Add support for:

shuffle_caption,
save_state,
resume,
prior_loss_weight,

Fix issue with config open and save
This commit is contained in:
bmaltais 2022-12-19 21:50:05 -05:00
parent 1d412726b3
commit 1f1dd5c4de
7 changed files with 1594 additions and 1073 deletions

View File

@ -10,7 +10,9 @@ import os
import subprocess import subprocess
import pathlib import pathlib
import shutil import shutil
from library.dreambooth_folder_creation_gui import gradio_dreambooth_folder_creation_tab from library.dreambooth_folder_creation_gui import (
gradio_dreambooth_folder_creation_tab,
)
from library.basic_caption_gui import gradio_basic_caption_gui_tab from library.basic_caption_gui import gradio_basic_caption_gui_tab
from library.convert_model_gui import gradio_convert_model_tab from library.convert_model_gui import gradio_convert_model_tab
from library.blip_caption_gui import gradio_blip_caption_gui_tab from library.blip_caption_gui import gradio_blip_caption_gui_tab
@ -20,7 +22,7 @@ from library.common_gui import (
get_folder_path, get_folder_path,
remove_doublequote, remove_doublequote,
get_file_path, get_file_path,
get_saveasfile_path get_saveasfile_path,
) )
from easygui import msgbox from easygui import msgbox
@ -60,7 +62,11 @@ def save_configuration(
stop_text_encoder_training, stop_text_encoder_training,
use_8bit_adam, use_8bit_adam,
xformers, xformers,
save_model_as save_model_as,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
): ):
original_file_path = file_path original_file_path = file_path
@ -68,22 +74,14 @@ def save_configuration(
if save_as_bool: if save_as_bool:
print('Save as...') print('Save as...')
# file_path = filesavebox(
# 'Select the config file to save',
# default='finetune.json',
# filetypes='*.json',
# )
file_path = get_saveasfile_path(file_path) file_path = get_saveasfile_path(file_path)
else: else:
print('Save...') print('Save...')
if file_path == None or file_path == '': if file_path == None or file_path == '':
# file_path = filesavebox(
# 'Select the config file to save',
# default='finetune.json',
# filetypes='*.json',
# )
file_path = get_saveasfile_path(file_path) file_path = get_saveasfile_path(file_path)
# print(file_path)
if file_path == None or file_path == '': if file_path == None or file_path == '':
return original_file_path # In case a file_path was provided and the user decide to cancel the open action return original_file_path # In case a file_path was provided and the user decide to cancel the open action
@ -116,7 +114,11 @@ def save_configuration(
'stop_text_encoder_training': stop_text_encoder_training, 'stop_text_encoder_training': stop_text_encoder_training,
'use_8bit_adam': use_8bit_adam, 'use_8bit_adam': use_8bit_adam,
'xformers': xformers, 'xformers': xformers,
'save_model_as': save_model_as 'save_model_as': save_model_as,
'shuffle_caption': shuffle_caption,
'save_state': save_state,
'resume': resume,
'prior_loss_weight': prior_loss_weight,
} }
# Save the data to the selected file # Save the data to the selected file
@ -155,14 +157,18 @@ def open_configuration(
stop_text_encoder_training, stop_text_encoder_training,
use_8bit_adam, use_8bit_adam,
xformers, xformers,
save_model_as save_model_as,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
): ):
original_file_path = file_path original_file_path = file_path
file_path = get_file_path(file_path) file_path = get_file_path(file_path)
# print(file_path)
if file_path != '' and file_path != None: if not file_path == '' and not file_path == None:
print(file_path)
# load variables from JSON file # load variables from JSON file
with open(file_path, 'r') as f: with open(file_path, 'r') as f:
my_data = json.load(f) my_data = json.load(f)
@ -204,7 +210,11 @@ def open_configuration(
my_data.get('stop_text_encoder_training', stop_text_encoder_training), my_data.get('stop_text_encoder_training', stop_text_encoder_training),
my_data.get('use_8bit_adam', use_8bit_adam), my_data.get('use_8bit_adam', use_8bit_adam),
my_data.get('xformers', xformers), my_data.get('xformers', xformers),
my_data.get('save_model_as', save_model_as) my_data.get('save_model_as', save_model_as),
