v12 release

This commit is contained in:
bmaltais 2022-11-29 12:47:48 -05:00
parent 5a68cd02e7
commit 188edd34af
2 changed files with 61 additions and 39 deletions

View File

@ -390,4 +390,8 @@ options:
- Fixed a bug where prior_loss_weight was applied to learning images. Sorry for the inconvenience.
- Compatible with Stable Diffusion v2.0. Add the `--v2` option. If you are using `768-v-ema.ckpt` or `stable-diffusion-2` instead of `stable-diffusion-v2-base`, add `--v_parameterization` as well. Learn more about other options.
- Added options related to the learning rate scheduler.
- You can download and use DiffUsers models directly from Hugging Face. In addition, DiffUsers models can be saved during training.
- You can download and use DiffUsers models directly from Hugging Face. In addition, DiffUsers models can be saved during training.
* 11/29 (v12) update:
- stop training text encoder at specified step (`--stop_text_encoder_training=<step #>`)
- tqdm smoothing
- updated fine tuning script to support SD2.0 768/v

View File

@ -6,10 +6,11 @@
# v8: supports Diffusers 0.7.2
# v9: add bucketing option
# v10: add min_bucket_reso/max_bucket_reso options, read captions for train/reg images in DreamBooth
# v11: Diffusers 0.9.0 is required. support for Stable Diffusion 2.0/v-parameterization
# v11: Diffusers 0.9.0 is required. support for Stable Diffusion 2.0/v-parameterization
# add lr scheduler options, change handling folder/file caption, support loading DiffUser model from Huggingface
# support save_ever_n_epochs/save_state in DiffUsers model
# fix the issue that prior_loss_weight is applyed to train images
# v12: stop train text encode, tqdm smoothing
import time
from torch.autograd.function import Function
@ -39,33 +40,6 @@ from torch import einsum
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
V2_STABLE_DIFFUSION_PATH = "stabilityai/stable-diffusion-2" # ここからtokenizerだけ使う
# DiffUsers版StableDiffusionのモデルパラメータ
NUM_TRAIN_TIMESTEPS = 1000
BETA_START = 0.00085
BETA_END = 0.0120
UNET_PARAMS_MODEL_CHANNELS = 320
UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4]
UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1]
UNET_PARAMS_IMAGE_SIZE = 32 # unused
UNET_PARAMS_IN_CHANNELS = 4
UNET_PARAMS_OUT_CHANNELS = 4
UNET_PARAMS_NUM_RES_BLOCKS = 2
UNET_PARAMS_CONTEXT_DIM = 768
UNET_PARAMS_NUM_HEADS = 8
VAE_PARAMS_Z_CHANNELS = 4
VAE_PARAMS_RESOLUTION = 256
VAE_PARAMS_IN_CHANNELS = 3
VAE_PARAMS_OUT_CH = 3
VAE_PARAMS_CH = 128
VAE_PARAMS_CH_MULT = [1, 2, 4, 4]
VAE_PARAMS_NUM_RES_BLOCKS = 2
# V2
V2_UNET_PARAMS_ATTENTION_HEAD_DIM = [5, 10, 20, 20]
V2_UNET_PARAMS_CONTEXT_DIM = 1024
# checkpointファイル名
LAST_CHECKPOINT_NAME = "last.ckpt"
LAST_STATE_NAME = "last-state"
@ -693,6 +667,34 @@ def replace_unet_cross_attn_to_xformers():
# region checkpoint変換、読み込み、書き込み ###############################
# DiffUsers版StableDiffusionのモデルパラメータ
NUM_TRAIN_TIMESTEPS = 1000
BETA_START = 0.00085
BETA_END = 0.0120
UNET_PARAMS_MODEL_CHANNELS = 320
UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4]
UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1]
UNET_PARAMS_IMAGE_SIZE = 32 # unused
UNET_PARAMS_IN_CHANNELS = 4
UNET_PARAMS_OUT_CHANNELS = 4
UNET_PARAMS_NUM_RES_BLOCKS = 2
UNET_PARAMS_CONTEXT_DIM = 768
UNET_PARAMS_NUM_HEADS = 8
VAE_PARAMS_Z_CHANNELS = 4
VAE_PARAMS_RESOLUTION = 256
VAE_PARAMS_IN_CHANNELS = 3
VAE_PARAMS_OUT_CH = 3
VAE_PARAMS_CH = 128
VAE_PARAMS_CH_MULT = [1, 2, 4, 4]
VAE_PARAMS_NUM_RES_BLOCKS = 2
# V2
V2_UNET_PARAMS_ATTENTION_HEAD_DIM = [5, 10, 20, 20]
