 +395,11 @@ def train_model(
|
||||
print('\033[33mFolder', folder, ':', steps, 'steps\033[0m')
|
||||
|
||||
if total_steps == 0:
|
||||
print('\033[33mNo images were found in folder', train_data_dir, '... please rectify!\033[0m')
|
||||
print(
|
||||
'\033[33mNo images were found in folder',
|
||||
train_data_dir,
|
||||
'... please rectify!\033[0m',
|
||||
)
|
||||
return
|
||||
|
||||
# Print the result
|
||||
@ -391,7 +408,9 @@ def train_model(
|
||||
if reg_data_dir == '':
|
||||
reg_factor = 1
|
||||
else:
|
||||
print('\033[94mRegularisation images are used... Will double the number of steps required...\033[0m')
|
||||
print(
|
||||
'\033[94mRegularisation images are used... Will double the number of steps required...\033[0m'
|
||||
)
|
||||
reg_factor = 2
|
||||
|
||||
# calculate max_train_steps
|
||||
@ -503,6 +522,7 @@ def train_model(
|
||||
noise_offset=noise_offset,
|
||||
additional_parameters=additional_parameters,
|
||||
vae_batch_size=vae_batch_size,
|
||||
min_snr_gamma=min_snr_gamma,
|
||||
)
|
||||
|
||||
run_cmd += run_cmd_sample(
|
||||
@ -710,6 +730,7 @@ def dreambooth_tab(
|
||||
noise_offset,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
min_snr_gamma,
|
||||
) = gradio_advanced_training()
|
||||
color_aug.change(
|
||||
color_aug_changed,
|
||||
@ -811,6 +832,7 @@ def dreambooth_tab(
|
||||
sample_prompts,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
min_snr_gamma,
|
||||
]
|
||||
|
||||
button_open_config.click(
|
||||
|
34
fine_tune.py
34
fine_tune.py
@ -6,6 +6,7 @@ import gc
|
||||
import math
|
||||
import os
|
||||
import toml
|
||||
from multiprocessing import Value
|
||||
|
||||
from tqdm import tqdm
|
||||
import torch
|
||||
@ -19,10 +20,8 @@ from library.config_util import (
|
||||
ConfigSanitizer,
|
||||
BlueprintGenerator,
|
||||
)
|
||||
|
||||
|
||||
def collate_fn(examples):
|
||||
return examples[0]
|
||||
import library.custom_train_functions as custom_train_functions
|
||||
from library.custom_train_functions import apply_snr_weight
|
||||
|
||||
|
||||
def train(args):
|
||||
@ -64,6 +63,11 @@ def train(args):
|
||||
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
|
||||
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
|
||||
|
||||
current_epoch = Value("i", 0)
|
||||
current_step = Value("i", 0)
|
||||
ds_for_collater = train_dataset_group if args.max_data_loader_n_workers == 0 else None
|
||||
collater = train_util.collater_class(current_epoch, current_step, ds_for_collater)
|
||||
|
||||
if args.debug_dataset:
|
||||
train_util.debug_dataset(train_dataset_group)
|
||||
return
|
||||
@ -187,16 +191,21 @@ def train(args):
|
||||
train_dataset_group,
|
||||
batch_size=1,
|
||||
shuffle=True,
|
||||
collate_fn=collate_fn,
|
||||
collate_fn=collater,
|
||||
num_workers=n_workers,
|
||||
persistent_workers=args.persistent_data_loader_workers,
|
||||
)
|
||||
|
||||
# 学習ステップ数を計算する
|
||||
if args.max_train_epochs is not None:
|
||||
args.max_train_steps = args.max_train_epochs * math.ceil(len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps)
|
||||
args.max_train_steps = args.max_train_epochs * math.ceil(
|
||||
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
|
||||
)
|
||||
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
|
||||
|
||||
# データセット側にも学習ステップを送信
|
||||
train_dataset_group.set_max_train_steps(args.max_train_steps)
|
||||
|
||||
# lr schedulerを用意する
|
||||
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
|
||||
|
||||
@ -255,13 +264,14 @@ def train(args):
|
||||
|
||||
for epoch in range(num_train_epochs):
|
||||
print(f"epoch {epoch+1}/{num_train_epochs}")
|
||||
train_dataset_group.set_current_epoch(epoch + 1)
|
||||
current_epoch.value = epoch + 1
|
||||
|
||||
for m in training_models:
|
||||
m.train()
|
||||
|
||||
loss_total = 0
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
current_step.value = global_step
|
||||
with accelerator.accumulate(training_models[0]): # 複数モデルに対応していない模様だがとりあえずこうしておく
|
||||
with torch.no_grad():
|
||||
if "latents" in batch and batch["latents"] is not None:
|
||||
@ -302,7 +312,14 @@ def train(args):
|
||||
else:
|
||||
target = noise
|
||||
|
||||
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="mean")
|
||||
if args.min_snr_gamma:
|
||||
# do not mean over batch dimension for snr weight
|
||||
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
|
||||
loss = loss.mean([1, 2, 3])
|
||||
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
|
||||
loss = loss.mean() # mean over batch dimension
|
||||
else:
|
||||
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="mean")
|
||||
|
||||
accelerator.backward(loss)
|
||||
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
|
||||
@ -396,6 +413,7 @@ def setup_parser() -> argparse.ArgumentParser:
|
||||
train_util.add_sd_saving_arguments(parser)
|
||||
train_util.add_optimizer_arguments(parser)
|
||||
config_util.add_config_arguments(parser)
|
||||
custom_train_functions.add_custom_train_arguments(parser)
|
||||
|
||||
parser.add_argument("--diffusers_xformers", action="store_true", help="use xformers by diffusers / Diffusersでxformersを使用する")
|
||||
parser.add_argument("--train_text_encoder", action="store_true", help="train text encoder / text encoderも学習する")
|
||||
|
@ -104,7 +104,9 @@ def save_configuration(
|
||||
sample_every_n_epochs,
|
||||
sample_sampler,
|
||||
sample_prompts,
|
||||
additional_parameters,vae_batch_size,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
min_snr_gamma,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -217,7 +219,9 @@ def open_configuration(
|
||||
sample_every_n_epochs,
|
||||
sample_sampler,
|
||||
sample_prompts,
|
||||
additional_parameters,vae_batch_size,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
min_snr_gamma,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -312,7 +316,9 @@ def train_model(
|
||||
sample_every_n_epochs,
|
||||
sample_sampler,
|
||||
sample_prompts,
|
||||
additional_parameters,vae_batch_size,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
min_snr_gamma,
|
||||
):
|
||||
if check_if_model_exist(output_name, output_dir, save_model_as):
|
||||
return
|
||||
@ -368,8 +374,10 @@ def train_model(
|
||||
image_num = len(
|
||||
[
|
||||
f
|
||||
for f in os.listdir(image_folder)
|
||||
if f.endswith('.jpg') or f.endswith('.png') or f.endswith('.webp')
|
||||
for f, lower_f in (
|
||||
(file, file.lower()) for file in os.listdir(image_folder)
|
||||
)
|
||||
if lower_f.endswith(('.jpg', '.jpeg', '.png', '.webp'))
|
||||
]
|
||||
)
|
||||
print(f'image_num = {image_num}')
|
||||
@ -471,6 +479,7 @@ def train_model(
|
||||
noise_offset=noise_offset,
|
||||
additional_parameters=additional_parameters,
|
||||
vae_batch_size=vae_batch_size,
|
||||
min_snr_gamma=min_snr_gamma,
|
||||
)
|
||||
|
||||
run_cmd += run_cmd_sample(
|
||||
@ -688,6 +697,7 @@ def finetune_tab():
|
||||
noise_offset,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
min_snr_gamma,
|
||||
) = gradio_advanced_training()
|
||||
color_aug.change(
|
||||
color_aug_changed,
|
||||
@ -783,6 +793,7 @@ def finetune_tab():
|
||||
sample_prompts,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
min_snr_gamma,
|
||||
]
|
||||
|
||||
button_run.click(train_model, inputs=settings_list)
|
||||
|
4912
gen_img_diffusers.py
4912
gen_img_diffusers.py
File diff suppressed because it is too large
Load Diff
@ -34,7 +34,7 @@ V1_MODELS = [
|
||||
# define a list of substrings to search for
|
||||
ALL_PRESET_MODELS = V2_BASE_MODELS + V_PARAMETERIZATION_MODELS + V1_MODELS
|
||||
|
||||
FILE_ENV_EXCLUSION = ['COLAB_GPU', 'RUNPOD_ENVIRONMENT']
|
||||
FILE_ENV_EXCLUSION = ['COLAB_GPU', 'RUNPOD_POD_ID']
|
||||
|
||||
|
||||
def open_file_dialog(initial_dir, initial_file, file_types="all"):
|
||||
@ -822,6 +822,7 @@ def gradio_advanced_training():
|
||||
xformers = gr.Checkbox(label='Use xformers', value=True)
|
||||
color_aug = gr.Checkbox(label='Color augmentation', value=False)
|
||||
flip_aug = gr.Checkbox(label='Flip augmentation', value=False)
|
||||
min_snr_gamma = gr.Slider(label='Min SNR gamma', value = 0, minimum=0, maximum=20, step=1)
|
||||
with gr.Row():
|
||||
bucket_no_upscale = gr.Checkbox(
|
||||
label="Don't upscale bucket resolution", value=True
|
||||
@ -896,6 +897,7 @@ def gradio_advanced_training():
|
||||
noise_offset,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
min_snr_gamma,
|
||||
)
|
||||
|
||||
|
||||
@ -931,13 +933,15 @@ def run_cmd_advanced_training(**kwargs):
|
||||
f' --bucket_reso_steps={int(kwargs.get("bucket_reso_steps", 1))}'
|
||||
if int(kwargs.get('bucket_reso_steps', 64)) >= 1
|
||||
else '',
|
||||
f' --min_snr_gamma={int(kwargs.get("min_snr_gamma", 0))}'
|
||||
if int(kwargs.get('min_snr_gamma', 0)) >= 1
|
||||
else '',
|
||||
' --save_state' if kwargs.get('save_state') else '',
|
||||
' --mem_eff_attn' if kwargs.get('mem_eff_attn') else '',
|
||||
' --color_aug' if kwargs.get('color_aug') else '',
|
||||
' --flip_aug' if kwargs.get('flip_aug') else '',
|
||||
' --shuffle_caption' if kwargs.get('shuffle_caption') else '',
|
||||
' --gradient_checkpointing'
|
||||
if kwargs.get('gradient_checkpointing')
|
||||
' --gradient_checkpointing' if kwargs.get('gradient_checkpointing')
|
||||
else '',
|
||||
' --full_fp16' if kwargs.get('full_fp16') else '',
|
||||
' --xformers' if kwargs.get('xformers') else '',
|
||||
|
@ -4,6 +4,7 @@ from dataclasses import (
|
||||
dataclass,
|
||||
)
|
||||
import functools
|
||||
import random
|
||||
from textwrap import dedent, indent
|
||||
import json
|
||||
from pathlib import Path
|
||||
@ -56,6 +57,8 @@ class BaseSubsetParams:
|
||||
caption_dropout_rate: float = 0.0
|
||||
caption_dropout_every_n_epochs: int = 0
|
||||
caption_tag_dropout_rate: float = 0.0
|
||||
token_warmup_min: int = 1
|
||||
token_warmup_step: float = 0
|
||||
|
||||
@dataclass
|
||||
class DreamBoothSubsetParams(BaseSubsetParams):
|
||||
@ -137,6 +140,8 @@ class ConfigSanitizer:
|
||||
"random_crop": bool,
|
||||
"shuffle_caption": bool,
|
||||
"keep_tokens": int,
|
||||
"token_warmup_min": int,
|
||||
"token_warmup_step": Any(float,int),
|
||||
}
|
||||
# DO means DropOut
|
||||
DO_SUBSET_ASCENDABLE_SCHEMA = {
|
||||
@ -406,6 +411,8 @@ def generate_dataset_group_by_blueprint(dataset_group_blueprint: DatasetGroupBlu
|
||||
flip_aug: {subset.flip_aug}
|
||||
face_crop_aug_range: {subset.face_crop_aug_range}
|
||||
random_crop: {subset.random_crop}
|
||||
token_warmup_min: {subset.token_warmup_min},
|
||||
token_warmup_step: {subset.token_warmup_step},
|
||||
"""), " ")
|
||||
|
||||
if is_dreambooth:
|
||||
@ -422,9 +429,12 @@ def generate_dataset_group_by_blueprint(dataset_group_blueprint: DatasetGroupBlu
|
||||
print(info)
|
||||
|
||||
# make buckets first because it determines the length of dataset
|
||||
# and set the same seed for all datasets
|
||||
seed = random.randint(0, 2**31) # actual seed is seed + epoch_no
|
||||
for i, dataset in enumerate(datasets):
|
||||
print(f"[Dataset {i}]")
|
||||
dataset.make_buckets()
|
||||
dataset.set_seed(seed)
|
||||
|
||||
return DatasetGroup(datasets)
|
||||
|
||||
@ -491,7 +501,6 @@ def load_user_config(file: str) -> dict:
|
||||
|
||||
return config
|
||||
|
||||
|
||||
# for config test
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
|
18
library/custom_train_functions.py
Normal file
18
library/custom_train_functions.py
Normal file
@ -0,0 +1,18 @@
|
||||
import torch
|
||||
import argparse
|
||||
|
||||
def apply_snr_weight(loss, timesteps, noise_scheduler, gamma):
|
||||
alphas_cumprod = noise_scheduler.alphas_cumprod
|
||||
sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
|
||||
sqrt_one_minus_alphas_cumprod = torch.sqrt(1.0 - alphas_cumprod)
|
||||
alpha = sqrt_alphas_cumprod
|
||||
sigma = sqrt_one_minus_alphas_cumprod
|
||||
all_snr = (alpha / sigma) ** 2
|
||||
snr = torch.stack([all_snr[t] for t in timesteps])
|
||||
gamma_over_snr = torch.div(torch.ones_like(snr)*gamma,snr)
|
||||
snr_weight = torch.minimum(gamma_over_snr,torch.ones_like(gamma_over_snr)).float() #from paper
|
||||
loss = loss * snr_weight
|
||||
return loss
|
||||
|
||||
def add_custom_train_arguments(parser: argparse.ArgumentParser):
|
||||
parser.add_argument("--min_snr_gamma", type=float, default=None, help="gamma for reducing the weight of high loss timesteps. Lower numbers have stronger effect. 5 is recommended by paper. / 低いタイムステップでの高いlossに対して重みを減らすためのgamma値、低いほど効果が強く、論文では5が推奨")
|
@ -135,7 +135,7 @@ def gradio_extract_lora_tab():
|
||||
dim = gr.Slider(
|
||||
minimum=4,
|
||||
maximum=1024,
|
||||
label='Network Dimension',
|
||||
label='Network Dimension (Rank)',
|
||||
value=128,
|
||||
step=1,
|
||||
interactive=True,
|
||||
@ -143,8 +143,8 @@ def gradio_extract_lora_tab():
|
||||
conv_dim = gr.Slider(
|
||||
minimum=0,
|
||||
maximum=1024,
|
||||
label='Conv Dimension',
|
||||
value=0,
|
||||
label='Conv Dimension (Rank)',
|
||||
value=128,
|
||||
step=1,
|
||||
interactive=True,
|
||||
)
|
||||
|
@ -1046,10 +1046,14 @@ def save_stable_diffusion_checkpoint(v2, output_file, text_encoder, unet, ckpt_p