my_data.get('shuffle_caption', shuffle_caption),
my_data.get('save_state', save_state),
my_data.get('resume', resume),
my_data.get('prior_loss_weight', prior_loss_weight),
) )
@ -236,7 +246,11 @@ def train_model(
stop_text_encoder_training_pct, stop_text_encoder_training_pct,
use_8bit_adam, use_8bit_adam,
xformers, xformers,
save_model_as save_model_as,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
): ):
def save_inference_file(output_dir, v2, v_parameterization): def save_inference_file(output_dir, v2, v_parameterization):
# Copy inference model for v2 if required # Copy inference model for v2 if required
@ -360,6 +374,10 @@ def train_model(
run_cmd += ' --use_8bit_adam' run_cmd += ' --use_8bit_adam'
if xformers: if xformers:
run_cmd += ' --xformers' run_cmd += ' --xformers'
if shuffle_caption:
run_cmd += ' --shuffle_caption'
if save_state:
run_cmd += ' --save_state'
run_cmd += ( run_cmd += (
f' --pretrained_model_name_or_path={pretrained_model_name_or_path}' f' --pretrained_model_name_or_path={pretrained_model_name_or_path}'
) )
@ -382,9 +400,15 @@ def train_model(
run_cmd += f' --logging_dir={logging_dir}' run_cmd += f' --logging_dir={logging_dir}'
run_cmd += f' --caption_extention={caption_extention}' run_cmd += f' --caption_extention={caption_extention}'
if not stop_text_encoder_training == 0: if not stop_text_encoder_training == 0:
run_cmd += f' --stop_text_encoder_training={stop_text_encoder_training}' run_cmd += (
f' --stop_text_encoder_training={stop_text_encoder_training}'
)
if not save_model_as == 'same as source model': if not save_model_as == 'same as source model':
run_cmd += f' --save_model_as={save_model_as}' run_cmd += f' --save_model_as={save_model_as}'
if not resume == '':
run_cmd += f' --resume={resume}'
if not float(prior_loss_weight) == 1.0:
run_cmd += f' --prior_loss_weight={prior_loss_weight}'
print(run_cmd) print(run_cmd)
# Run the command # Run the command
@ -472,8 +496,8 @@ with interface:
) )
config_file_name = gr.Textbox( config_file_name = gr.Textbox(
label='', label='',
# placeholder="type the configuration file path or use the 'Open' button above to select it...", placeholder="type the configuration file path or use the 'Open' button above to select it...",
interactive=False interactive=True,
) )
# config_file_name.change( # config_file_name.change(
# remove_doublequote, # remove_doublequote,
@ -491,13 +515,16 @@ with interface:
document_symbol, elem_id='open_folder_small' document_symbol, elem_id='open_folder_small'
) )
pretrained_model_name_or_path_fille.click( pretrained_model_name_or_path_fille.click(
get_file_path, inputs=[pretrained_model_name_or_path_input], outputs=pretrained_model_name_or_path_input get_file_path,
inputs=[pretrained_model_name_or_path_input],
outputs=pretrained_model_name_or_path_input,
) )
pretrained_model_name_or_path_folder = gr.Button( pretrained_model_name_or_path_folder = gr.Button(
folder_symbol, elem_id='open_folder_small' folder_symbol, elem_id='open_folder_small'
) )
pretrained_model_name_or_path_folder.click( pretrained_model_name_or_path_folder.click(
get_folder_path, outputs=pretrained_model_name_or_path_input get_folder_path,
outputs=pretrained_model_name_or_path_input,
) )
model_list = gr.Dropdown( model_list = gr.Dropdown(
label='(Optional) Model Quick Pick', label='(Optional) Model Quick Pick',
@ -517,10 +544,10 @@ with interface:
'same as source model', 'same as source model',
'ckpt', 'ckpt',
'diffusers', 'diffusers',
"diffusers_safetensors", 'diffusers_safetensors',
'safetensors', 'safetensors',
], ],
value='same as source model' value='same as source model',
) )
with gr.Row(): with gr.Row():
v2_input = gr.Checkbox(label='v2', value=True) v2_input = gr.Checkbox(label='v2', value=True)
@ -607,7 +634,9 @@ with interface:
) )
with gr.Tab('Training parameters'): with gr.Tab('Training parameters'):
with gr.Row(): with gr.Row():
learning_rate_input = gr.Textbox(label='Learning rate', value=1e-6) learning_rate_input = gr.Textbox(
label='Learning rate', value=1e-6
)
lr_scheduler_input = gr.Dropdown( lr_scheduler_input = gr.Dropdown(
