v12 release
This commit is contained in:
parent
5a68cd02e7
commit
188edd34af
@ -391,3 +391,7 @@ options:
|
||||
- Compatible with Stable Diffusion v2.0. Add the `--v2` option. If you are using `768-v-ema.ckpt` or `stable-diffusion-2` instead of `stable-diffusion-v2-base`, add `--v_parameterization` as well. Learn more about other options.
|
||||
- Added options related to the learning rate scheduler.
|
||||
- You can download and use DiffUsers models directly from Hugging Face. In addition, DiffUsers models can be saved during training.
|
||||
* 11/29 (v12) update:
|
||||
- stop training text encoder at specified step (`--stop_text_encoder_training=<step #>`)
|
||||
- tqdm smoothing
|
||||
- updated fine tuning script to support SD2.0 768/v
|
@ -10,6 +10,7 @@
|
||||
# add lr scheduler options, change handling folder/file caption, support loading DiffUser model from Huggingface
|
||||
# support save_ever_n_epochs/save_state in DiffUsers model
|
||||
# fix the issue that prior_loss_weight is applyed to train images
|
||||
# v12: stop train text encode, tqdm smoothing
|
||||
|
||||
import time
|
||||
from torch.autograd.function import Function
|
||||
@ -39,33 +40,6 @@ from torch import einsum
|
||||
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
|
||||
V2_STABLE_DIFFUSION_PATH = "stabilityai/stable-diffusion-2" # ここからtokenizerだけ使う
|
||||
|
||||
# DiffUsers版StableDiffusionのモデルパラメータ
|
||||
NUM_TRAIN_TIMESTEPS = 1000
|
||||
BETA_START = 0.00085
|
||||
BETA_END = 0.0120
|
||||
|
||||
UNET_PARAMS_MODEL_CHANNELS = 320
|
||||
UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4]
|
||||
UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1]
|
||||
UNET_PARAMS_IMAGE_SIZE = 32 # unused
|
||||
UNET_PARAMS_IN_CHANNELS = 4
|
||||
UNET_PARAMS_OUT_CHANNELS = 4
|
||||
UNET_PARAMS_NUM_RES_BLOCKS = 2
|
||||
UNET_PARAMS_CONTEXT_DIM = 768
|
||||
UNET_PARAMS_NUM_HEADS = 8
|
||||
|
||||
VAE_PARAMS_Z_CHANNELS = 4
|
||||
VAE_PARAMS_RESOLUTION = 256
|
||||
VAE_PARAMS_IN_CHANNELS = 3
|
||||
VAE_PARAMS_OUT_CH = 3
|
||||
VAE_PARAMS_CH = 128
|
||||
VAE_PARAMS_CH_MULT = [1, 2, 4, 4]
|
||||
VAE_PARAMS_NUM_RES_BLOCKS = 2
|
||||
|
||||
# V2
|
||||
V2_UNET_PARAMS_ATTENTION_HEAD_DIM = [5, 10, 20, 20]
|
||||
V2_UNET_PARAMS_CONTEXT_DIM = 1024
|
||||
|
||||
# checkpointファイル名
|
||||
LAST_CHECKPOINT_NAME = "last.ckpt"
|
||||
LAST_STATE_NAME = "last-state"
|
||||
@ -693,6 +667,34 @@ def replace_unet_cross_attn_to_xformers():
|
||||
|
||||
# region checkpoint変換、読み込み、書き込み ###############################
|
||||
|
||||
# DiffUsers版StableDiffusionのモデルパラメータ
|
||||
NUM_TRAIN_TIMESTEPS = 1000
|
||||
BETA_START = 0.00085
|
||||
BETA_END = 0.0120
|
||||
|
||||
UNET_PARAMS_MODEL_CHANNELS = 320
|
||||
UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4]
|
||||
UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1]
|
||||
UNET_PARAMS_IMAGE_SIZE = 32 # unused
|
||||
UNET_PARAMS_IN_CHANNELS = 4
|
||||
UNET_PARAMS_OUT_CHANNELS = 4
|
||||
UNET_PARAMS_NUM_RES_BLOCKS = 2
|
||||
UNET_PARAMS_CONTEXT_DIM = 768
|
||||
UNET_PARAMS_NUM_HEADS = 8
|
||||
|
||||
VAE_PARAMS_Z_CHANNELS = 4
|
||||
VAE_PARAMS_RESOLUTION = 256
|
||||
VAE_PARAMS_IN_CHANNELS = 3
|
||||
VAE_PARAMS_OUT_CH = 3
|
||||
VAE_PARAMS_CH = 128
|
||||
VAE_PARAMS_CH_MULT = [1, 2, 4, 4]
|
||||
VAE_PARAMS_NUM_RES_BLOCKS = 2
|
||||
|
||||
# V2
|
||||
V2_UNET_PARAMS_ATTENTION_HEAD_DIM = [5, 10, 20, 20]
|
||||
V2_UNET_PARAMS_CONTEXT_DIM = 1024
|
||||
|
||||
|
||||
# region StableDiffusion->Diffusersの変換コード
|
||||
# convert_original_stable_diffusion_to_diffusers をコピーしている(ASL 2.0)
|
||||
|
||||
@ -1408,9 +1410,13 @@ def load_checkpoint_with_text_encoder_conversion(ckpt_path):
|
||||
return checkpoint
|
||||
|
||||
|
||||
def load_models_from_stable_diffusion_checkpoint(v2, ckpt_path):
|
||||
def load_models_from_stable_diffusion_checkpoint(v2, ckpt_path, dtype=None):
|
||||
checkpoint = load_checkpoint_with_text_encoder_conversion(ckpt_path)
|
||||
state_dict = checkpoint["state_dict"]
|
||||
if dtype is not None:
|
||||
for k, v in state_dict.items():
|
||||
if type(v) is torch.Tensor:
|
||||
state_dict[k] = v.to(dtype)