|
||||
key_count = len(state_dict.keys())
|
||||
new_ckpt = {'state_dict': state_dict}
|
||||
|
||||
if 'epoch' in checkpoint:
|
||||
epochs += checkpoint['epoch']
|
||||
if 'global_step' in checkpoint:
|
||||
steps += checkpoint['global_step']
|
||||
# epoch and global_step are sometimes not int
|
||||
try:
|
||||
if 'epoch' in checkpoint:
|
||||
epochs += checkpoint['epoch']
|
||||
if 'global_step' in checkpoint:
|
||||
steps += checkpoint['global_step']
|
||||
except:
|
||||
pass
|
||||
|
||||
new_ckpt['epoch'] = epochs
|
||||
new_ckpt['global_step'] = steps
|
||||
|
@ -276,6 +276,8 @@ class BaseSubset:
|
||||
caption_dropout_rate: float,
|
||||
caption_dropout_every_n_epochs: int,
|
||||
caption_tag_dropout_rate: float,
|
||||
token_warmup_min: int,
|
||||
token_warmup_step: Union[float, int],
|
||||
) -> None:
|
||||
self.image_dir = image_dir
|
||||
self.num_repeats = num_repeats
|
||||
@ -289,6 +291,9 @@ class BaseSubset:
|
||||
self.caption_dropout_every_n_epochs = caption_dropout_every_n_epochs
|
||||
self.caption_tag_dropout_rate = caption_tag_dropout_rate
|
||||
|
||||
self.token_warmup_min = token_warmup_min # step=0におけるタグの数
|
||||
self.token_warmup_step = token_warmup_step # N(N<1ならN*max_train_steps)ステップ目でタグの数が最大になる
|
||||
|
||||
self.img_count = 0
|
||||
|
||||
|
||||
@ -309,6 +314,8 @@ class DreamBoothSubset(BaseSubset):
|
||||
caption_dropout_rate,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_tag_dropout_rate,
|
||||
token_warmup_min,
|
||||
token_warmup_step,
|
||||
) -> None:
|
||||
assert image_dir is not None, "image_dir must be specified / image_dirは指定が必須です"
|
||||
|
||||
@ -324,6 +331,8 @@ class DreamBoothSubset(BaseSubset):
|
||||
caption_dropout_rate,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_tag_dropout_rate,
|
||||
token_warmup_min,
|
||||
token_warmup_step,
|
||||
)
|
||||
|
||||
self.is_reg = is_reg
|
||||
@ -351,6 +360,8 @@ class FineTuningSubset(BaseSubset):
|
||||
caption_dropout_rate,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_tag_dropout_rate,
|
||||
token_warmup_min,
|
||||
token_warmup_step,
|
||||
) -> None:
|
||||
assert metadata_file is not None, "metadata_file must be specified / metadata_fileは指定が必須です"
|
||||
|
||||
@ -366,6 +377,8 @@ class FineTuningSubset(BaseSubset):
|
||||
caption_dropout_rate,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_tag_dropout_rate,
|
||||
token_warmup_min,
|
||||
token_warmup_step,
|
||||
)
|
||||
|
||||
self.metadata_file = metadata_file
|
||||
@ -404,6 +417,10 @@ class BaseDataset(torch.utils.data.Dataset):
|
||||
|
||||
self.current_epoch: int = 0 # インスタンスがepochごとに新しく作られるようなので外側から渡さないとダメ
|
||||
|
||||
self.current_step: int = 0
|
||||
self.max_train_steps: int = 0
|
||||
self.seed: int = 0
|
||||
|
||||
# augmentation
|
||||
self.aug_helper = AugHelper()
|
||||
|
||||
@ -419,9 +436,19 @@ class BaseDataset(torch.utils.data.Dataset):
|
||||
|
||||
self.replacements = {}
|
||||
|
||||
def set_seed(self, seed):
|
||||
self.seed = seed
|
||||
|
||||
def set_current_epoch(self, epoch):
|
||||
if not self.current_epoch == epoch: # epochが切り替わったらバケツをシャッフルする
|
||||
self.shuffle_buckets()
|
||||
self.current_epoch = epoch
|
||||
self.shuffle_buckets()
|
||||
|
||||
def set_current_step(self, step):
|
||||
self.current_step = step
|
||||
|
||||
def set_max_train_steps(self, max_train_steps):
|
||||
self.max_train_steps = max_train_steps
|
||||
|
||||
def set_tag_frequency(self, dir_name, captions):
|
||||
frequency_for_dir = self.tag_frequency.get(dir_name, {})
|
||||
@ -452,7 +479,16 @@ class BaseDataset(torch.utils.data.Dataset):
|
||||
if is_drop_out:
|
||||
caption = ""
|
||||
else:
|
||||
if subset.shuffle_caption or subset.caption_tag_dropout_rate > 0:
|
||||
if subset.shuffle_caption or subset.token_warmup_step > 0 or subset.caption_tag_dropout_rate > 0:
|
||||
tokens = [t.strip() for t in caption.strip().split(",")]
|
||||
if subset.token_warmup_step < 1: # 初回に上書きする
|
||||
subset.token_warmup_step = math.floor(subset.token_warmup_step * self.max_train_steps)
|
||||
if subset.token_warmup_step and self.current_step < subset.token_warmup_step:
|
||||
tokens_len = (
|
||||
math.floor((self.current_step) * ((len(tokens) - subset.token_warmup_min) / (subset.token_warmup_step)))
|
||||
+ subset.token_warmup_min
|
||||
)
|
||||
tokens = tokens[:tokens_len]
|
||||
|
||||
def dropout_tags(tokens):
|
||||
if subset.caption_tag_dropout_rate <= 0:
|
||||
@ -464,10 +500,10 @@ class BaseDataset(torch.utils.data.Dataset):
|
||||
return l
|
||||
|
||||
fixed_tokens = []
|
||||
flex_tokens = [t.strip() for t in caption.strip().split(",")]
|
||||
flex_tokens = tokens[:]
|
||||
if subset.keep_tokens > 0:
|
||||
fixed_tokens = flex_tokens[: subset.keep_tokens]
|
||||
flex_tokens = flex_tokens[subset.keep_tokens :]
|
||||
flex_tokens = tokens[subset.keep_tokens :]
|
||||
|
||||
if subset.shuffle_caption:
|
||||
random.shuffle(flex_tokens)
|
||||
@ -637,6 +673,9 @@ class BaseDataset(torch.utils.data.Dataset):
|
||||
self._length = len(self.buckets_indices)
|
||||
|
||||
def shuffle_buckets(self):
|
||||
# set random seed for this epoch
|
||||
random.seed(self.seed + self.current_epoch)
|
||||
|
||||
random.shuffle(self.buckets_indices)
|
||||
self.bucket_manager.shuffle()
|
||||
|
||||
@ -1043,7 +1082,7 @@ class DreamBoothDataset(BaseDataset):
|
||||
self.register_image(info, subset)
|
||||
n += info.num_repeats
|
||||
else:
|
||||
info.num_repeats += 1
|
||||
info.num_repeats += 1 # rewrite registered info
|
||||
n += 1
|
||||
if n >= num_train_images:
|
||||
break
|
||||
@ -1104,6 +1143,8 @@ class FineTuningDataset(BaseDataset):
|
||||
# path情報を作る
|
||||
if os.path.exists(image_key):
|
||||
abs_path = image_key
|
||||
elif os.path.exists(os.path.splitext(image_key)[0] + ".npz"):
|
||||
abs_path = os.path.splitext(image_key)[0] + ".npz"
|
||||
else:
|
||||
npz_path = os.path.join(subset.image_dir, image_key + ".npz")
|
||||
if os.path.exists(npz_path):
|
||||
@ -1285,6 +1326,14 @@ class DatasetGroup(torch.utils.data.ConcatDataset):
|
||||
for dataset in self.datasets:
|
||||
dataset.set_current_epoch(epoch)
|
||||
|
||||
def set_current_step(self, step):
|
||||
for dataset in self.datasets:
|
||||
dataset.set_current_step(step)
|
||||
|
||||
def set_max_train_steps(self, max_train_steps):
|
||||
for dataset in self.datasets:
|
||||
dataset.set_max_train_steps(max_train_steps)
|
||||
|
||||
def disable_token_padding(self):
|
||||
for dataset in self.datasets:
|
||||
dataset.disable_token_padding()
|
||||
@ -1292,37 +1341,55 @@ class DatasetGroup(torch.utils.data.ConcatDataset):
|
||||
|
||||
def debug_dataset(train_dataset, show_input_ids=False):
|
||||
print(f"Total dataset length (steps) / データセットの長さ(ステップ数): {len(train_dataset)}")
|
||||
print("Escape for exit. / Escキーで中断、終了します")
|
||||
print("`S` for next step, `E` for next epoch no. , Escape for exit. / Sキーで次のステップ、Eキーで次のエポック、Escキーで中断、終了します")
|
||||
|
||||
train_dataset.set_current_epoch(1)
|
||||
k = 0
|
||||
indices = list(range(len(train_dataset)))
|
||||
random.shuffle(indices)
|
||||
for i, idx in enumerate(indices):
|
||||
example = train_dataset[idx]
|
||||
if example["latents"] is not None:
|
||||
print(f"sample has latents from npz file: {example['latents'].size()}")
|
||||
for j, (ik, cap, lw, iid) in enumerate(
|
||||
zip(example["image_keys"], example["captions"], example["loss_weights"], example["input_ids"])
|
||||
):
|
||||
print(f'{ik}, size: {train_dataset.image_data[ik].image_size}, loss weight: {lw}, caption: "{cap}"')
|
||||
if show_input_ids:
|
||||
print(f"input ids: {iid}")
|
||||
if example["images"] is not None:
|
||||
im = example["images"][j]
|
||||
print(f"image size: {im.size()}")
|
||||
im = ((im.numpy() + 1.0) * 127.5).astype(np.uint8)
|
||||
im = np.transpose(im, (1, 2, 0)) # c,H,W -> H,W,c
|
||||
im = im[:, :, ::-1] # RGB -> BGR (OpenCV)
|
||||
if os.name == "nt": # only windows
|
||||
cv2.imshow("img", im)
|
||||
k = cv2.waitKey()
|
||||
cv2.destroyAllWindows()
|
||||
if k == 27:
|
||||
break
|
||||
if k == 27 or (example["images"] is None and i >= 8):
|
||||
epoch = 1
|
||||
while True:
|
||||
print(f"epoch: {epoch}")
|
||||
|
||||
steps = (epoch - 1) * len(train_dataset) + 1
|
||||
indices = list(range(len(train_dataset)))
|
||||
random.shuffle(indices)
|
||||
|
||||
k = 0
|
||||
for i, idx in enumerate(indices):
|
||||
train_dataset.set_current_epoch(epoch)
|
||||
train_dataset.set_current_step(steps)
|
||||
print(f"steps: {steps} ({i + 1}/{len(train_dataset)})")
|
||||
|
||||
example = train_dataset[idx]
|
||||
if example["latents"] is not None:
|
||||
print(f"sample has latents from npz file: {example['latents'].size()}")
|
||||
for j, (ik, cap, lw, iid) in enumerate(
|
||||
zip(example["image_keys"], example["captions"], example["loss_weights"], example["input_ids"])
|
||||
):
|
||||
print(f'{ik}, size: {train_dataset.image_data[ik].image_size}, loss weight: {lw}, caption: "{cap}"')
|
||||
if show_input_ids:
|
||||
print(f"input ids: {iid}")
|
||||
if example["images"] is not None:
|
||||
im = example["images"][j]
|
||||
print(f"image size: {im.size()}")
|
||||
im = ((im.numpy() + 1.0) * 127.5).astype(np.uint8)
|
||||
im = np.transpose(im, (1, 2, 0)) # c,H,W -> H,W,c
|
||||
im = im[:, :, ::-1] # RGB -> BGR (OpenCV)
|
||||
if os.name == "nt": # only windows
|
||||
cv2.imshow("img", im)
|
||||
k = cv2.waitKey()
|
||||
cv2.destroyAllWindows()
|
||||
if k == 27 or k == ord("s") or k == ord("e"):
|
||||
break
|
||||
steps += 1
|
||||
|
||||
if k == ord("e"):
|
||||
break
|
||||
if k == 27 or (example["images"] is None and i >= 8):
|
||||
k = 27
|
||||
break
|
||||
if k == 27:
|
||||
break
|
||||
|
||||
epoch += 1
|
||||
|
||||
|
||||
def glob_images(directory, base="*"):
|
||||
img_paths = []
|
||||
@ -1331,8 +1398,8 @@ def glob_images(directory, base="*"):
|
||||
img_paths.extend(glob.glob(os.path.join(glob.escape(directory), base + ext)))
|
||||
else:
|
||||
img_paths.extend(glob.glob(glob.escape(os.path.join(directory, base + ext))))
|
||||
# img_paths = list(set(img_paths)) # 重複を排除
|
||||
# img_paths.sort()
|
||||
img_paths = list(set(img_paths)) # 重複を排除
|
||||
img_paths.sort()
|
||||
return img_paths
|
||||
|
||||
|
||||
@ -1344,8 +1411,8 @@ def glob_images_pathlib(dir_path, recursive):
|
||||
else:
|
||||
for ext in IMAGE_EXTENSIONS:
|
||||
image_paths += list(dir_path.glob("*" + ext))
|
||||
# image_paths = list(set(image_paths)) # 重複を排除
|
||||
# image_paths.sort()
|
||||
image_paths = list(set(image_paths)) # 重複を排除
|
||||
image_paths.sort()
|
||||
return image_paths
|
||||
|
||||
|
||||
@ -2038,6 +2105,20 @@ def add_dataset_arguments(
|
||||
"--bucket_no_upscale", action="store_true", help="make bucket for each image without upscaling / 画像を拡大せずbucketを作成します"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--token_warmup_min",
|
||||
type=int,
|
||||
default=1,
|
||||
help="start learning at N tags (token means comma separated strinfloatgs) / タグ数をN個から増やしながら学習する",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--token_warmup_step",
|
||||
type=float,
|
||||
default=0,
|
||||
help="tag length reaches maximum on N steps (or N*max_train_steps if N<1) / N(N<1ならN*max_train_steps)ステップでタグ長が最大になる。デフォルトは0(最初から最大)",
|
||||
)
|
||||
|
||||
if support_caption_dropout:
|
||||
# Textual Inversion はcaptionのdropoutをsupportしない
|
||||
# いわゆるtensorのDropoutと紛らわしいのでprefixにcaptionを付けておく every_n_epochsは他と平仄を合わせてdefault Noneに
|
||||
@ -2972,3 +3053,24 @@ class ImageLoadingDataset(torch.utils.data.Dataset):
|
||||
|
||||
|
||||
# endregion
|
||||
|
||||
|
||||
# collate_fn用 epoch,stepはmultiprocessing.Value
|
||||
class collater_class:
|
||||
def __init__(self, epoch, step, dataset):
|
||||
self.current_epoch = epoch
|
||||
self.current_step = step
|
||||
self.dataset = dataset # not used if worker_info is not None, in case of multiprocessing
|
||||
|
||||
def __call__(self, examples):
|
||||
worker_info = torch.utils.data.get_worker_info()
|
||||
# worker_info is None in the main process
|
||||
if worker_info is not None:
|
||||
dataset = worker_info.dataset
|
||||
else:
|
||||
dataset = self.dataset
|
||||
|
||||
# set epoch and step
|
||||
dataset.set_current_epoch(self.current_epoch.value)
|
||||
dataset.set_current_step(self.current_step.value)
|
||||
return examples[0]
|
||||
|
53
lora_gui.py
53
lora_gui.py
@ -123,7 +123,9 @@ def save_configuration(
|
||||
sample_every_n_epochs,
|
||||
sample_sampler,
|
||||
sample_prompts,
|
||||
additional_parameters,vae_batch_size,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
min_snr_gamma,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -240,7 +242,9 @@ def open_configuration(
|
||||
sample_every_n_epochs,
|
||||
sample_sampler,
|
||||
sample_prompts,
|
||||
additional_parameters,vae_batch_size,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
min_snr_gamma,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -257,7 +261,7 @@ def open_configuration(
|
||||
with open(file_path, 'r') as f:
|
||||
my_data = json.load(f)
|
||||
print('Loading config...')