label='LR Scheduler', label='LR Scheduler',
choices=[ choices=[
@ -662,7 +691,9 @@ with interface:
with gr.Row(): with gr.Row():
seed_input = gr.Textbox(label='Seed', value=1234) seed_input = gr.Textbox(label='Seed', value=1234)
max_resolution_input = gr.Textbox( max_resolution_input = gr.Textbox(
label='Max resolution', value='512,512', placeholder='512,512' label='Max resolution',
value='512,512',
placeholder='512,512',
) )
with gr.Row(): with gr.Row():
caption_extention_input = gr.Textbox( caption_extention_input = gr.Textbox(
@ -676,6 +707,18 @@ with interface:
step=1, step=1,
label='Stop text encoder training', label='Stop text encoder training',
) )
with gr.Row():
enable_bucket_input = gr.Checkbox(
label='Enable buckets', value=True
)
cache_latent_input = gr.Checkbox(
label='Cache latent', value=True
)
use_8bit_adam_input = gr.Checkbox(
label='Use 8bit adam', value=True
)
xformers_input = gr.Checkbox(label='Use xformers', value=True)
with gr.Accordion('Advanced Configuration', open=False):
with gr.Row(): with gr.Row():
full_fp16_input = gr.Checkbox( full_fp16_input = gr.Checkbox(
label='Full fp16 training (experimental)', value=False label='Full fp16 training (experimental)', value=False
@ -687,15 +730,21 @@ with interface:
gradient_checkpointing_input = gr.Checkbox( gradient_checkpointing_input = gr.Checkbox(
label='Gradient checkpointing', value=False label='Gradient checkpointing', value=False
) )
shuffle_caption = gr.Checkbox(
label='Shuffle caption', value=False
)
save_state = gr.Checkbox(label='Save state', value=False)
with gr.Row(): with gr.Row():
enable_bucket_input = gr.Checkbox( resume = gr.Textbox(
label='Enable buckets', value=True label='Resume',
placeholder='path to "last-state" state folder to resume from',
) )
cache_latent_input = gr.Checkbox(label='Cache latent', value=True) resume_button = gr.Button('📂', elem_id='open_folder_small')
use_8bit_adam_input = gr.Checkbox( resume_button.click(get_folder_path, outputs=resume)
label='Use 8bit adam', value=True prior_loss_weight = gr.Number(
label='Prior loss weight', value=1.0
) )
xformers_input = gr.Checkbox(label='Use xformers', value=True)
button_run = gr.Button('Train model') button_run = gr.Button('Train model')
@ -713,8 +762,6 @@ with interface:
gradio_dataset_balancing_tab() gradio_dataset_balancing_tab()
gradio_convert_model_tab() gradio_convert_model_tab()
button_open_config.click( button_open_config.click(
open_configuration, open_configuration,
inputs=[ inputs=[
@ -746,7 +793,11 @@ with interface:
stop_text_encoder_training_input, stop_text_encoder_training_input,
use_8bit_adam_input, use_8bit_adam_input,
xformers_input, xformers_input,
save_model_as_dropdown save_model_as_dropdown,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
], ],
outputs=[ outputs=[
config_file_name, config_file_name,
@ -777,7 +828,11 @@ with interface:
stop_text_encoder_training_input, stop_text_encoder_training_input,
use_8bit_adam_input, use_8bit_adam_input,
xformers_input, xformers_input,
save_model_as_dropdown save_model_as_dropdown,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
], ],
) )
@ -815,7 +870,11 @@ with interface:
stop_text_encoder_training_input, stop_text_encoder_training_input,
use_8bit_adam_input, use_8bit_adam_input,
xformers_input, xformers_input,
save_model_as_dropdown save_model_as_dropdown,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
], ],
outputs=[config_file_name], outputs=[config_file_name],
) )
@ -852,7 +911,11 @@ with interface:
stop_text_encoder_training_input, stop_text_encoder_training_input,
use_8bit_adam_input, use_8bit_adam_input,
xformers_input, xformers_input,
save_model_as_dropdown save_model_as_dropdown,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
], ],
outputs=[config_file_name], outputs=[config_file_name],
) )
@ -887,7 +950,11 @@ with interface:
stop_text_encoder_training_input, stop_text_encoder_training_input,
use_8bit_adam_input, use_8bit_adam_input,
xformers_input, xformers_input,
save_model_as_dropdown save_model_as_dropdown,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
], ],
) )