|
||||
|
||||
# Convert the UNet2DConditionModel model.
|
||||
unet_config = create_unet_diffusers_config(v2)
|
||||
@ -1854,10 +1860,15 @@ def train(args):
|
||||
print(f" total train batch size (with parallel & distributed) / 総バッチサイズ(並列学習含む): {total_batch_size}")
|
||||
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
|
||||
|
||||
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process, desc="steps")
|
||||
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
|
||||
global_step = 0
|
||||
|
||||
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
||||
# v12で更新:clip_sample=Falseに
|
||||
# Diffusersのtrain_dreambooth.pyがconfigから持ってくるように変更されたので、clip_sample=Falseになるため、それに合わせる
|
||||
# 既存の1.4/1.5/2.0はすべてschdulerのconfigは(クラス名を除いて)同じ
|
||||
# よくソースを見たら学習時は関係ないや(;'∀')
|
||||
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
|
||||
num_train_timesteps=1000, clip_sample=False)
|
||||
|
||||
if accelerator.is_main_process:
|
||||
accelerator.init_trackers("dreambooth")
|
||||
@ -1891,13 +1902,16 @@ def train(args):
|
||||
# (this is the forward diffusion process)
|
||||
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
||||
|
||||
# Get the text embedding for conditioning
|
||||
if args.clip_skip is None:
|
||||
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
|
||||
else:
|
||||
enc_out = text_encoder(batch["input_ids"], output_hidden_states=True, return_dict=True)
|
||||
encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip]
|
||||
encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states)
|
||||
# 指定したステップ数までText Encoderを学習する
|
||||
train_text_encoder = args.stop_text_encoder_training is None or global_step < args.stop_text_encoder_training
|
||||
with torch.set_grad_enabled(train_text_encoder):
|
||||
# Get the text embedding for conditioning
|
||||
if args.clip_skip is None:
|
||||
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
|
||||
else:
|
||||
enc_out = text_encoder(batch["input_ids"], output_hidden_states=True, return_dict=True)
|
||||
encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip]
|
||||
encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states)
|
||||
|
||||
# Predict the noise residual
|
||||
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
||||
@ -1954,6 +1968,9 @@ def train(args):
|
||||
progress_bar.update(1)
|
||||
global_step += 1
|
||||
|
||||
if global_step == args.stop_text_encoder_training:
|
||||
print(f"stop text encoder training at step {global_step}")
|
||||
|
||||
current_loss = loss.detach().item()
|
||||
if args.logging_dir is not None:
|
||||
logs = {"loss": current_loss, "lr": lr_scheduler.get_last_lr()[0]}
|
||||
@ -2052,6 +2069,7 @@ if __name__ == '__main__':
|
||||
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="loss weight for regularization images / 正則化画像のlossの重み")
|
||||
parser.add_argument("--no_token_padding", action="store_true",
|
||||
help="disable token padding (same as Diffuser's DreamBooth) / トークンのpaddingを無効にする(Diffusers版DreamBoothと同じ動作)")
|
||||
parser.add_argument("--stop_text_encoder_training", type=int, default=None, help="steps to stop text encoder training / Text Encoderの学習を止めるステップ数")
|
||||
parser.add_argument("--color_aug", action="store_true", help="enable weak color augmentation / 学習時に色合いのaugmentationを有効にする")
|
||||
parser.add_argument("--flip_aug", action="store_true", help="enable horizontal flip augmentation / 学習時に左右反転のaugmentationを有効にする")
|
||||
parser.add_argument("--face_crop_aug_range", type=str, default=None,
|
||||
|
Loading…
Reference in New Issue
Block a user