|
||||
|
||||
|
||||
# Update values to fix deprecated use_8bit_adam checkbox, set appropriate optimizer if it is set to True, etc.
|
||||
my_data = update_my_data(my_data)
|
||||
else:
|
||||
@ -348,7 +352,9 @@ def train_model(
|
||||
sample_every_n_epochs,
|
||||
sample_sampler,
|
||||
sample_prompts,
|
||||
additional_parameters,vae_batch_size,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
min_snr_gamma,
|
||||
):
|
||||
print_only_bool = True if print_only.get('label') == 'True' else False
|
||||
|
||||
@ -419,11 +425,13 @@ def train_model(
|
||||
num_images = len(
|
||||
[
|
||||
f
|
||||
for f in os.listdir(os.path.join(train_data_dir, folder))
|
||||
if f.endswith('.jpg')
|
||||
or f.endswith('.jpeg')
|
||||
or f.endswith('.png')
|
||||
or f.endswith('.webp')
|
||||
for f, lower_f in (
|
||||
(file, file.lower())
|
||||
for file in os.listdir(
|
||||
os.path.join(train_data_dir, folder)
|
||||
)
|
||||
)
|
||||
if lower_f.endswith(('.jpg', '.jpeg', '.png', '.webp'))
|
||||
]
|
||||
)
|
||||
|
||||
@ -591,6 +599,7 @@ def train_model(
|
||||
noise_offset=noise_offset,
|
||||
additional_parameters=additional_parameters,
|
||||
vae_batch_size=vae_batch_size,
|
||||
min_snr_gamma=min_snr_gamma,
|
||||
)
|
||||
|
||||
run_cmd += run_cmd_sample(
|
||||
@ -649,10 +658,12 @@ def lora_tab(
|
||||
v_parameterization,
|
||||
save_model_as,
|
||||
model_list,
|
||||
) = gradio_source_model(save_model_as_choices = [
|
||||
'ckpt',
|
||||
'safetensors',
|
||||
])
|
||||
) = gradio_source_model(
|
||||
save_model_as_choices=[
|
||||
'ckpt',
|
||||
'safetensors',
|
||||
]
|
||||
)
|
||||
|
||||
with gr.Tab('Folders'):
|
||||
with gr.Row():
|
||||
@ -796,11 +807,11 @@ def lora_tab(
|
||||
interactive=True,
|
||||
)
|
||||
network_alpha = gr.Slider(
|
||||
minimum=1,
|
||||
minimum=0.1,
|
||||
maximum=1024,
|
||||
label='Network Alpha',
|
||||
value=1,
|
||||
step=1,
|
||||
step=0.1,
|
||||
interactive=True,
|
||||
)
|
||||
|
||||
@ -815,10 +826,10 @@ def lora_tab(
|
||||
label='Convolution Rank (Dimension)',
|
||||
)
|
||||
conv_alpha = gr.Slider(
|
||||
minimum=1,
|
||||
minimum=0.1,
|
||||
maximum=512,
|
||||
value=1,
|
||||
step=1,
|
||||
step=0.1,
|
||||
label='Convolution Alpha',
|
||||
)
|
||||
# Show of hide LoCon conv settings depending on LoRA type selection
|
||||
@ -897,6 +908,7 @@ def lora_tab(
|
||||
noise_offset,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
min_snr_gamma,
|
||||
) = gradio_advanced_training()
|
||||
color_aug.change(
|
||||
color_aug_changed,
|
||||
@ -1015,6 +1027,7 @@ def lora_tab(
|
||||
sample_prompts,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
min_snr_gamma,
|
||||
]
|
||||
|
||||
button_open_config.click(
|
||||
@ -1104,7 +1117,7 @@ def UI(**kwargs):
|
||||
if kwargs.get('inbrowser', False):
|
||||
launch_kwargs['inbrowser'] = kwargs.get('inbrowser', False)
|
||||
if kwargs.get('listen', True):
|
||||
launch_kwargs['server_name'] = "0.0.0.0"
|
||||
launch_kwargs['server_name'] = '0.0.0.0'
|
||||
print(launch_kwargs)
|
||||
interface.launch(**launch_kwargs)
|
||||
|
||||
@ -1128,7 +1141,9 @@ if __name__ == '__main__':
|
||||
'--inbrowser', action='store_true', help='Open in browser'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--listen', action='store_true', help='Launch gradio with server name 0.0.0.0, allowing LAN access'
|
||||
'--listen',
|
||||
action='store_true',
|
||||
help='Launch gradio with server name 0.0.0.0, allowing LAN access',
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
@ -11,6 +11,8 @@ import numpy as np
|
||||
|
||||
MIN_SV = 1e-6
|
||||
|
||||
# Model save and load functions
|
||||
|
||||
def load_state_dict(file_name, dtype):
|
||||
if model_util.is_safetensors(file_name):
|
||||
sd = load_file(file_name)
|
||||
@ -39,12 +41,13 @@ def save_to_file(file_name, model, state_dict, dtype, metadata):
|
||||
torch.save(model, file_name)
|
||||
|
||||
|
||||
# Indexing functions
|
||||
|
||||
def index_sv_cumulative(S, target):
|
||||
original_sum = float(torch.sum(S))
|
||||
cumulative_sums = torch.cumsum(S, dim=0)/original_sum
|
||||
index = int(torch.searchsorted(cumulative_sums, target)) + 1
|
||||
if index >= len(S):
|
||||
index = len(S) - 1
|
||||
index = max(1, min(index, len(S)-1))
|
||||
|
||||
return index
|
||||
|
||||
@ -54,8 +57,16 @@ def index_sv_fro(S, target):
|
||||
s_fro_sq = float(torch.sum(S_squared))
|
||||
sum_S_squared = torch.cumsum(S_squared, dim=0)/s_fro_sq
|
||||
index = int(torch.searchsorted(sum_S_squared, target**2)) + 1
|
||||
if index >= len(S):
|
||||
index = len(S) - 1
|
||||
index = max(1, min(index, len(S)-1))
|
||||
|
||||
return index
|
||||
|
||||
|
||||
def index_sv_ratio(S, target):
|
||||
max_sv = S[0]
|
||||
min_sv = max_sv/target
|
||||
index = int(torch.sum(S > min_sv).item())
|
||||
index = max(1, min(index, len(S)-1))
|
||||
|
||||
return index
|
||||
|
||||
@ -125,26 +136,24 @@ def merge_linear(lora_down, lora_up, device):
|
||||
return weight
|
||||
|
||||
|
||||
# Calculate new rank
|
||||
|
||||
def rank_resize(S, rank, dynamic_method, dynamic_param, scale=1):
|
||||
param_dict = {}
|
||||
|
||||
if dynamic_method=="sv_ratio":
|
||||
# Calculate new dim and alpha based off ratio
|
||||
max_sv = S[0]
|
||||
min_sv = max_sv/dynamic_param
|
||||
new_rank = max(torch.sum(S > min_sv).item(),1)
|
||||
new_rank = index_sv_ratio(S, dynamic_param) + 1
|
||||
new_alpha = float(scale*new_rank)
|
||||
|
||||
elif dynamic_method=="sv_cumulative":
|
||||
# Calculate new dim and alpha based off cumulative sum
|
||||
new_rank = index_sv_cumulative(S, dynamic_param)
|
||||
new_rank = max(new_rank, 1)
|
||||
new_rank = index_sv_cumulative(S, dynamic_param) + 1
|
||||
new_alpha = float(scale*new_rank)
|
||||
|
||||
elif dynamic_method=="sv_fro":
|
||||
# Calculate new dim and alpha based off sqrt sum of squares
|
||||
new_rank = index_sv_fro(S, dynamic_param)
|
||||
new_rank = min(max(new_rank, 1), len(S)-1)
|
||||
new_rank = index_sv_fro(S, dynamic_param) + 1
|
||||
new_alpha = float(scale*new_rank)
|
||||
else:
|
||||
new_rank = rank
|
||||
@ -172,7 +181,7 @@ def rank_resize(S, rank, dynamic_method, dynamic_param, scale=1):
|
||||
param_dict["new_alpha"] = new_alpha
|
||||
param_dict["sum_retained"] = (s_rank)/s_sum
|
||||
param_dict["fro_retained"] = fro_percent
|
||||
param_dict["max_ratio"] = S[0]/S[new_rank]
|
||||
param_dict["max_ratio"] = S[0]/S[new_rank - 1]
|
||||
|
||||
return param_dict
|
||||
|
||||
|
@ -22,9 +22,9 @@ fairscale==0.4.13
|
||||
requests==2.28.2
|
||||
timm==0.6.12
|
||||
# tensorflow<2.11
|
||||
huggingface-hub==0.12.0
|
||||
huggingface-hub==0.13.0
|
||||
tensorflow==2.10.1
|
||||
# For locon support
|
||||
lycoris_lora==0.1.2
|
||||
lycoris_lora==0.1.4
|
||||
# for kohya_ss library
|
||||
.
|
@ -113,7 +113,9 @@ def save_configuration(
|
||||
sample_every_n_epochs,
|
||||
sample_sampler,
|
||||
sample_prompts,
|
||||
additional_parameters,vae_batch_size,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
min_snr_gamma,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -226,7 +228,9 @@ def open_configuration(
|
||||
sample_every_n_epochs,
|
||||
sample_sampler,
|
||||
sample_prompts,
|
||||
additional_parameters,vae_batch_size,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
min_snr_gamma,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -321,7 +325,9 @@ def train_model(
|
||||
sample_every_n_epochs,
|
||||
sample_sampler,
|
||||
sample_prompts,
|
||||
additional_parameters,vae_batch_size,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
min_snr_gamma,
|
||||
):
|
||||
if pretrained_model_name_or_path == '':
|
||||
show_message_box('Source model information is missing')
|
||||
@ -376,11 +382,13 @@ def train_model(
|
||||
num_images = len(
|
||||
[
|
||||
f
|
||||
for f in os.listdir(os.path.join(train_data_dir, folder))
|
||||
if f.endswith('.jpg')
|
||||
or f.endswith('.jpeg')
|
||||
or f.endswith('.png')
|
||||
or f.endswith('.webp')
|
||||
for f, lower_f in (
|
||||
(file, file.lower())
|
||||
for file in os.listdir(
|
||||
os.path.join(train_data_dir, folder)
|
||||
)
|
||||
)
|
||||
if lower_f.endswith(('.jpg', '.jpeg', '.png', '.webp'))
|
||||
]
|
||||
)
|
||||
|
||||
@ -513,6 +521,7 @@ def train_model(
|
||||
noise_offset=noise_offset,
|
||||
additional_parameters=additional_parameters,
|
||||
vae_batch_size=vae_batch_size,
|
||||
min_snr_gamma=min_snr_gamma,
|
||||
)
|
||||
run_cmd += f' --token_string="{token_string}"'
|
||||
run_cmd += f' --init_word="{init_word}"'
|
||||
@ -571,10 +580,12 @@ def ti_tab(
|
||||
v_parameterization,
|
||||
save_model_as,
|
||||
model_list,
|
||||
) = gradio_source_model(save_model_as_choices = [
|
||||
'ckpt',
|
||||
'safetensors',
|
||||
])
|
||||
) = gradio_source_model(
|
||||
save_model_as_choices=[
|
||||
'ckpt',
|
||||
'safetensors',
|
||||
]
|
||||
)
|
||||
|
||||
with gr.Tab('Folders'):
|
||||
with gr.Row():
|
||||
@ -776,6 +787,7 @@ def ti_tab(
|
||||
noise_offset,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
min_snr_gamma,
|
||||
) = gradio_advanced_training()
|
||||
color_aug.change(
|
||||
color_aug_changed,
|
||||
@ -883,6 +895,7 @@ def ti_tab(
|
||||
sample_prompts,
|
||||
additional_parameters,
|
||||
vae_batch_size,
|
||||
min_snr_gamma,
|
||||
]
|
||||
|
||||
button_open_config.click(
|
||||
|
426
train_db - Copy.py
Normal file
426
train_db - Copy.py
Normal file
@ -0,0 +1,426 @@
|
||||
# DreamBooth training
|
||||
# XXX dropped option: fine_tune
|
||||
|
||||
import gc
|
||||
import time
|
||||
import argparse
|
||||
import itertools
|
||||
import math
|
||||
import os
|
||||
import toml
|
||||
from multiprocessing import Value
|
||||
|
||||
from tqdm import tqdm
|
||||
import torch
|
||||
from accelerate.utils import set_seed
|
||||
import diffusers
|
||||
from diffusers import DDPMScheduler
|
||||
|
||||
import library.train_util as train_util
|
||||
import library.config_util as config_util
|
||||
from library.config_util import (
|
||||
ConfigSanitizer,
|
||||
BlueprintGenerator,
|
||||
)
|
||||
import library.custom_train_functions as custom_train_functions
|
||||
from library.custom_train_functions import apply_snr_weight
|
||||
|
||||
def train(args):
|
||||
train_util.verify_training_args(args)
|
||||
train_util.prepare_dataset_args(args, False)
|
||||
|
||||
cache_latents = args.cache_latents
|
||||
|
||||
if args.seed is not None:
|
||||
set_seed(args.seed) # 乱数系列を初期化する
|
||||
|
||||
tokenizer = train_util.load_tokenizer(args)
|
||||
|
||||
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, False, True))
|
||||
if args.dataset_config is not None:
|
||||
print(f"Load dataset config from {args.dataset_config}")
|
||||
user_config = config_util.load_user_config(args.dataset_config)
|
||||
ignored = ["train_data_dir", "reg_data_dir"]
|
||||
if any(getattr(args, attr) is not None for attr in ignored):
|
||||
print(
|
||||
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
|
||||
", ".join(ignored)
|
||||
)
|
||||
)
|
||||
else:
|
||||
user_config = {
|
||||
"datasets": [
|
||||
{"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(args.train_data_dir, args.reg_data_dir)}
|
||||
]
|
||||
}
|
||||
|
||||
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
|
||||
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
|
||||
|
||||
current_epoch = Value('i',0)
|
||||
current_step = Value('i',0)
|
||||
collater = train_util.collater_class(current_epoch,current_step)
|
||||
|
||||
if args.no_token_padding:
|
||||
train_dataset_group.disable_token_padding()
|
||||
|
||||
if args.debug_dataset:
|
||||
train_util.debug_dataset(train_dataset_group)
|
||||
return
|
||||
|
||||
if cache_latents:
|
||||
assert (
|
||||
train_dataset_group.is_latent_cacheable()
|
||||
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
|
||||
|
||||
# acceleratorを準備する
|
||||
print("prepare accelerator")
|
||||
|
||||
if args.gradient_accumulation_steps > 1:
|
||||
print(
|
||||
f"gradient_accumulation_steps is {args.gradient_accumulation_steps}. accelerate does not support gradient_accumulation_steps when training multiple models (U-Net and Text Encoder), so something might be wrong"
|
||||
)
|
||||
print(
|
||||
f"gradient_accumulation_stepsが{args.gradient_accumulation_steps}に設定されています。accelerateは複数モデル(U-NetおよびText Encoder)の学習時にgradient_accumulation_stepsをサポートしていないため結果は未知数です"
|
||||
)
|
||||
|
||||
accelerator, unwrap_model = train_util.prepare_accelerator(args)
|
||||
|
||||
# mixed precisionに対応した型を用意しておき適宜castする
|
||||
weight_dtype, save_dtype = train_util.prepare_dtype(args)
|
||||
|
||||
# モデルを読み込む
|
||||
text_encoder, vae, unet, load_stable_diffusion_format = train_util.load_target_model(args, weight_dtype)
|
||||
|
||||
# verify load/save model formats
|
||||
if load_stable_diffusion_format:
|
||||
src_stable_diffusion_ckpt = args.pretrained_model_name_or_path
|
||||
src_diffusers_model_path = None
|
||||
else:
|
||||
src_stable_diffusion_ckpt = None
|
||||
src_diffusers_model_path = args.pretrained_model_name_or_path
|
||||
|
||||
if args.save_model_as is None:
|
||||
save_stable_diffusion_format = load_stable_diffusion_format
|
||||
use_safetensors = args.use_safetensors
|
||||
else:
|
||||
save_stable_diffusion_format = args.save_model_as.lower() == "ckpt" or args.save_model_as.lower() == "safetensors"
|
||||
use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower())
|
||||
|
||||
# モデルに xformers とか memory efficient attention を組み込む
|
||||
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
|
||||
|
||||
# 学習を準備する
|
||||
if cache_latents:
|
||||
vae.to(accelerator.device, dtype=weight_dtype)
|
||||
vae.requires_grad_(False)
|
||||
vae.eval()
|
||||
with torch.no_grad():
|
||||
train_dataset_group.cache_latents(vae, args.vae_batch_size)
|
||||
vae.to("cpu")
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
gc.collect()
|
||||
|
||||
# 学習を準備する:モデルを適切な状態にする
|
||||
train_text_encoder = args.stop_text_encoder_training is None or args.stop_text_encoder_training >= 0
|
||||
unet.requires_grad_(True) # 念のため追加
|
||||
text_encoder.requires_grad_(train_text_encoder)
|
||||
if not train_text_encoder:
|
||||
print("Text Encoder is not trained.")