View File

@ -5,7 +5,12 @@ from .common_gui import get_folder_path, add_pre_postfix
def caption_images( def caption_images(
caption_text_input, images_dir_input, overwrite_input, caption_file_ext, prefix, postfix caption_text_input,
images_dir_input,
overwrite_input,
caption_file_ext,
prefix,
postfix,
): ):
# Check for images_dir_input # Check for images_dir_input
if images_dir_input == '': if images_dir_input == '':
@ -31,10 +36,17 @@ def caption_images(
if overwrite_input: if overwrite_input:
# Add prefix and postfix # Add prefix and postfix
add_pre_postfix(folder=images_dir_input, caption_file_ext=caption_file_ext, prefix=prefix, postfix=postfix) add_pre_postfix(
folder=images_dir_input,
caption_file_ext=caption_file_ext,
prefix=prefix,
postfix=postfix,
)
else: else:
if not prefix == '' or not postfix == '': if not prefix == '' or not postfix == '':
msgbox('Could not modify caption files with requested change because the "Overwrite existing captions in folder" option is not selected...') msgbox(
'Could not modify caption files with requested change because the "Overwrite existing captions in folder" option is not selected...'
)
print('...captioning done') print('...captioning done')
@ -97,6 +109,7 @@ def gradio_basic_caption_gui_tab():
images_dir_input, images_dir_input,
overwrite_input, overwrite_input,
caption_file_ext, caption_file_ext,
prefix, postfix prefix,
postfix,
], ],
) )

View File

@ -4,6 +4,7 @@ import subprocess
import os import os
from .common_gui import get_folder_path, add_pre_postfix from .common_gui import get_folder_path, add_pre_postfix
def caption_images( def caption_images(
train_data_dir, train_data_dir,
caption_file_ext, caption_file_ext,
@ -14,7 +15,7 @@ def caption_images(
min_length, min_length,
beam_search, beam_search,
prefix, prefix,
postfix postfix,
): ):
# Check for caption_text_input # Check for caption_text_input
# if caption_text_input == "": # if caption_text_input == "":
@ -46,7 +47,12 @@ def caption_images(
subprocess.run(run_cmd) subprocess.run(run_cmd)
# Add prefix and postfix # Add prefix and postfix
add_pre_postfix(folder=train_data_dir, caption_file_ext=caption_file_ext, prefix=prefix, postfix=postfix) add_pre_postfix(
folder=train_data_dir,
caption_file_ext=caption_file_ext,
prefix=prefix,
postfix=postfix,
)
print('...captioning done') print('...captioning done')
@ -125,6 +131,6 @@ def gradio_blip_caption_gui_tab():
min_length, min_length,
beam_search, beam_search,
prefix, prefix,
postfix postfix,
], ],
) )