V2_UNET_PARAMS_CONTEXT_DIM = 1024
# region StableDiffusion->Diffusersの変換コード
# convert_original_stable_diffusion_to_diffusers をコピーしているASL 2.0
@ -1408,9 +1410,13 @@ def load_checkpoint_with_text_encoder_conversion(ckpt_path):
return checkpoint
def load_models_from_stable_diffusion_checkpoint(v2, ckpt_path):
def load_models_from_stable_diffusion_checkpoint(v2, ckpt_path, dtype=None):
checkpoint = load_checkpoint_with_text_encoder_conversion(ckpt_path)
state_dict = checkpoint["state_dict"]
if dtype is not None:
for k, v in state_dict.items():
if type(v) is torch.Tensor:
state_dict[k] = v.to(dtype)
# Convert the UNet2DConditionModel model.
unet_config = create_unet_diffusers_config(v2)
@ -1854,10 +1860,15 @@ def train(args):
print(f" total train batch size (with parallel & distributed) / 総バッチサイズ(並列学習含む): {total_batch_size}")
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process, desc="steps")
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
global_step = 0
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
# v12で更新clip_sample=Falseに
# Diffusersのtrain_dreambooth.pyがconfigから持ってくるように変更されたので、clip_sample=Falseになるため、それに合わせる
# 既存の1.4/1.5/2.0はすべてschdulerのconfigはクラス名を除いて同じ
# よくソースを見たら学習時は関係ないや(;'∀') 
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
num_train_timesteps=1000, clip_sample=False)
if accelerator.is_main_process:
accelerator.init_trackers("dreambooth")
@ -1891,13 +1902,16 @@ def train(args):
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
if args.clip_skip is None:
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
else:
enc_out = text_encoder(batch["input_ids"], output_hidden_states=True, return_dict=True)
encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip]
encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states)
# 指定したステップ数までText Encoderを学習する
train_text_encoder = args.stop_text_encoder_training is None or global_step < args.stop_text_encoder_training
with torch.set_grad_enabled(train_text_encoder):
# Get the text embedding for conditioning
if args.clip_skip is None:
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
else:
enc_out = text_encoder(batch["input_ids"], output_hidden_states=True, return_dict=True)
encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip]
encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states)
# Predict the noise residual
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
@ -1954,6 +1968,9 @@ def train(args):
progress_bar.update(1)
global_step += 1
if global_step == args.stop_text_encoder_training:
print(f"stop text encoder training at step {global_step}")
current_loss = loss.detach().item()
if args.logging_dir is not None:
logs = {"loss": current_loss, "lr": lr_scheduler.get_last_lr()[0]}
@ -2052,6 +2069,7 @@ if __name__ == '__main__':
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="loss weight for regularization images / 正則化画像のlossの重み")
parser.add_argument("--no_token_padding", action="store_true",
help="disable token padding (same as Diffuser's DreamBooth) / トークンのpaddingを無効にするDiffusers版DreamBoothと同じ動作")
parser.add_argument("--stop_text_encoder_training", type=int, default=None, help="steps to stop text encoder training / Text Encoderの学習を止めるステップ数")
parser.add_argument("--color_aug", action="store_true", help="enable weak color augmentation / 学習時に色合いのaugmentationを有効にする")
parser.add_argument("--flip_aug", action="store_true", help="enable horizontal flip augmentation / 学習時に左右反転のaugmentationを有効にする")
parser.add_argument("--face_crop_aug_range", type=str, default=None,