|
||||
|
||||
if args.gradient_checkpointing:
|
||||
unet.enable_gradient_checkpointing()
|
||||
text_encoder.gradient_checkpointing_enable()
|
||||
|
||||
if not cache_latents:
|
||||
vae.requires_grad_(False)
|
||||
vae.eval()
|
||||
vae.to(accelerator.device, dtype=weight_dtype)
|
||||
|
||||
# 学習に必要なクラスを準備する
|
||||
print("prepare optimizer, data loader etc.")
|
||||
if train_text_encoder:
|
||||
trainable_params = itertools.chain(unet.parameters(), text_encoder.parameters())
|
||||
else:
|
||||
trainable_params = unet.parameters()
|
||||
|
||||
_, _, optimizer = train_util.get_optimizer(args, trainable_params)
|
||||
|
||||
# dataloaderを準備する
|
||||
# DataLoaderのプロセス数:0はメインプロセスになる
|
||||
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) # cpu_count-1 ただし最大で指定された数まで
|
||||
train_dataloader = torch.utils.data.DataLoader(
|
||||
train_dataset_group,
|
||||
batch_size=1,
|
||||
shuffle=True,
|
||||
collate_fn=collater,
|
||||
num_workers=n_workers,
|
||||
persistent_workers=args.persistent_data_loader_workers,
|
||||
)
|
||||
|
||||
# 学習ステップ数を計算する
|
||||
if args.max_train_epochs is not None:
|
||||
args.max_train_steps = args.max_train_epochs * math.ceil(len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps)
|
||||
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
|
||||
|
||||
# データセット側にも学習ステップを送信
|
||||
train_dataset_group.set_max_train_steps(args.max_train_steps)
|
||||
|
||||
if args.stop_text_encoder_training is None:
|
||||
args.stop_text_encoder_training = args.max_train_steps + 1 # do not stop until end
|
||||
|
||||
# lr schedulerを用意する TODO gradient_accumulation_stepsの扱いが何かおかしいかもしれない。後で確認する
|
||||
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
|
||||
|
||||
# 実験的機能:勾配も含めたfp16学習を行う モデル全体をfp16にする
|
||||
if args.full_fp16:
|
||||
assert (
|
||||
args.mixed_precision == "fp16"
|
||||
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
|
||||
print("enable full fp16 training.")
|
||||
unet.to(weight_dtype)
|
||||
text_encoder.to(weight_dtype)
|
||||
|
||||
# acceleratorがなんかよろしくやってくれるらしい
|
||||
if train_text_encoder:
|
||||
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||||
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
|
||||
)
|
||||
else:
|
||||
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler)
|
||||
|
||||
if not train_text_encoder:
|
||||
text_encoder.to(accelerator.device, dtype=weight_dtype) # to avoid 'cpu' vs 'cuda' error
|
||||
|
||||
# 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
|
||||
if args.full_fp16:
|
||||
train_util.patch_accelerator_for_fp16_training(accelerator)
|
||||
|
||||
# resumeする
|
||||
if args.resume is not None:
|
||||
print(f"resume training from state: {args.resume}")
|
||||
accelerator.load_state(args.resume)
|
||||
|
||||
# epoch数を計算する
|
||||
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
||||
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
||||
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
|
||||
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
|
||||
|
||||
# 学習する
|
||||
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
||||
print("running training / 学習開始")
|
||||
print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}")
|
||||
print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}")
|
||||
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
|
||||
print(f" num epochs / epoch数: {num_train_epochs}")
|
||||
print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
|
||||
print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
|
||||
print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
|
||||
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
|
||||
|
||||
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
|
||||
global_step = 0
|
||||
|
||||
noise_scheduler = DDPMScheduler(
|
||||
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
|
||||
)
|
||||
|
||||
if accelerator.is_main_process:
|
||||
accelerator.init_trackers("dreambooth")
|
||||
|
||||
loss_list = []
|
||||
loss_total = 0.0
|
||||
for epoch in range(num_train_epochs):
|
||||
print(f"epoch {epoch+1}/{num_train_epochs}")
|
||||
current_epoch.value = epoch+1
|
||||
|
||||
# 指定したステップ数までText Encoderを学習する:epoch最初の状態
|
||||
unet.train()
|
||||
# train==True is required to enable gradient_checkpointing
|
||||
if args.gradient_checkpointing or global_step < args.stop_text_encoder_training:
|
||||
text_encoder.train()
|
||||
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
current_step.value = global_step
|
||||
# 指定したステップ数でText Encoderの学習を止める
|
||||
if global_step == args.stop_text_encoder_training:
|
||||
print(f"stop text encoder training at step {global_step}")
|
||||
if not args.gradient_checkpointing:
|
||||
text_encoder.train(False)
|
||||
text_encoder.requires_grad_(False)
|
||||
|
||||
with accelerator.accumulate(unet):
|
||||
with torch.no_grad():
|
||||
# latentに変換
|
||||
if cache_latents:
|
||||
latents = batch["latents"].to(accelerator.device)
|
||||
else:
|
||||
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
|
||||
latents = latents * 0.18215
|
||||
b_size = latents.shape[0]
|
||||
|
||||
# Sample noise that we'll add to the latents
|
||||
noise = torch.randn_like(latents, device=latents.device)
|
||||
if args.noise_offset:
|
||||
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
|
||||
noise += args.noise_offset * torch.randn((latents.shape[0], latents.shape[1], 1, 1), device=latents.device)
|
||||
|
||||
# Get the text embedding for conditioning
|
||||
with torch.set_grad_enabled(global_step < args.stop_text_encoder_training):
|
||||
input_ids = batch["input_ids"].to(accelerator.device)
|
||||
encoder_hidden_states = train_util.get_hidden_states(
|
||||
args, input_ids, tokenizer, text_encoder, None if not args.full_fp16 else weight_dtype
|
||||
)
|
||||
|
||||
# Sample a random timestep for each image
|
||||
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
|
||||
timesteps = timesteps.long()
|
||||
|
||||
# Add noise to the latents according to the noise magnitude at each timestep
|
||||
# (this is the forward diffusion process)
|
||||
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
||||
|
||||
# Predict the noise residual
|
||||
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
||||
|
||||
if args.v_parameterization:
|
||||
# v-parameterization training
|
||||
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
||||
else:
|
||||
target = noise
|
||||
|
||||
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
|
||||
loss = loss.mean([1, 2, 3])
|
||||
|
||||
loss_weights = batch["loss_weights"] # 各sampleごとのweight
|
||||
loss = loss * loss_weights
|
||||
|
||||
if args.min_snr_gamma:
|
||||
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
|
||||
|
||||
|
||||
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
|
||||
|
||||
accelerator.backward(loss)
|
||||
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
|
||||
if train_text_encoder:
|
||||
params_to_clip = itertools.chain(unet.parameters(), text_encoder.parameters())
|
||||
else:
|
||||
params_to_clip = unet.parameters()
|
||||
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
||||
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
|
||||
# Checks if the accelerator has performed an optimization step behind the scenes
|
||||
if accelerator.sync_gradients:
|
||||
progress_bar.update(1)
|
||||
global_step += 1
|
||||
|
||||
train_util.sample_images(
|
||||
accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet
|
||||
)
|
||||
|
||||
current_loss = loss.detach().item()
|
||||
if args.logging_dir is not None:
|
||||
logs = {"loss": current_loss, "lr": float(lr_scheduler.get_last_lr()[0])}
|
||||
if args.optimizer_type.lower() == "DAdaptation".lower(): # tracking d*lr value
|
||||
logs["lr/d*lr"] = (
|
||||
lr_scheduler.optimizers[0].param_groups[0]["d"] * lr_scheduler.optimizers[0].param_groups[0]["lr"]
|
||||
)
|
||||
accelerator.log(logs, step=global_step)
|
||||
|
||||
if epoch == 0:
|
||||
loss_list.append(current_loss)
|
||||
else:
|
||||
loss_total -= loss_list[step]
|
||||
loss_list[step] = current_loss
|
||||
loss_total += current_loss
|
||||
avr_loss = loss_total / len(loss_list)
|
||||
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
|
||||
progress_bar.set_postfix(**logs)
|
||||
|
||||
if global_step >= args.max_train_steps:
|
||||
break
|
||||
|
||||
if args.logging_dir is not None:
|
||||
logs = {"loss/epoch": loss_total / len(loss_list)}
|
||||
accelerator.log(logs, step=epoch + 1)
|
||||
|
||||
accelerator.wait_for_everyone()
|
||||
|
||||
if args.save_every_n_epochs is not None:
|
||||
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
|
||||
train_util.save_sd_model_on_epoch_end(
|
||||
args,
|
||||
accelerator,
|
||||
src_path,
|
||||
save_stable_diffusion_format,
|
||||
use_safetensors,
|
||||
save_dtype,
|
||||
epoch,
|
||||
num_train_epochs,
|
||||
global_step,
|
||||
unwrap_model(text_encoder),
|
||||
unwrap_model(unet),
|
||||
vae,
|
||||
)
|
||||
|
||||
train_util.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet)
|
||||
|
||||
is_main_process = accelerator.is_main_process
|
||||
if is_main_process:
|
||||
unet = unwrap_model(unet)
|
||||
text_encoder = unwrap_model(text_encoder)
|
||||
|
||||
accelerator.end_training()
|
||||
|
||||
if args.save_state:
|
||||
train_util.save_state_on_train_end(args, accelerator)
|
||||
|
||||
del accelerator # この後メモリを使うのでこれは消す
|
||||
|
||||
if is_main_process:
|
||||
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
|
||||
train_util.save_sd_model_on_train_end(
|
||||
args, src_path, save_stable_diffusion_format, use_safetensors, save_dtype, epoch, global_step, text_encoder, unet, vae
|
||||
)
|
||||
print("model saved.")
|
||||
|
||||
|
||||
def setup_parser() -> argparse.ArgumentParser:
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
train_util.add_sd_models_arguments(parser)
|
||||
train_util.add_dataset_arguments(parser, True, False, True)
|
||||
train_util.add_training_arguments(parser, True)
|
||||
train_util.add_sd_saving_arguments(parser)
|
||||
train_util.add_optimizer_arguments(parser)
|
||||
config_util.add_config_arguments(parser)
|
||||
custom_train_functions.add_custom_train_arguments(parser)
|
||||
|
||||
parser.add_argument(
|
||||
"--no_token_padding",
|
||||
action="store_true",
|
||||
help="disable token padding (same as Diffuser's DreamBooth) / トークンのpaddingを無効にする(Diffusers版DreamBoothと同じ動作)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--stop_text_encoder_training",
|
||||
type=int,
|
||||
default=None,
|
||||
help="steps to stop text encoder training, -1 for no training / Text Encoderの学習を止めるステップ数、-1で最初から学習しない",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = setup_parser()
|
||||
|
||||
args = parser.parse_args()
|
||||
args = train_util.read_config_from_file(args, parser)
|
||||
|
||||
train(args)
|
28
train_db.py
28
train_db.py
@ -8,6 +8,7 @@ import itertools
|
||||
import math
|
||||
import os
|
||||
import toml
|
||||
from multiprocessing import Value
|
||||
|
||||
from tqdm import tqdm
|
||||
import torch
|
||||
@ -21,10 +22,8 @@ from library.config_util import (
|
||||
ConfigSanitizer,
|
||||
BlueprintGenerator,
|
||||
)
|
||||
|
||||
|
||||
def collate_fn(examples):
|
||||
return examples[0]
|
||||
import library.custom_train_functions as custom_train_functions
|
||||
from library.custom_train_functions import apply_snr_weight
|
||||
|
||||
|
||||
def train(args):
|
||||
@ -59,6 +58,11 @@ def train(args):
|
||||
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
|
||||
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
|
||||
|
||||
current_epoch = Value("i", 0)
|
||||
current_step = Value("i", 0)
|
||||
ds_for_collater = train_dataset_group if args.max_data_loader_n_workers == 0 else None
|
||||
collater = train_util.collater_class(current_epoch, current_step, ds_for_collater)
|
||||
|
||||
if args.no_token_padding:
|
||||
train_dataset_group.disable_token_padding()
|
||||
|
||||
@ -152,16 +156,21 @@ def train(args):
|
||||
train_dataset_group,
|
||||
batch_size=1,
|
||||
shuffle=True,
|
||||
collate_fn=collate_fn,
|
||||
collate_fn=collater,
|
||||
num_workers=n_workers,
|
||||
persistent_workers=args.persistent_data_loader_workers,
|
||||
)
|
||||
|
||||
# 学習ステップ数を計算する
|
||||
if args.max_train_epochs is not None:
|
||||
args.max_train_steps = args.max_train_epochs * math.ceil(len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps)
|
||||
args.max_train_steps = args.max_train_epochs * math.ceil(
|
||||
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
|
||||
)
|
||||
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
|
||||
|
||||
# データセット側にも学習ステップを送信
|
||||
train_dataset_group.set_max_train_steps(args.max_train_steps)
|
||||
|
||||
if args.stop_text_encoder_training is None:
|
||||
args.stop_text_encoder_training = args.max_train_steps + 1 # do not stop until end
|
||||
|
||||
@ -229,7 +238,7 @@ def train(args):
|
||||
loss_total = 0.0
|
||||
for epoch in range(num_train_epochs):
|
||||
print(f"epoch {epoch+1}/{num_train_epochs}")
|
||||
train_dataset_group.set_current_epoch(epoch + 1)
|
||||
current_epoch.value = epoch + 1
|
||||
|
||||
# 指定したステップ数までText Encoderを学習する:epoch最初の状態
|
||||
unet.train()
|
||||
@ -238,6 +247,7 @@ def train(args):
|
||||
text_encoder.train()
|
||||
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
current_step.value = global_step
|
||||
# 指定したステップ数でText Encoderの学習を止める
|
||||
if global_step == args.stop_text_encoder_training:
|
||||
print(f"stop text encoder training at step {global_step}")
|
||||
@ -291,6 +301,9 @@ def train(args):
|
||||
loss_weights = batch["loss_weights"] # 各sampleごとのweight
|
||||
loss = loss * loss_weights
|
||||
|
||||
if args.min_snr_gamma:
|
||||
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
|
||||
|
||||
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
|
||||
|
||||
accelerator.backward(loss)
|
||||
@ -390,6 +403,7 @@ def setup_parser() -> argparse.ArgumentParser:
|
||||
train_util.add_sd_saving_arguments(parser)
|
||||
train_util.add_optimizer_arguments(parser)
|
||||
config_util.add_config_arguments(parser)
|
||||
custom_train_functions.add_custom_train_arguments(parser)
|
||||
|
||||
parser.add_argument(
|
||||
"--no_token_padding",
|
||||
|
710
train_network - Copy.py
Normal file
710
train_network - Copy.py
Normal file
@ -0,0 +1,710 @@
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
import importlib
|
||||
import argparse
|
||||
import gc
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
import json
|
||||
import toml
|
||||
from multiprocessing import Value
|
||||
|
||||
from tqdm import tqdm
|
||||
import torch
|
||||
from accelerate.utils import set_seed
|
||||
from diffusers import DDPMScheduler
|
||||
|
||||
import library.train_util as train_util
|
||||
from library.train_util import (
|
||||
DreamBoothDataset,
|
||||
)
|
||||
import library.config_util as config_util
|
||||
from library.config_util import (
|
||||
ConfigSanitizer,
|
||||
BlueprintGenerator,
|
||||
)
|
||||
import library.custom_train_functions as custom_train_functions
|
||||
from library.custom_train_functions import apply_snr_weight
|
||||
|
||||
|
||||
# TODO 他のスクリプトと共通化する
|
||||
def generate_step_logs(args: argparse.Namespace, current_loss, avr_loss, lr_scheduler):
|
||||
logs = {"loss/current": current_loss, "loss/average": avr_loss}
|
||||
|
||||
if args.network_train_unet_only:
|
||||
logs["lr/unet"] = float(lr_scheduler.get_last_lr()[0])
|
||||
elif args.network_train_text_encoder_only:
|
||||
logs["lr/textencoder"] = float(lr_scheduler.get_last_lr()[0])
|
||||
else:
|
||||
logs["lr/textencoder"] = float(lr_scheduler.get_last_lr()[0])
|
||||
logs["lr/unet"] = float(lr_scheduler.get_last_lr()[-1]) # may be same to textencoder
|
||||
|
||||
if args.optimizer_type.lower() == "DAdaptation".lower(): # tracking d*lr value of unet.