View File

@ -1,6 +1,7 @@
from tkinter import filedialog, Tk from tkinter import filedialog, Tk
import os import os
def get_file_path(file_path='', defaultextension='.json'): def get_file_path(file_path='', defaultextension='.json'):
current_file_path = file_path current_file_path = file_path
# print(f'current file path: {current_file_path}') # print(f'current file path: {current_file_path}')
@ -8,7 +9,10 @@ def get_file_path(file_path='', defaultextension='.json'):
root = Tk() root = Tk()
root.wm_attributes('-topmost', 1) root.wm_attributes('-topmost', 1)
root.withdraw() root.withdraw()
file_path = filedialog.askopenfilename(filetypes = (("Config files", "*.json"), ("All files", "*")), defaultextension=defaultextension) file_path = filedialog.askopenfilename(
filetypes=(('Config files', '*.json'), ('All files', '*')),
defaultextension=defaultextension,
)
root.destroy() root.destroy()
if file_path == '': if file_path == '':
@ -38,6 +42,7 @@ def get_folder_path(folder_path=''):
return folder_path return folder_path
def get_saveasfile_path(file_path='', defaultextension='.json'): def get_saveasfile_path(file_path='', defaultextension='.json'):
current_file_path = file_path current_file_path = file_path
# print(f'current file path: {current_file_path}') # print(f'current file path: {current_file_path}')
@ -45,21 +50,28 @@ def get_saveasfile_path(file_path='', defaultextension='.json'):
root = Tk() root = Tk()
root.wm_attributes('-topmost', 1) root.wm_attributes('-topmost', 1)
root.withdraw() root.withdraw()
save_file_path = filedialog.asksaveasfile(filetypes = (("Config files", "*.json"), ("All files", "*")), defaultextension=defaultextension) save_file_path = filedialog.asksaveasfile(
filetypes=(('Config files', '*.json'), ('All files', '*')),
defaultextension=defaultextension,
)
root.destroy() root.destroy()
# file_path = file_path.name # print(save_file_path)
if file_path == '':
if save_file_path == None:
file_path = current_file_path file_path = current_file_path
else: else:
print(save_file_path.name) print(save_file_path.name)
file_path = save_file_path.name file_path = save_file_path.name
print(file_path) # print(file_path)
return file_path return file_path
def add_pre_postfix(folder='', prefix='', postfix='', caption_file_ext='.caption'):
def add_pre_postfix(
folder='', prefix='', postfix='', caption_file_ext='.caption'
):
files = [f for f in os.listdir(folder) if f.endswith(caption_file_ext)] files = [f for f in os.listdir(folder) if f.endswith(caption_file_ext)]
if not prefix == '': if not prefix == '':
prefix = f'{prefix} ' prefix = f'{prefix} '
@ -70,6 +82,6 @@ def add_pre_postfix(folder='', prefix='', postfix='', caption_file_ext='.caption
with open(os.path.join(folder, file), 'r+') as f: with open(os.path.join(folder, file), 'r+') as f:
content = f.read() content = f.read()
content = content.rstrip() content = content.rstrip()
f.seek(0,0) f.seek(0, 0)
f.write(f'{prefix}{content}{postfix}') f.write(f'{prefix}{content}{postfix}')
f.close() f.close()

View File

@ -10,10 +10,18 @@ refresh_symbol = '\U0001f504' # 🔄
save_style_symbol = '\U0001f4be' # 💾 save_style_symbol = '\U0001f4be' # 💾
document_symbol = '\U0001F4C4' # 📄 document_symbol = '\U0001F4C4' # 📄
def convert_model(source_model_input, source_model_type, target_model_folder_input, target_model_name_input, target_model_type, target_save_precision_type):
def convert_model(
source_model_input,
source_model_type,
target_model_folder_input,
target_model_name_input,
target_model_type,
target_save_precision_type,
):
# Check for caption_text_input # Check for caption_text_input
if source_model_type == "": if source_model_type == '':
msgbox("Invalid source model type") msgbox('Invalid source model type')
return return
# Check if source model exist # Check if source model exist
@ -22,14 +30,14 @@ def convert_model(source_model_input, source_model_type, target_model_folder_inp
elif os.path.isdir(source_model_input): elif os.path.isdir(source_model_input):
print('The provided model is a folder') print('The provided model is a folder')
else: else:
msgbox("The provided source model is neither a file nor a folder") msgbox('The provided source model is neither a file nor a folder')
return return
# Check if source model exist # Check if source model exist
if os.path.isdir(target_model_folder_input): if os.path.isdir(target_model_folder_input):
print('The provided model folder exist') print('The provided model folder exist')
else: else:
msgbox("The provided target folder does not exist") msgbox('The provided target folder does not exist')
return return
run_cmd = f'.\\venv\Scripts\python.exe "tools/convert_diffusers20_original_sd.py"' run_cmd = f'.\\venv\Scripts\python.exe "tools/convert_diffusers20_original_sd.py"'
@ -50,7 +58,10 @@ def convert_model(source_model_input, source_model_type, target_model_folder_inp
if not target_save_precision_type == 'unspecified': if not target_save_precision_type == 'unspecified':
run_cmd += f' --{target_save_precision_type}' run_cmd += f' --{target_save_precision_type}'
if target_model_type == "diffuser" or target_model_type == "diffuser_safetensors": if (
target_model_type == 'diffuser'
or target_model_type == 'diffuser_safetensors'
):
run_cmd += f' --reference_model="{source_model_type}"' run_cmd += f' --reference_model="{source_model_type}"'
if target_model_type == 'diffuser_safetensors': if target_model_type == 'diffuser_safetensors':
@ -58,11 +69,19 @@ def convert_model(source_model_input, source_model_type, target_model_folder_inp
run_cmd += f' "{source_model_input}"' run_cmd += f' "{source_model_input}"'
if target_model_type == "diffuser" or target_model_type == "diffuser_safetensors": if (
target_model_path = os.path.join(target_model_folder_input, target_model_name_input) target_model_type == 'diffuser'
or target_model_type == 'diffuser_safetensors'
):
target_model_path = os.path.join(
target_model_folder_input, target_model_name_input
)
run_cmd += f' "{target_model_path}"' run_cmd += f' "{target_model_path}"'
else: else:
target_model_path = os.path.join(target_model_folder_input, f'{target_model_name_input}.{target_model_type}') target_model_path = os.path.join(
target_model_folder_input,
f'{target_model_name_input}.{target_model_type}',
)
run_cmd += f' "{target_model_path}"' run_cmd += f' "{target_model_path}"'
print(run_cmd) print(run_cmd)
@ -70,16 +89,24 @@ def convert_model(source_model_input, source_model_type, target_model_folder_inp
# Run the command # Run the command
subprocess.run(run_cmd) subprocess.run(run_cmd)
if not target_model_type == "diffuser" or target_model_type == "diffuser_safetensors": if (
not target_model_type == 'diffuser'
or target_model_type == 'diffuser_safetensors'
):
v2_models = ['stabilityai/stable-diffusion-2-1-base', v2_models = [
'stabilityai/stable-diffusion-2-base',] 'stabilityai/stable-diffusion-2-1-base',
v_parameterization =[ 'stabilityai/stable-diffusion-2-base',
]
v_parameterization = [
'stabilityai/stable-diffusion-2-1', 'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',] 'stabilityai/stable-diffusion-2',
]
if str(source_model_type) in v2_models: if str(source_model_type) in v2_models:
inference_file = os.path.join(target_model_folder_input, f'{target_model_name_input}.yaml') inference_file = os.path.join(
target_model_folder_input, f'{target_model_name_input}.yaml'
)
print(f'Saving v2-inference.yaml as {inference_file}') print(f'Saving v2-inference.yaml as {inference_file}')
shutil.copy( shutil.copy(
f'./v2_inference/v2-inference.yaml', f'./v2_inference/v2-inference.yaml',
@ -87,13 +114,16 @@ def convert_model(source_model_input, source_model_type, target_model_folder_inp
) )
if str(source_model_type) in v_parameterization: if str(source_model_type) in v_parameterization:
inference_file = os.path.join(target_model_folder_input, f'{target_model_name_input}.yaml') inference_file = os.path.join(
target_model_folder_input, f'{target_model_name_input}.yaml'
)
print(f'Saving v2-inference-v.yaml as {inference_file}') print(f'Saving v2-inference-v.yaml as {inference_file}')
shutil.copy( shutil.copy(
f'./v2_inference/v2-inference-v.yaml', f'./v2_inference/v2-inference-v.yaml',
f'{inference_file}', f'{inference_file}',
) )
# parser = argparse.ArgumentParser() # parser = argparse.ArgumentParser()
# parser.add_argument("--v1", action='store_true', # parser.add_argument("--v1", action='store_true',
# help='load v1.x model (v1 or v2 is required to load checkpoint) / 1.xのモデルを読み込む') # help='load v1.x model (v1 or v2 is required to load checkpoint) / 1.xのモデルを読み込む')
@ -143,17 +173,22 @@ def gradio_convert_model_tab():
document_symbol, elem_id='open_folder_small' document_symbol, elem_id='open_folder_small'
) )
button_source_model_file.click( button_source_model_file.click(
get_file_path, inputs=[source_model_input], outputs=source_model_input get_file_path,
inputs=[source_model_input],
outputs=source_model_input,
) )
source_model_type = gr.Dropdown(label="Source model type", choices=[ source_model_type = gr.Dropdown(
label='Source model type',
choices=[
'stabilityai/stable-diffusion-2-1-base', 'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base', 'stabilityai/stable-diffusion-2-base',
'stabilityai/stable-diffusion-2-1', 'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2', 'stabilityai/stable-diffusion-2',
'runwayml/stable-diffusion-v1-5', 'runwayml/stable-diffusion-v1-5',
'CompVis/stable-diffusion-v1-4', 'CompVis/stable-diffusion-v1-4',
],) ],
)
with gr.Row(): with gr.Row():
target_model_folder_input = gr.Textbox( target_model_folder_input = gr.Textbox(
label='Target model folder', label='Target model folder',
@ -172,24 +207,31 @@ def gradio_convert_model_tab():
placeholder='target model name...', placeholder='target model name...',
interactive=True, interactive=True,
) )
target_model_type = gr.Dropdown(label="Target model type", choices=[ target_model_type = gr.Dropdown(
label='Target model type',
choices=[
'diffuser', 'diffuser',
'diffuser_safetensors', 'diffuser_safetensors',
'ckpt', 'ckpt',
'safetensors', 'safetensors',
],) ],
target_save_precision_type = gr.Dropdown(label="Target model precison", choices=[ )
'unspecified', target_save_precision_type = gr.Dropdown(
'fp16', label='Target model precison',
'bf16', choices=['unspecified', 'fp16', 'bf16', 'float'],
'float' value='unspecified',
], value='unspecified') )
convert_button = gr.Button('Convert model') convert_button = gr.Button('Convert model')
convert_button.click( convert_button.click(
convert_model, convert_model,
inputs=[source_model_input, source_model_type, target_model_folder_input, target_model_name_input, target_model_type, target_save_precision_type inputs=[
source_model_input,
source_model_type,
target_model_folder_input,
target_model_name_input,
target_model_type,
target_save_precision_type,
], ],
) )