|
||||
logs["lr/d*lr"] = lr_scheduler.optimizers[-1].param_groups[0]["d"] * lr_scheduler.optimizers[-1].param_groups[0]["lr"]
|
||||
|
||||
return logs
|
||||
|
||||
|
||||
def train(args):
|
||||
session_id = random.randint(0, 2**32)
|
||||
training_started_at = time.time()
|
||||
train_util.verify_training_args(args)
|
||||
train_util.prepare_dataset_args(args, True)
|
||||
|
||||
cache_latents = args.cache_latents
|
||||
use_dreambooth_method = args.in_json is None
|
||||
use_user_config = args.dataset_config is not None
|
||||
|
||||
if args.seed is not None:
|
||||
set_seed(args.seed)
|
||||
|
||||
tokenizer = train_util.load_tokenizer(args)
|
||||
|
||||
# データセットを準備する
|
||||
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, True))
|
||||
if use_user_config:
|
||||
print(f"Load dataset config from {args.dataset_config}")
|
||||
user_config = config_util.load_user_config(args.dataset_config)
|
||||
ignored = ["train_data_dir", "reg_data_dir", "in_json"]
|
||||
if any(getattr(args, attr) is not None for attr in ignored):
|
||||
print(
|
||||
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
|
||||
", ".join(ignored)
|
||||
)
|
||||
)
|
||||
else:
|
||||
if use_dreambooth_method:
|
||||
print("Use DreamBooth method.")
|
||||
user_config = {
|
||||
"datasets": [
|
||||
{"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(args.train_data_dir, args.reg_data_dir)}
|
||||
]
|
||||
}
|
||||
else:
|
||||
print("Train with captions.")
|
||||
user_config = {
|
||||
"datasets": [
|
||||
{
|
||||
"subsets": [
|
||||
{
|
||||
"image_dir": args.train_data_dir,
|
||||
"metadata_file": args.in_json,
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
|
||||
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
|
||||
|
||||
current_epoch = Value('i',0)
|
||||
current_step = Value('i',0)
|
||||
collater = train_util.collater_class(current_epoch,current_step)
|
||||
|
||||
if args.debug_dataset:
|
||||
train_util.debug_dataset(train_dataset_group)
|
||||
return
|
||||
if len(train_dataset_group) == 0:
|
||||
print(
|
||||
"No data found. Please verify arguments (train_data_dir must be the parent of folders with images) / 画像がありません。引数指定を確認してください(train_data_dirには画像があるフォルダではなく、画像があるフォルダの親フォルダを指定する必要があります)"
|
||||
)
|
||||
return
|
||||
|
||||
if cache_latents:
|
||||
assert (
|
||||
train_dataset_group.is_latent_cacheable()
|
||||
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
|
||||
|
||||
# acceleratorを準備する
|
||||
print("prepare accelerator")
|
||||
accelerator, unwrap_model = train_util.prepare_accelerator(args)
|
||||
is_main_process = accelerator.is_main_process
|
||||
|
||||
# mixed precisionに対応した型を用意しておき適宜castする
|
||||
weight_dtype, save_dtype = train_util.prepare_dtype(args)
|
||||
|
||||
# モデルを読み込む
|
||||
text_encoder, vae, unet, _ = train_util.load_target_model(args, weight_dtype)
|
||||
|
||||
# work on low-ram device
|
||||
if args.lowram:
|
||||
text_encoder.to("cuda")
|
||||
unet.to("cuda")
|
||||
|
||||
# モデルに xformers とか memory efficient attention を組み込む
|
||||
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
|
||||
|
||||
# 学習を準備する
|
||||
if cache_latents:
|
||||
vae.to(accelerator.device, dtype=weight_dtype)
|
||||
vae.requires_grad_(False)
|
||||
vae.eval()
|
||||
with torch.no_grad():
|
||||
train_dataset_group.cache_latents(vae, args.vae_batch_size)
|
||||
vae.to("cpu")
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
gc.collect()
|
||||
|
||||
# prepare network
|
||||
import sys
|
||||
|
||||
sys.path.append(os.path.dirname(__file__))
|
||||
print("import network module:", args.network_module)
|
||||
network_module = importlib.import_module(args.network_module)
|
||||
|
||||
net_kwargs = {}
|
||||
if args.network_args is not None:
|
||||
for net_arg in args.network_args:
|
||||
key, value = net_arg.split("=")
|
||||
net_kwargs[key] = value
|
||||
|
||||
# if a new network is added in future, add if ~ then blocks for each network (;'∀')
|
||||
network = network_module.create_network(1.0, args.network_dim, args.network_alpha, vae, text_encoder, unet, **net_kwargs)
|
||||
if network is None:
|
||||
return
|
||||
|
||||
if args.network_weights is not None:
|
||||
print("load network weights from:", args.network_weights)
|
||||
network.load_weights(args.network_weights)
|
||||
|
||||
train_unet = not args.network_train_text_encoder_only
|
||||
train_text_encoder = not args.network_train_unet_only
|
||||
network.apply_to(text_encoder, unet, train_text_encoder, train_unet)
|
||||
|
||||
if args.gradient_checkpointing:
|
||||
unet.enable_gradient_checkpointing()
|
||||
text_encoder.gradient_checkpointing_enable()
|
||||
network.enable_gradient_checkpointing() # may have no effect
|
||||
|
||||
# 学習に必要なクラスを準備する
|
||||
print("prepare optimizer, data loader etc.")
|
||||
|
||||
trainable_params = network.prepare_optimizer_params(args.text_encoder_lr, args.unet_lr)
|
||||
optimizer_name, optimizer_args, optimizer = train_util.get_optimizer(args, trainable_params)
|
||||
|
||||
# dataloaderを準備する
|
||||
# DataLoaderのプロセス数:0はメインプロセスになる
|
||||
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) # cpu_count-1 ただし最大で指定された数まで
|
||||
|
||||
train_dataloader = torch.utils.data.DataLoader(
|
||||
train_dataset_group,
|
||||
batch_size=1,
|
||||
shuffle=True,
|
||||
collate_fn=collater,
|
||||
num_workers=n_workers,
|
||||
persistent_workers=args.persistent_data_loader_workers,
|
||||
)
|
||||
|
||||
# 学習ステップ数を計算する
|
||||
if args.max_train_epochs is not None:
|
||||
args.max_train_steps = args.max_train_epochs * math.ceil(len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps)
|
||||
if is_main_process:
|
||||
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
|
||||
|
||||
# データセット側にも学習ステップを送信
|
||||
train_dataset_group.set_max_train_steps(args.max_train_steps)
|
||||
|
||||
# lr schedulerを用意する
|
||||
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
|
||||
|
||||
# 実験的機能:勾配も含めたfp16学習を行う モデル全体をfp16にする
|
||||
if args.full_fp16:
|
||||
assert (
|
||||
args.mixed_precision == "fp16"
|
||||
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
|
||||
print("enable full fp16 training.")
|
||||
network.to(weight_dtype)
|
||||
|
||||
# acceleratorがなんかよろしくやってくれるらしい
|
||||
if train_unet and train_text_encoder:
|
||||
unet, text_encoder, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||||
unet, text_encoder, network, optimizer, train_dataloader, lr_scheduler
|
||||
)
|
||||
elif train_unet:
|
||||
unet, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||||
unet, network, optimizer, train_dataloader, lr_scheduler
|
||||
)
|
||||
elif train_text_encoder:
|
||||
text_encoder, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||||
text_encoder, network, optimizer, train_dataloader, lr_scheduler
|
||||
)
|
||||
else:
|
||||
network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(network, optimizer, train_dataloader, lr_scheduler)
|
||||
|
||||
unet.requires_grad_(False)
|
||||
unet.to(accelerator.device, dtype=weight_dtype)
|
||||
text_encoder.requires_grad_(False)
|
||||
text_encoder.to(accelerator.device)
|
||||
if args.gradient_checkpointing: # according to TI example in Diffusers, train is required
|
||||
unet.train()
|
||||
text_encoder.train()
|
||||
|
||||
# set top parameter requires_grad = True for gradient checkpointing works
|
||||
if type(text_encoder) == DDP:
|
||||
text_encoder.module.text_model.embeddings.requires_grad_(True)
|
||||
else:
|
||||
text_encoder.text_model.embeddings.requires_grad_(True)
|
||||
else:
|
||||
unet.eval()
|
||||
text_encoder.eval()
|
||||
|
||||
# support DistributedDataParallel
|
||||
if type(text_encoder) == DDP:
|
||||
text_encoder = text_encoder.module
|
||||
unet = unet.module
|
||||
network = network.module
|
||||
|
||||
network.prepare_grad_etc(text_encoder, unet)
|
||||
|
||||
if not cache_latents:
|
||||
vae.requires_grad_(False)
|
||||
vae.eval()
|
||||
vae.to(accelerator.device, dtype=weight_dtype)
|
||||
|
||||
# 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
|
||||
if args.full_fp16:
|
||||
train_util.patch_accelerator_for_fp16_training(accelerator)
|
||||
|
||||
# resumeする
|
||||
if args.resume is not None:
|
||||
print(f"resume training from state: {args.resume}")
|
||||
accelerator.load_state(args.resume)
|
||||
|
||||
# epoch数を計算する
|
||||
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
||||
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
||||
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
|
||||
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
|
||||
|
||||
# 学習する
|
||||
# TODO: find a way to handle total batch size when there are multiple datasets
|
||||
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
||||
|
||||
if is_main_process:
|
||||
print("running training / 学習開始")
|
||||
print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}")
|
||||
print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}")
|
||||
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
|
||||
print(f" num epochs / epoch数: {num_train_epochs}")
|
||||
print(f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}")
|
||||
# print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
|
||||
print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
|
||||
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
|
||||
|
||||
# TODO refactor metadata creation and move to util
|
||||
metadata = {
|
||||
"ss_session_id": session_id, # random integer indicating which group of epochs the model came from
|
||||
"ss_training_started_at": training_started_at, # unix timestamp
|
||||
"ss_output_name": args.output_name,
|
||||
"ss_learning_rate": args.learning_rate,
|
||||
"ss_text_encoder_lr": args.text_encoder_lr,
|
||||
"ss_unet_lr": args.unet_lr,
|
||||
"ss_num_train_images": train_dataset_group.num_train_images,
|
||||
"ss_num_reg_images": train_dataset_group.num_reg_images,
|
||||
"ss_num_batches_per_epoch": len(train_dataloader),
|
||||
"ss_num_epochs": num_train_epochs,
|
||||
"ss_gradient_checkpointing": args.gradient_checkpointing,
|
||||
"ss_gradient_accumulation_steps": args.gradient_accumulation_steps,
|
||||
"ss_max_train_steps": args.max_train_steps,
|
||||
"ss_lr_warmup_steps": args.lr_warmup_steps,
|
||||
"ss_lr_scheduler": args.lr_scheduler,
|
||||
"ss_network_module": args.network_module,
|
||||
"ss_network_dim": args.network_dim, # None means default because another network than LoRA may have another default dim
|
||||
"ss_network_alpha": args.network_alpha, # some networks may not use this value
|
||||
"ss_mixed_precision": args.mixed_precision,
|
||||
"ss_full_fp16": bool(args.full_fp16),
|
||||
"ss_v2": bool(args.v2),
|
||||
"ss_clip_skip": args.clip_skip,
|
||||
"ss_max_token_length": args.max_token_length,
|
||||
"ss_cache_latents": bool(args.cache_latents),
|
||||
"ss_seed": args.seed,
|
||||
"ss_lowram": args.lowram,
|
||||
"ss_noise_offset": args.noise_offset,
|
||||
"ss_training_comment": args.training_comment, # will not be updated after training
|
||||
"ss_sd_scripts_commit_hash": train_util.get_git_revision_hash(),
|
||||
"ss_optimizer": optimizer_name + (f"({optimizer_args})" if len(optimizer_args) > 0 else ""),
|
||||
"ss_max_grad_norm": args.max_grad_norm,
|
||||
"ss_caption_dropout_rate": args.caption_dropout_rate,
|
||||
"ss_caption_dropout_every_n_epochs": args.caption_dropout_every_n_epochs,
|
||||
"ss_caption_tag_dropout_rate": args.caption_tag_dropout_rate,
|
||||
"ss_face_crop_aug_range": args.face_crop_aug_range,
|
||||
"ss_prior_loss_weight": args.prior_loss_weight,
|
||||
}
|
||||
|
||||
if use_user_config:
|
||||
# save metadata of multiple datasets
|
||||
# NOTE: pack "ss_datasets" value as json one time
|
||||
# or should also pack nested collections as json?
|
||||
datasets_metadata = []
|
||||
tag_frequency = {} # merge tag frequency for metadata editor
|
||||
dataset_dirs_info = {} # merge subset dirs for metadata editor
|
||||
|
||||
for dataset in train_dataset_group.datasets:
|
||||
is_dreambooth_dataset = isinstance(dataset, DreamBoothDataset)
|
||||
dataset_metadata = {
|
||||
"is_dreambooth": is_dreambooth_dataset,
|
||||
"batch_size_per_device": dataset.batch_size,
|
||||
"num_train_images": dataset.num_train_images, # includes repeating
|
||||
"num_reg_images": dataset.num_reg_images,
|
||||
"resolution": (dataset.width, dataset.height),
|
||||
"enable_bucket": bool(dataset.enable_bucket),
|
||||
"min_bucket_reso": dataset.min_bucket_reso,
|
||||
"max_bucket_reso": dataset.max_bucket_reso,
|
||||
"tag_frequency": dataset.tag_frequency,
|
||||
"bucket_info": dataset.bucket_info,
|
||||
}
|
||||
|
||||
subsets_metadata = []
|
||||
for subset in dataset.subsets:
|
||||
subset_metadata = {
|
||||
"img_count": subset.img_count,
|
||||
"num_repeats": subset.num_repeats,
|
||||
"color_aug": bool(subset.color_aug),
|
||||
"flip_aug": bool(subset.flip_aug),
|
||||
"random_crop": bool(subset.random_crop),
|
||||
"shuffle_caption": bool(subset.shuffle_caption),
|
||||
"keep_tokens": subset.keep_tokens,
|
||||
}
|
||||
|
||||
image_dir_or_metadata_file = None
|
||||
if subset.image_dir:
|
||||
image_dir = os.path.basename(subset.image_dir)
|
||||
subset_metadata["image_dir"] = image_dir
|
||||
image_dir_or_metadata_file = image_dir
|
||||
|
||||
if is_dreambooth_dataset:
|
||||
subset_metadata["class_tokens"] = subset.class_tokens
|
||||
subset_metadata["is_reg"] = subset.is_reg
|
||||
if subset.is_reg:
|
||||
image_dir_or_metadata_file = None # not merging reg dataset
|
||||
else:
|
||||
metadata_file = os.path.basename(subset.metadata_file)
|
||||
subset_metadata["metadata_file"] = metadata_file
|
||||
image_dir_or_metadata_file = metadata_file # may overwrite
|
||||
|
||||
subsets_metadata.append(subset_metadata)
|
||||
|
||||
# merge dataset dir: not reg subset only
|
||||
# TODO update additional-network extension to show detailed dataset config from metadata
|
||||
if image_dir_or_metadata_file is not None:
|
||||
# datasets may have a certain dir multiple times
|
||||
v = image_dir_or_metadata_file
|
||||
i = 2
|
||||
while v in dataset_dirs_info:
|
||||
v = image_dir_or_metadata_file + f" ({i})"
|
||||
i += 1
|
||||
image_dir_or_metadata_file = v
|
||||
|
||||
dataset_dirs_info[image_dir_or_metadata_file] = {"n_repeats": subset.num_repeats, "img_count": subset.img_count}
|
||||
|
||||
dataset_metadata["subsets"] = subsets_metadata
|
||||
datasets_metadata.append(dataset_metadata)
|
||||
|
||||
# merge tag frequency:
|
||||
for ds_dir_name, ds_freq_for_dir in dataset.tag_frequency.items():
|
||||
# あるディレクトリが複数のdatasetで使用されている場合、一度だけ数える
|
||||
# もともと繰り返し回数を指定しているので、キャプション内でのタグの出現回数と、それが学習で何度使われるかは一致しない
|
||||
# なので、ここで複数datasetの回数を合算してもあまり意味はない
|
||||
if ds_dir_name in tag_frequency:
|
||||
continue
|
||||
tag_frequency[ds_dir_name] = ds_freq_for_dir
|
||||
|
||||
metadata["ss_datasets"] = json.dumps(datasets_metadata)
|
||||
metadata["ss_tag_frequency"] = json.dumps(tag_frequency)
|
||||
metadata["ss_dataset_dirs"] = json.dumps(dataset_dirs_info)
|
||||
else:
|
||||
# conserving backward compatibility when using train_dataset_dir and reg_dataset_dir
|
||||
assert (
|
||||
len(train_dataset_group.datasets) == 1
|
||||
), f"There should be a single dataset but {len(train_dataset_group.datasets)} found. This seems to be a bug. / データセットは1個だけ存在するはずですが、実際には{len(train_dataset_group.datasets)}個でした。プログラムのバグかもしれません。"
|
||||
|
||||
dataset = train_dataset_group.datasets[0]
|
||||
|
||||
dataset_dirs_info = {}
|
||||
reg_dataset_dirs_info = {}
|
||||
if use_dreambooth_method:
|
||||
for subset in dataset.subsets:
|
||||
info = reg_dataset_dirs_info if subset.is_reg else dataset_dirs_info
|
||||
info[os.path.basename(subset.image_dir)] = {"n_repeats": subset.num_repeats, "img_count": subset.img_count}
|
||||
else:
|
||||
for subset in dataset.subsets:
|
||||
dataset_dirs_info[os.path.basename(subset.metadata_file)] = {
|
||||
"n_repeats": subset.num_repeats,
|
||||
"img_count": subset.img_count,
|
||||
}
|
||||
|
||||
metadata.update(
|
||||
{
|
||||
"ss_batch_size_per_device": args.train_batch_size,
|
||||
"ss_total_batch_size": total_batch_size,
|
||||
"ss_resolution": args.resolution,
|
||||
"ss_color_aug": bool(args.color_aug),
|
||||
"ss_flip_aug": bool(args.flip_aug),
|
||||
"ss_random_crop": bool(args.random_crop),
|
||||
"ss_shuffle_caption": bool(args.shuffle_caption),
|
||||
"ss_enable_bucket": bool(dataset.enable_bucket),
|
||||
"ss_bucket_no_upscale": bool(dataset.bucket_no_upscale),
|
||||
"ss_min_bucket_reso": dataset.min_bucket_reso,
|
||||
"ss_max_bucket_reso": dataset.max_bucket_reso,
|
||||
"ss_keep_tokens": args.keep_tokens,
|
||||
"ss_dataset_dirs": json.dumps(dataset_dirs_info),
|
||||
"ss_reg_dataset_dirs": json.dumps(reg_dataset_dirs_info),
|
||||
"ss_tag_frequency": json.dumps(dataset.tag_frequency),
|
||||
"ss_bucket_info": json.dumps(dataset.bucket_info),
|
||||
}
|
||||
)
|
||||
|
||||
# add extra args
|
||||
if args.network_args:
|
||||
metadata["ss_network_args"] = json.dumps(net_kwargs)
|
||||
# for key, value in net_kwargs.items():
|
||||
# metadata["ss_arg_" + key] = value
|
||||
|
||||
# model name and hash
|
||||
if args.pretrained_model_name_or_path is not None:
|
||||
sd_model_name = args.pretrained_model_name_or_path
|
||||
if os.path.exists(sd_model_name):
|
||||
metadata["ss_sd_model_hash"] = train_util.model_hash(sd_model_name)
|
||||
metadata["ss_new_sd_model_hash"] = train_util.calculate_sha256(sd_model_name)
|
||||
sd_model_name = os.path.basename(sd_model_name)
|
||||
metadata["ss_sd_model_name"] = sd_model_name
|
||||
|
||||
if args.vae is not None:
|
||||
vae_name = args.vae
|
||||
if os.path.exists(vae_name):
|
||||
metadata["ss_vae_hash"] = train_util.model_hash(vae_name)
|
||||
metadata["ss_new_vae_hash"] = train_util.calculate_sha256(vae_name)
|
||||
vae_name = os.path.basename(vae_name)
|
||||
metadata["ss_vae_name"] = vae_name
|
||||
|
||||
metadata = {k: str(v) for k, v in metadata.items()}
|
||||
|
||||
# make minimum metadata for filtering
|
||||
minimum_keys = ["ss_network_module", "ss_network_dim", "ss_network_alpha", "ss_network_args"]
|
||||
minimum_metadata = {}
|
||||
for key in minimum_keys:
|
||||
if key in metadata:
|
||||
minimum_metadata[key] = metadata[key]
|
||||
|
||||
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
|
||||
global_step = 0
|
||||
|
||||
noise_scheduler = DDPMScheduler(
|
||||
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
|
||||
)
|
||||
if accelerator.is_main_process:
|
||||
accelerator.init_trackers("network_train")
|
||||
|
||||
loss_list = []
|
||||
loss_total = 0.0
|
||||
del train_dataset_group
|
||||
for epoch in range(num_train_epochs):
|
||||
if is_main_process:
|
||||
print(f"epoch {epoch+1}/{num_train_epochs}")
|
||||
current_epoch.value = epoch+1
|
||||
|
||||
metadata["ss_epoch"] = str(epoch + 1)
|
||||
|
||||
network.on_epoch_start(text_encoder, unet)
|
||||
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
current_step.value = global_step
|
||||
with accelerator.accumulate(network):
|
||||
with torch.no_grad():
|
||||
if "latents" in batch and batch["latents"] is not None:
|
||||
latents = batch["latents"].to(accelerator.device)
|
||||
else:
|
||||
# latentに変換
|
||||
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
|
||||
latents = latents * 0.18215
|
||||
b_size = latents.shape[0]
|
||||
|
||||
with torch.set_grad_enabled(train_text_encoder):
|
||||
# Get the text embedding for conditioning
|
||||
input_ids = batch["input_ids"].to(accelerator.device)
|
||||
encoder_hidden_states = train_util.get_hidden_states(args, input_ids, tokenizer, text_encoder, weight_dtype)
|
||||
|
||||
# Sample noise that we'll add to the latents
|
||||
noise = torch.randn_like(latents, device=latents.device)
|
||||
if args.noise_offset:
|
||||
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
|
||||
noise += args.noise_offset * torch.randn((latents.shape[0], latents.shape[1], 1, 1), device=latents.device)
|
||||
|
||||
# Sample a random timestep for each image
|
||||
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
|
||||
timesteps = timesteps.long()
|
||||
# Add noise to the latents according to the noise magnitude at each timestep
|
||||
# (this is the forward diffusion process)
|
||||
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
||||
|
||||
# Predict the noise residual
|
||||
with accelerator.autocast():
|
||||
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
||||
|
||||
if args.v_parameterization:
|
||||
# v-parameterization training
|
||||
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
||||
else:
|
||||
target = noise
|
||||
|
||||
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
|
||||
loss = loss.mean([1, 2, 3])
|
||||
|
||||
loss_weights = batch["loss_weights"] # 各sampleごとのweight
|
||||
loss = loss * loss_weights
|
||||
|
||||
if args.min_snr_gamma:
|
||||
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
|
||||
|
||||
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
|
||||
|
||||
accelerator.backward(loss)
|
||||
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
|
||||
params_to_clip = network.get_trainable_params()
|
||||
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
||||
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
|
||||
# Checks if the accelerator has performed an optimization step behind the scenes
|
||||
if accelerator.sync_gradients:
|
||||
progress_bar.update(1)
|
||||
global_step += 1
|
||||
|
||||
train_util.sample_images(
|
||||
accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet
|
||||
)
|
||||
|
||||
current_loss = loss.detach().item()
|
||||
if epoch == 0:
|
||||
loss_list.append(current_loss)
|
||||
else:
|
||||
loss_total -= loss_list[step]
|
||||
loss_list[step] = current_loss
|
||||
loss_total += current_loss
|
||||
avr_loss = loss_total / len(loss_list)
|
||||
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
|
||||
progress_bar.set_postfix(**logs)
|
||||
|
||||
if args.logging_dir is not None:
|
||||
logs = generate_step_logs(args, current_loss, avr_loss, lr_scheduler)
|
||||
accelerator.log(logs, step=global_step)
|
||||
|
||||
if global_step >= args.max_train_steps:
|
||||
break
|
||||
|
||||
if args.logging_dir is not None:
|
||||
logs = {"loss/epoch": loss_total / len(loss_list)}
|
||||
accelerator.log(logs, step=epoch + 1)
|
||||
|
||||
accelerator.wait_for_everyone()
|
||||
|
||||
if args.save_every_n_epochs is not None:
|
||||
model_name = train_util.DEFAULT_EPOCH_NAME if args.output_name is None else args.output_name
|
||||
|
||||
def save_func():
|
||||
ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, epoch + 1) + "." + args.save_model_as
|
||||
ckpt_file = os.path.join(args.output_dir, ckpt_name)
|
||||
metadata["ss_training_finished_at"] = str(time.time())
|
||||
print(f"saving checkpoint: {ckpt_file}")
|
||||
unwrap_model(network).save_weights(ckpt_file, save_dtype, minimum_metadata if args.no_metadata else metadata)
|
||||
|
||||
def remove_old_func(old_epoch_no):
|
||||
old_ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, old_epoch_no) + "." + args.save_model_as
|
||||
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
|
||||
if os.path.exists(old_ckpt_file):
|
||||
print(f"removing old checkpoint: {old_ckpt_file}")
|
||||
os.remove(old_ckpt_file)
|
||||
|
||||
if is_main_process:
|
||||
saving = train_util.save_on_epoch_end(args, save_func, remove_old_func, epoch + 1, num_train_epochs)
|
||||
if saving and args.save_state:
|
||||
train_util.save_state_on_epoch_end(args, accelerator, model_name, epoch + 1)
|
||||
|
||||
train_util.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet)
|
||||
|
||||
# end of epoch
|
||||
|
||||
metadata["ss_epoch"] = str(num_train_epochs)
|
||||
metadata["ss_training_finished_at"] = str(time.time())
|
||||
|
||||
if is_main_process:
|
||||
network = unwrap_model(network)
|
||||
|
||||
accelerator.end_training()
|
||||
|
||||
if args.save_state:
|
||||
train_util.save_state_on_train_end(args, accelerator)
|
||||
|
||||
del accelerator # この後メモリを使うのでこれは消す
|
||||
|
||||
if is_main_process:
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
|
||||
model_name = train_util.DEFAULT_LAST_OUTPUT_NAME if args.output_name is None else args.output_name
|
||||
ckpt_name = model_name + "." + args.save_model_as
|
||||
ckpt_file = os.path.join(args.output_dir, ckpt_name)
|
||||
|
||||
print(f"save trained model to {ckpt_file}")
|
||||
network.save_weights(ckpt_file, save_dtype, minimum_metadata if args.no_metadata else metadata)
|
||||
print("model saved.")
|
||||
|
||||
|
||||
def setup_parser() -> argparse.ArgumentParser:
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
train_util.add_sd_models_arguments(parser)
|
||||
train_util.add_dataset_arguments(parser, True, True, True)
|
||||
train_util.add_training_arguments(parser, True)
|
||||
train_util.add_optimizer_arguments(parser)
|
||||
config_util.add_config_arguments(parser)
|
||||
custom_train_functions.add_custom_train_arguments(parser)
|
||||
|
||||
parser.add_argument("--no_metadata", action="store_true", help="do not save metadata in output model / メタデータを出力先モデルに保存しない")
|
||||
parser.add_argument(
|
||||
"--save_model_as",
|
||||
type=str,
|
||||
default="safetensors",
|
||||
choices=[None, "ckpt", "pt", "safetensors"],
|
||||
help="format to save the model (default is .safetensors) / モデル保存時の形式(デフォルトはsafetensors)",
|
||||
)
|
||||
|
||||
parser.add_argument("--unet_lr", type=float, default=None, help="learning rate for U-Net / U-Netの学習率")
|
||||
parser.add_argument("--text_encoder_lr", type=float, default=None, help="learning rate for Text Encoder / Text Encoderの学習率")
|
||||
|
||||
parser.add_argument("--network_weights", type=str, default=None, help="pretrained weights for network / 学習するネットワークの初期重み")
|
||||
parser.add_argument("--network_module", type=str, default=None, help="network module to train / 学習対象のネットワークのモジュール")
|
||||
parser.add_argument(
|
||||
"--network_dim", type=int, default=None, help="network dimensions (depends on each network) / モジュールの次元数(ネットワークにより定義は異なります)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--network_alpha",
|
||||
type=float,
|
||||
default=1,
|
||||
help="alpha for LoRA weight scaling, default 1 (same as network_dim for same behavior as old version) / LoRaの重み調整のalpha値、デフォルト1(旧バージョンと同じ動作をするにはnetwork_dimと同じ値を指定)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--network_args", type=str, default=None, nargs="*", help="additional argmuments for network (key=value) / ネットワークへの追加の引数"
|
||||
)
|
||||
parser.add_argument("--network_train_unet_only", action="store_true", help="only training U-Net part / U-Net関連部分のみ学習する")
|
||||
parser.add_argument(
|
||||
"--network_train_text_encoder_only", action="store_true", help="only training Text Encoder part / Text Encoder関連部分のみ学習する"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--training_comment", type=str, default=None, help="arbitrary comment string stored in metadata / メタデータに記録する任意のコメント文字列"
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = setup_parser()
|
||||
|
||||
args = parser.parse_args()
|
||||
args = train_util.read_config_from_file(args, parser)
|
||||
|
||||
train(args)
|
@ -8,6 +8,7 @@ import random
|
||||
import time
|
||||
import json
|
||||
import toml
|
||||
from multiprocessing import Value
|
||||
|
||||
from tqdm import tqdm
|
||||
import torch
|
||||
@ -23,10 +24,8 @@ from library.config_util import (
|
||||
ConfigSanitizer,
|
||||
BlueprintGenerator,
|
||||
)
|
||||
|
||||
|
||||
def collate_fn(examples):
|
||||
return examples[0]
|
||||
import library.custom_train_functions as custom_train_functions
|
||||
from library.custom_train_functions import apply_snr_weight
|
||||
|
||||
|
||||
# TODO 他のスクリプトと共通化する
|
||||
@ -100,6 +99,11 @@ def train(args):
|
||||
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
|
||||
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
|
||||
|
||||
current_epoch = Value('i',0)
|
||||
current_step = Value('i',0)
|
||||
ds_for_collater = train_dataset_group if args.max_data_loader_n_workers == 0 else None
|
||||
collater = train_util.collater_class(current_epoch,current_step, ds_for_collater)
|
||||
|
||||
if args.debug_dataset:
|
||||
train_util.debug_dataset(train_dataset_group)
|
||||
return
|
||||
@ -185,11 +189,12 @@ def train(args):
|
||||
# dataloaderを準備する
|
||||
# DataLoaderのプロセス数:0はメインプロセスになる
|
||||
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) # cpu_count-1 ただし最大で指定された数まで
|
||||
|
||||
train_dataloader = torch.utils.data.DataLoader(
|
||||
train_dataset_group,
|
||||
batch_size=1,
|
||||
shuffle=True,
|
||||
collate_fn=collate_fn,
|
||||
collate_fn=collater,
|
||||
num_workers=n_workers,
|
||||
persistent_workers=args.persistent_data_loader_workers,
|
||||
)
|
||||
@ -200,6 +205,9 @@ def train(args):
|
||||
if is_main_process:
|
||||
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
|
||||
|
||||
# データセット側にも学習ステップを送信
|
||||
train_dataset_group.set_max_train_steps(args.max_train_steps)
|
||||
|
||||
# lr schedulerを用意する
|
||||
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
|
||||
|
||||
@ -488,22 +496,23 @@ def train(args):
|
||||
noise_scheduler = DDPMScheduler(
|
||||
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
|
||||
)
|
||||
|
||||
if accelerator.is_main_process:
|
||||
accelerator.init_trackers("network_train")
|
||||
|
||||
loss_list = []
|
||||
loss_total = 0.0
|
||||
del train_dataset_group
|
||||
for epoch in range(num_train_epochs):
|
||||
if is_main_process:
|
||||
print(f"epoch {epoch+1}/{num_train_epochs}")
|
||||
train_dataset_group.set_current_epoch(epoch + 1)
|
||||
current_epoch.value = epoch+1
|
||||
|
||||
metadata["ss_epoch"] = str(epoch + 1)
|
||||
|
||||
network.on_epoch_start(text_encoder, unet)
|
||||
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
current_step.value = global_step
|
||||
with accelerator.accumulate(network):
|
||||
with torch.no_grad():
|
||||
if "latents" in batch and batch["latents"] is not None:
|
||||
@ -528,7 +537,6 @@ def train(args):
|
||||
# Sample a random timestep for each image
|
||||
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
|
||||
timesteps = timesteps.long()
|
||||
|
||||
# Add noise to the latents according to the noise magnitude at each timestep
|
||||
# (this is the forward diffusion process)
|
||||
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
||||
@ -548,6 +556,9 @@ def train(args):
|
||||
|
||||
loss_weights = batch["loss_weights"] # 各sampleごとのweight
|
||||
loss = loss * loss_weights
|
||||
|
||||
if args.min_snr_gamma:
|
||||
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
|
||||
|
||||
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
|
||||
|
||||
@ -652,6 +663,7 @@ def setup_parser() -> argparse.ArgumentParser:
|
||||
train_util.add_training_arguments(parser, True)
|
||||
train_util.add_optimizer_arguments(parser)
|
||||
config_util.add_config_arguments(parser)
|
||||
custom_train_functions.add_custom_train_arguments(parser)
|
||||
|
||||
parser.add_argument("--no_metadata", action="store_true", help="do not save metadata in output model / メタデータを出力先モデルに保存しない")
|
||||
parser.add_argument(
|
||||
|
589
train_textual_inversion - Copy.py
Normal file
589
train_textual_inversion - Copy.py
Normal file
@ -0,0 +1,589 @@
|
||||
import importlib
|
||||
import argparse
|
||||
import gc
|
||||
import math
|
||||
import os
|
||||
import toml
|
||||
from multiprocessing import Value
|
||||
|
||||
from tqdm import tqdm
|
||||
import torch
|
||||
from accelerate.utils import set_seed
|
||||
import diffusers
|
||||
from diffusers import DDPMScheduler
|
||||
|
||||
import library.train_util as train_util
|
||||
import library.config_util as config_util
|
||||
from library.config_util import (
|
||||
ConfigSanitizer,
|
||||
BlueprintGenerator,
|
||||
)
|
||||
import library.custom_train_functions as custom_train_functions
|
||||
from library.custom_train_functions import apply_snr_weight
|
||||
|
||||
imagenet_templates_small = [
|
||||
"a photo of a {}",
|
||||
"a rendering of a {}",
|
||||
"a cropped photo of the {}",
|
||||
"the photo of a {}",
|
||||
"a photo of a clean {}",
|
||||
"a photo of a dirty {}",
|
||||
"a dark photo of the {}",
|
||||
"a photo of my {}",
|
||||
"a photo of the cool {}",
|
||||
"a close-up photo of a {}",
|
||||
"a bright photo of the {}",
|
||||
"a cropped photo of a {}",
|
||||
"a photo of the {}",
|
||||
"a good photo of the {}",
|
||||
"a photo of one {}",
|
||||
"a close-up photo of the {}",
|
||||
"a rendition of the {}",
|
||||
"a photo of the clean {}",
|
||||
"a rendition of a {}",
|
||||
"a photo of a nice {}",
|
||||
"a good photo of a {}",
|
||||
"a photo of the nice {}",
|
||||
"a photo of the small {}",
|
||||
"a photo of the weird {}",
|
||||
"a photo of the large {}",
|
||||
"a photo of a cool {}",
|
||||
"a photo of a small {}",
|
||||
]
|
||||
|
||||
imagenet_style_templates_small = [
|
||||
"a painting in the style of {}",
|
||||
"a rendering in the style of {}",
|
||||
"a cropped painting in the style of {}",
|
||||
"the painting in the style of {}",
|
||||
"a clean painting in the style of {}",
|
||||
"a dirty painting in the style of {}",
|
||||
"a dark painting in the style of {}",
|
||||
"a picture in the style of {}",
|
||||
"a cool painting in the style of {}",
|
||||
"a close-up painting in the style of {}",
|
||||
"a bright painting in the style of {}",
|
||||
"a cropped painting in the style of {}",
|
||||
"a good painting in the style of {}",
|
||||
"a close-up painting in the style of {}",
|
||||
"a rendition in the style of {}",
|
||||
"a nice painting in the style of {}",
|
||||
"a small painting in the style of {}",
|
||||
"a weird painting in the style of {}",
|
||||
"a large painting in the style of {}",
|
||||
]
|
||||
|
||||
|
||||
def train(args):
|
||||
if args.output_name is None:
|
||||
args.output_name = args.token_string
|
||||
use_template = args.use_object_template or args.use_style_template
|
||||
|
||||
train_util.verify_training_args(args)
|
||||
train_util.prepare_dataset_args(args, True)
|
||||
|
||||
cache_latents = args.cache_latents
|
||||
|
||||
if args.seed is not None:
|
||||
set_seed(args.seed)
|
||||
|
||||
tokenizer = train_util.load_tokenizer(args)
|
||||
|
||||
# acceleratorを準備する
|
||||
print("prepare accelerator")
|
||||
accelerator, unwrap_model = train_util.prepare_accelerator(args)
|
||||
|
||||
# mixed precisionに対応した型を用意しておき適宜castする
|
||||
weight_dtype, save_dtype = train_util.prepare_dtype(args)
|
||||
|
||||
# モデルを読み込む
|
||||
text_encoder, vae, unet, _ = train_util.load_target_model(args, weight_dtype)
|
||||
|
||||
# Convert the init_word to token_id
|
||||
if args.init_word is not None:
|
||||
init_token_ids = tokenizer.encode(args.init_word, add_special_tokens=False)
|
||||
if len(init_token_ids) > 1 and len(init_token_ids) != args.num_vectors_per_token:
|
||||
print(
|
||||
f"token length for init words is not same to num_vectors_per_token, init words is repeated or truncated / 初期化単語のトークン長がnum_vectors_per_tokenと合わないため、繰り返しまたは切り捨てが発生します: length {len(init_token_ids)}"
|
||||
)
|
||||
else:
|
||||
init_token_ids = None
|
||||
|
||||
# add new word to tokenizer, count is num_vectors_per_token
|
||||
token_strings = [args.token_string] + [f"{args.token_string}{i+1}" for i in range(args.num_vectors_per_token - 1)]
|
||||
num_added_tokens = tokenizer.add_tokens(token_strings)
|
||||
assert (
|
||||
num_added_tokens == args.num_vectors_per_token
|
||||
), f"tokenizer has same word to token string. please use another one / 指定したargs.token_stringは既に存在します。別の単語を使ってください: {args.token_string}"
|
||||
|
||||
token_ids = tokenizer.convert_tokens_to_ids(token_strings)
|
||||
print(f"tokens are added: {token_ids}")
|
||||
assert min(token_ids) == token_ids[0] and token_ids[-1] == token_ids[0] + len(token_ids) - 1, f"token ids is not ordered"
|
||||
assert len(tokenizer) - 1 == token_ids[-1], f"token ids is not end of tokenize: {len(tokenizer)}"
|
||||
|
||||
# Resize the token embeddings as we are adding new special tokens to the tokenizer
|
||||
text_encoder.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# Initialise the newly added placeholder token with the embeddings of the initializer token
|
||||
token_embeds = text_encoder.get_input_embeddings().weight.data
|
||||
if init_token_ids is not None:
|
||||
for i, token_id in enumerate(token_ids):
|
||||
token_embeds[token_id] = token_embeds[init_token_ids[i % len(init_token_ids)]]
|
||||
# print(token_id, token_embeds[token_id].mean(), token_embeds[token_id].min())
|
||||
|
||||
# load weights
|
||||
if args.weights is not None:
|
||||
embeddings = load_weights(args.weights)
|
||||
assert len(token_ids) == len(
|
||||
embeddings
|
||||
), f"num_vectors_per_token is mismatch for weights / 指定した重みとnum_vectors_per_tokenの値が異なります: {len(embeddings)}"
|
||||
# print(token_ids, embeddings.size())
|
||||
for token_id, embedding in zip(token_ids, embeddings):
|
||||
token_embeds[token_id] = embedding
|
||||
# print(token_id, token_embeds[token_id].mean(), token_embeds[token_id].min())
|
||||
print(f"weighs loaded")
|
||||
|
||||
print(f"create embeddings for {args.num_vectors_per_token} tokens, for {args.token_string}")
|
||||
|
||||
# データセットを準備する
|
||||
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, False))
|
||||
if args.dataset_config is not None:
|
||||
print(f"Load dataset config from {args.dataset_config}")
|
||||
user_config = config_util.load_user_config(args.dataset_config)
|
||||
ignored = ["train_data_dir", "reg_data_dir", "in_json"]
|
||||
if any(getattr(args, attr) is not None for attr in ignored):
|
||||
print(
|
||||
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
|
||||
", ".join(ignored)
|
||||
)
|
||||
)
|
||||
else:
|
||||
use_dreambooth_method = args.in_json is None
|
||||
if use_dreambooth_method:
|
||||
print("Use DreamBooth method.")
|
||||
user_config = {
|
||||
"datasets": [
|
||||
{"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(args.train_data_dir, args.reg_data_dir)}
|
||||
]
|
||||
}
|
||||
else:
|
||||
print("Train with captions.")
|
||||
user_config = {
|
||||
"datasets": [
|
||||
{
|
||||
"subsets": [
|
||||
{
|
||||
"image_dir": args.train_data_dir,
|
||||
"metadata_file": args.in_json,
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
|
||||
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
|
||||
|
||||
current_epoch = Value('i',0)
|
||||
current_step = Value('i',0)
|
||||
collater = train_util.collater_class(current_epoch,current_step)
|
||||
|
||||
# make captions: tokenstring tokenstring1 tokenstring2 ...tokenstringn という文字列に書き換える超乱暴な実装
|
||||
if use_template:
|
||||
print("use template for training captions. is object: {args.use_object_template}")
|
||||
templates = imagenet_templates_small if args.use_object_template else imagenet_style_templates_small
|
||||
replace_to = " ".join(token_strings)
|
||||
captions = []
|
||||
for tmpl in templates:
|
||||
captions.append(tmpl.format(replace_to))
|
||||
train_dataset_group.add_replacement("", captions)
|
||||
|
||||
if args.num_vectors_per_token > 1:
|
||||
prompt_replacement = (args.token_string, replace_to)
|
||||
else:
|
||||
prompt_replacement = None
|
||||
else:
|
||||
if args.num_vectors_per_token > 1:
|
||||
replace_to = " ".join(token_strings)
|
||||
train_dataset_group.add_replacement(args.token_string, replace_to)
|
||||
prompt_replacement = (args.token_string, replace_to)
|
||||
else:
|
||||
prompt_replacement = None
|
||||
|
||||
if args.debug_dataset:
|
||||
train_util.debug_dataset(train_dataset_group, show_input_ids=True)
|
||||
return
|
||||
if len(train_dataset_group) == 0:
|
||||
print("No data found. Please verify arguments / 画像がありません。引数指定を確認してください")
|
||||
return
|
||||
|
||||
if cache_latents:
|
||||
assert (
|
||||
train_dataset_group.is_latent_cacheable()
|
||||
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
|
||||
|
||||
# モデルに xformers とか memory efficient attention を組み込む
|
||||
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
|
||||
|
||||
# 学習を準備する
|
||||
if cache_latents:
|
||||
vae.to(accelerator.device, dtype=weight_dtype)
|
||||
vae.requires_grad_(False)
|
||||
vae.eval()
|
||||
with torch.no_grad():
|
||||
train_dataset_group.cache_latents(vae, args.vae_batch_size)
|
||||
vae.to("cpu")
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
gc.collect()
|
||||
|
||||
if args.gradient_checkpointing:
|
||||
unet.enable_gradient_checkpointing()
|
||||
text_encoder.gradient_checkpointing_enable()
|
||||
|
||||
# 学習に必要なクラスを準備する
|
||||
print("prepare optimizer, data loader etc.")
|
||||
trainable_params = text_encoder.get_input_embeddings().parameters()
|
||||
_, _, optimizer = train_util.get_optimizer(args, trainable_params)
|
||||
|
||||
# dataloaderを準備する
|
||||
# DataLoaderのプロセス数:0はメインプロセスになる
|
||||
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) # cpu_count-1 ただし最大で指定された数まで
|
||||
train_dataloader = torch.utils.data.DataLoader(
|
||||
train_dataset_group,
|
||||
batch_size=1,
|
||||
shuffle=True,
|
||||
collate_fn=collater,
|
||||
num_workers=n_workers,
|
||||
persistent_workers=args.persistent_data_loader_workers,
|
||||
)
|
||||
|
||||
# 学習ステップ数を計算する
|
||||
if args.max_train_epochs is not None:
|
||||
args.max_train_steps = args.max_train_epochs * math.ceil(len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps)
|
||||
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
|
||||
|
||||
# データセット側にも学習ステップを送信
|
||||
train_dataset_group.set_max_train_steps(args.max_train_steps)
|
||||
|
||||
# lr schedulerを用意する
|
||||
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
|
||||
|
||||
# acceleratorがなんかよろしくやってくれるらしい
|
||||
text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||||
text_encoder, optimizer, train_dataloader, lr_scheduler
|
||||
)
|
||||
|
||||
index_no_updates = torch.arange(len(tokenizer)) < token_ids[0]
|
||||
# print(len(index_no_updates), torch.sum(index_no_updates))
|
||||
orig_embeds_params = unwrap_model(text_encoder).get_input_embeddings().weight.data.detach().clone()
|
||||
|
||||
# Freeze all parameters except for the token embeddings in text encoder
|
||||
text_encoder.requires_grad_(True)
|
||||
text_encoder.text_model.encoder.requires_grad_(False)
|
||||
text_encoder.text_model.final_layer_norm.requires_grad_(False)
|
||||
text_encoder.text_model.embeddings.position_embedding.requires_grad_(False)
|
||||
# text_encoder.text_model.embeddings.token_embedding.requires_grad_(True)
|
||||
|
||||
unet.requires_grad_(False)
|
||||
unet.to(accelerator.device, dtype=weight_dtype)
|
||||
if args.gradient_checkpointing: # according to TI example in Diffusers, train is required
|
||||
unet.train()
|
||||
else:
|
||||
unet.eval()
|
||||
|
||||
if not cache_latents:
|
||||
vae.requires_grad_(False)
|
||||
vae.eval()
|
||||
vae.to(accelerator.device, dtype=weight_dtype)
|
||||
|
||||
# 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
|
||||
if args.full_fp16:
|
||||
train_util.patch_accelerator_for_fp16_training(accelerator)
|
||||
text_encoder.to(weight_dtype)
|
||||
|
||||
# resumeする
|
||||
if args.resume is not None:
|
||||
print(f"resume training from state: {args.resume}")
|
||||
accelerator.load_state(args.resume)
|
||||
|
||||
# epoch数を計算する
|
||||
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
||||
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
||||
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
|
||||
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
|
||||
|
||||
# 学習する
|
||||
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
||||
print("running training / 学習開始")
|
||||
print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}")
|
||||
print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}")
|
||||
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
|
||||
print(f" num epochs / epoch数: {num_train_epochs}")
|
||||
print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
|
||||
print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
|
||||
print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
|
||||
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
|
||||
|
||||
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
|
||||
global_step = 0
|
||||
|
||||
noise_scheduler = DDPMScheduler(
|
||||
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
|
||||
)
|
||||
|
||||
if accelerator.is_main_process:
|
||||
accelerator.init_trackers("textual_inversion")
|
||||
|
||||
for epoch in range(num_train_epochs):
|
||||
print(f"epoch {epoch+1}/{num_train_epochs}")
|
||||
current_epoch.value = epoch+1
|
||||
|
||||
text_encoder.train()
|
||||
|
||||
loss_total = 0
|
||||
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
current_step.value = global_step
|
||||
with accelerator.accumulate(text_encoder):
|
||||
with torch.no_grad():
|
||||
if "latents" in batch and batch["latents"] is not None:
|
||||
latents = batch["latents"].to(accelerator.device)
|
||||
else:
|
||||
# latentに変換
|
||||
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
|
||||
latents = latents * 0.18215
|
||||
b_size = latents.shape[0]
|
||||
|
||||
# Get the text embedding for conditioning
|
||||
input_ids = batch["input_ids"].to(accelerator.device)
|
||||
# weight_dtype) use float instead of fp16/bf16 because text encoder is float
|
||||
encoder_hidden_states = train_util.get_hidden_states(args, input_ids, tokenizer, text_encoder, torch.float)
|
||||
|
||||
# Sample noise that we'll add to the latents
|
||||
noise = torch.randn_like(latents, device=latents.device)
|
||||
if args.noise_offset:
|
||||
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
|
||||
noise += args.noise_offset * torch.randn((latents.shape[0], latents.shape[1], 1, 1), device=latents.device)
|
||||
|
||||
# Sample a random timestep for each image
|
||||
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
|
||||
timesteps = timesteps.long()
|
||||
|
||||
# Add noise to the latents according to the noise magnitude at each timestep
|
||||
# (this is the forward diffusion process)
|
||||
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
||||
|
||||
# Predict the noise residual
|
||||
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
||||
|
||||
if args.v_parameterization:
|
||||
# v-parameterization training
|
||||
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
||||
else:
|
||||
target = noise
|
||||
|
||||
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
|
||||
loss = loss.mean([1, 2, 3])
|
||||
|
||||
if args.min_snr_gamma:
|
||||
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
|
||||
|
||||
loss_weights = batch["loss_weights"] # 各sampleごとのweight
|
||||
loss = loss * loss_weights
|
||||
|
||||
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
|
||||
|
||||
accelerator.backward(loss)
|
||||
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
|
||||
params_to_clip = text_encoder.get_input_embeddings().parameters()
|
||||
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
||||
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
|
||||
# Let's make sure we don't update any embedding weights besides the newly added token
|
||||
with torch.no_grad():
|
||||
unwrap_model(text_encoder).get_input_embeddings().weight[index_no_updates] = orig_embeds_params[
|
||||
index_no_updates
|
||||
]
|
||||
|
||||
# Checks if the accelerator has performed an optimization step behind the scenes
|
||||
if accelerator.sync_gradients:
|
||||
progress_bar.update(1)
|
||||
global_step += 1
|
||||
|
||||
train_util.sample_images(
|
||||
accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet, prompt_replacement
|
||||
)
|
||||
|
||||
current_loss = loss.detach().item()
|
||||
if args.logging_dir is not None:
|
||||
logs = {"loss": current_loss, "lr": float(lr_scheduler.get_last_lr()[0])}
|
||||
if args.optimizer_type.lower() == "DAdaptation".lower(): # tracking d*lr value
|
||||
logs["lr/d*lr"] = (
|
||||
lr_scheduler.optimizers[0].param_groups[0]["d"] * lr_scheduler.optimizers[0].param_groups[0]["lr"]
|
||||
)
|
||||
accelerator.log(logs, step=global_step)
|
||||
|
||||
loss_total += current_loss
|
||||
avr_loss = loss_total / (step + 1)
|
||||
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
|
||||
progress_bar.set_postfix(**logs)
|
||||
|
||||
if global_step >= args.max_train_steps:
|
||||
break
|
||||
|
||||
if args.logging_dir is not None:
|
||||
logs = {"loss/epoch": loss_total / len(train_dataloader)}
|
||||
accelerator.log(logs, step=epoch + 1)
|
||||
|
||||
accelerator.wait_for_everyone()
|
||||
|
||||
updated_embs = unwrap_model(text_encoder).get_input_embeddings().weight[token_ids].data.detach().clone()
|
||||
|
||||
if args.save_every_n_epochs is not None:
|
||||
model_name = train_util.DEFAULT_EPOCH_NAME if args.output_name is None else args.output_name
|
||||
|
||||
def save_func():
|
||||
ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, epoch + 1) + "." + args.save_model_as
|
||||
ckpt_file = os.path.join(args.output_dir, ckpt_name)
|
||||
print(f"saving checkpoint: {ckpt_file}")
|
||||
save_weights(ckpt_file, updated_embs, save_dtype)
|
||||
|
||||
def remove_old_func(old_epoch_no):
|
||||
old_ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, old_epoch_no) + "." + args.save_model_as
|
||||
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
|
||||
if os.path.exists(old_ckpt_file):
|
||||
print(f"removing old checkpoint: {old_ckpt_file}")
|
||||
os.remove(old_ckpt_file)
|
||||
|
||||
saving = train_util.save_on_epoch_end(args, save_func, remove_old_func, epoch + 1, num_train_epochs)
|
||||
if saving and args.save_state:
|
||||
train_util.save_state_on_epoch_end(args, accelerator, model_name, epoch + 1)
|
||||
|
||||
train_util.sample_images(
|
||||
accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet, prompt_replacement
|
||||
)
|
||||
|
||||
# end of epoch
|
||||
|
||||
is_main_process = accelerator.is_main_process
|
||||
if is_main_process:
|
||||
text_encoder = unwrap_model(text_encoder)
|
||||
|
||||
accelerator.end_training()
|
||||
|
||||
if args.save_state:
|
||||
train_util.save_state_on_train_end(args, accelerator)
|
||||
|
||||
updated_embs = text_encoder.get_input_embeddings().weight[token_ids].data.detach().clone()
|
||||
|
||||
del accelerator # この後メモリを使うのでこれは消す
|
||||
|
||||
if is_main_process:
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
|
||||
model_name = train_util.DEFAULT_LAST_OUTPUT_NAME if args.output_name is None else args.output_name
|
||||
ckpt_name = model_name + "." + args.save_model_as
|
||||
ckpt_file = os.path.join(args.output_dir, ckpt_name)
|
||||
|
||||
print(f"save trained model to {ckpt_file}")
|
||||
save_weights(ckpt_file, updated_embs, save_dtype)
|
||||
print("model saved.")
|
||||
|
||||
|
||||
def save_weights(file, updated_embs, save_dtype):
|
||||
state_dict = {"emb_params": updated_embs}
|
||||
|
||||
if save_dtype is not None:
|
||||
for key in list(state_dict.keys()):
|
||||
v = state_dict[key]
|
||||
v = v.detach().clone().to("cpu").to(save_dtype)
|
||||
state_dict[key] = v
|
||||
|
||||
if os.path.splitext(file)[1] == ".safetensors":
|
||||
from safetensors.torch import save_file
|
||||
|
||||
save_file(state_dict, file)
|
||||
else:
|
||||
torch.save(state_dict, file) # can be loaded in Web UI
|
||||
|
||||
|
||||
def load_weights(file):
|
||||
if os.path.splitext(file)[1] == ".safetensors":
|
||||
from safetensors.torch import load_file
|
||||
|
||||
data = load_file(file)
|
||||
else:
|
||||
# compatible to Web UI's file format
|
||||
data = torch.load(file, map_location="cpu")
|
||||
if type(data) != dict:
|
||||
raise ValueError(f"weight file is not dict / 重みファイルがdict形式ではありません: {file}")
|
||||
|
||||
if "string_to_param" in data: # textual inversion embeddings
|
||||
data = data["string_to_param"]
|
||||
if hasattr(data, "_parameters"): # support old PyTorch?
|
||||
data = getattr(data, "_parameters")
|
||||
|
||||
emb = next(iter(data.values()))
|
||||
if type(emb) != torch.Tensor:
|
||||
raise ValueError(f"weight file does not contains Tensor / 重みファイルのデータがTensorではありません: {file}")
|
||||
|
||||
if len(emb.size()) == 1:
|
||||
emb = emb.unsqueeze(0)
|
||||
|
||||
return emb
|
||||
|
||||
|
||||
def setup_parser() -> argparse.ArgumentParser:
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
train_util.add_sd_models_arguments(parser)
|
||||
train_util.add_dataset_arguments(parser, True, True, False)
|
||||
train_util.add_training_arguments(parser, True)
|
||||
train_util.add_optimizer_arguments(parser)
|
||||
config_util.add_config_arguments(parser)
|
||||
custom_train_functions.add_custom_train_arguments(parser)
|
||||
|
||||
parser.add_argument(
|
||||
"--save_model_as",
|
||||
type=str,
|
||||
default="pt",
|
||||
choices=[None, "ckpt", "pt", "safetensors"],
|
||||
help="format to save the model (default is .pt) / モデル保存時の形式(デフォルトはpt)",
|
||||
)
|
||||
|
||||
parser.add_argument("--weights", type=str, default=None, help="embedding weights to initialize / 学習するネットワークの初期重み")
|
||||
parser.add_argument(
|
||||
"--num_vectors_per_token", type=int, default=1, help="number of vectors per token / トークンに割り当てるembeddingsの要素数"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--token_string",
|
||||
type=str,
|
||||
default=None,
|
||||
help="token string used in training, must not exist in tokenizer / 学習時に使用されるトークン文字列、tokenizerに存在しない文字であること",
|
||||
)
|
||||
parser.add_argument("--init_word", type=str, default=None, help="words to initialize vector / ベクトルを初期化に使用する単語、複数可")
|
||||
parser.add_argument(
|
||||
"--use_object_template",
|
||||
action="store_true",
|
||||
help="ignore caption and use default templates for object / キャプションは使わずデフォルトの物体用テンプレートで学習する",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use_style_template",
|
||||
action="store_true",
|
||||
help="ignore caption and use default templates for stype / キャプションは使わずデフォルトのスタイル用テンプレートで学習する",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = setup_parser()
|
||||
|
||||
args = parser.parse_args()
|
||||
args = train_util.read_config_from_file(args, parser)
|
||||
|
||||
train(args)
|
@ -4,6 +4,7 @@ import gc
|
||||
import math
|
||||
import os
|
||||
import toml
|
||||
from multiprocessing import Value
|
||||
|
||||
from tqdm import tqdm
|
||||
import torch
|
||||
@ -17,6 +18,8 @@ from library.config_util import (
|
||||
ConfigSanitizer,
|
||||
BlueprintGenerator,
|
||||
)
|
||||
import library.custom_train_functions as custom_train_functions
|
||||
from library.custom_train_functions import apply_snr_weight
|
||||
|
||||
imagenet_templates_small = [
|
||||
"a photo of a {}",
|
||||
@ -71,10 +74,6 @@ imagenet_style_templates_small = [
|
||||
]
|
||||
|
||||
|
||||
def collate_fn(examples):
|
||||
return examples[0]
|
||||
|
||||
|
||||
def train(args):
|
||||
if args.output_name is None:
|
||||
args.output_name = args.token_string
|
||||
@ -185,6 +184,11 @@ def train(args):
|
||||
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
|
||||
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
|
||||
|
||||
current_epoch = Value('i',0)
|
||||
current_step = Value('i',0)
|
||||
ds_for_collater = train_dataset_group if args.max_data_loader_n_workers == 0 else None
|
||||
collater = train_util.collater_class(current_epoch,current_step, ds_for_collater)
|
||||
|
||||
# make captions: tokenstring tokenstring1 tokenstring2 ...tokenstringn という文字列に書き換える超乱暴な実装
|
||||
if use_template:
|
||||
print("use template for training captions. is object: {args.use_object_template}")
|
||||
@ -250,7 +254,7 @@ def train(args):
|
||||
train_dataset_group,
|
||||
batch_size=1,
|
||||
shuffle=True,
|
||||
collate_fn=collate_fn,
|
||||
collate_fn=collater,
|
||||
num_workers=n_workers,
|
||||
persistent_workers=args.persistent_data_loader_workers,
|
||||
)
|
||||
@ -260,6 +264,9 @@ def train(args):
|
||||
args.max_train_steps = args.max_train_epochs * math.ceil(len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps)
|
||||
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
|
||||
|
||||
# データセット側にも学習ステップを送信
|
||||
train_dataset_group.set_max_train_steps(args.max_train_steps)
|
||||
|
||||
# lr schedulerを用意する
|
||||
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
|
||||
|
||||
@ -331,12 +338,14 @@ def train(args):
|
||||
|
||||
for epoch in range(num_train_epochs):
|
||||
print(f"epoch {epoch+1}/{num_train_epochs}")
|
||||
train_dataset_group.set_current_epoch(epoch + 1)
|
||||
current_epoch.value = epoch+1
|
||||
|
||||
text_encoder.train()
|
||||
|
||||
loss_total = 0
|
||||
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
current_step.value = global_step
|
||||
with accelerator.accumulate(text_encoder):
|
||||
with torch.no_grad():
|
||||
if "latents" in batch and batch["latents"] is not None:
|
||||
@ -377,6 +386,9 @@ def train(args):
|
||||
|
||||
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
|
||||
loss = loss.mean([1, 2, 3])
|
||||
|
||||
if args.min_snr_gamma:
|
||||
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
|
||||
|
||||
loss_weights = batch["loss_weights"] # 各sampleごとのweight
|
||||
loss = loss * loss_weights
|
||||
@ -534,6 +546,7 @@ def setup_parser() -> argparse.ArgumentParser:
|
||||
train_util.add_training_arguments(parser, True)
|
||||
train_util.add_optimizer_arguments(parser)
|
||||
config_util.add_config_arguments(parser)
|
||||
custom_train_functions.add_custom_train_arguments(parser)
|
||||
|
||||
parser.add_argument(
|
||||
"--save_model_as",
|
||||
|
Loading…
Reference in New Issue
Block a user