View File

@ -72,23 +72,35 @@ def dataset_balancing(concept_repeats, folder, insecure):
os.rename(old_name, new_name) os.rename(old_name, new_name)
else: else:
print(f"Skipping folder {subdir} because it does not match kohya_ss expected syntax...") print(
f'Skipping folder {subdir} because it does not match kohya_ss expected syntax...'
)
msgbox('Dataset balancing completed...') msgbox('Dataset balancing completed...')
def warning(insecure): def warning(insecure):
if insecure: if insecure:
if boolbox(f'WARNING!!! You have asked to rename non kohya_ss <num>_<text> folders...\n\nAre you sure you want to do that?', choices=("Yes, I like danger", "No, get me out of here")): if boolbox(
f'WARNING!!! You have asked to rename non kohya_ss <num>_<text> folders...\n\nAre you sure you want to do that?',
choices=('Yes, I like danger', 'No, get me out of here'),
):
return True return True
else: else:
return False return False
def gradio_dataset_balancing_tab(): def gradio_dataset_balancing_tab():
with gr.Tab('Dataset balancing'): with gr.Tab('Dataset balancing'):
gr.Markdown('This utility will ensure that each concept folder in the dataset folder is used equally during the training process of the dreambooth machine learning model, regardless of the number of images in each folder. It will do this by renaming the concept folders to indicate the number of times they should be repeated during training.') gr.Markdown(
gr.Markdown('WARNING! The use of this utility on the wrong folder can lead to unexpected folder renaming!!!') 'This utility will ensure that each concept folder in the dataset folder is used equally during the training process of the dreambooth machine learning model, regardless of the number of images in each folder. It will do this by renaming the concept folders to indicate the number of times they should be repeated during training.'
)
gr.Markdown(
'WARNING! The use of this utility on the wrong folder can lead to unexpected folder renaming!!!'
)
with gr.Row(): with gr.Row():
select_dataset_folder_input = gr.Textbox(label="Dataset folder", select_dataset_folder_input = gr.Textbox(
label='Dataset folder',
placeholder='Folder containing the concepts folders to balance...', placeholder='Folder containing the concepts folders to balance...',
interactive=True, interactive=True,
) )
@ -106,10 +118,17 @@ def gradio_dataset_balancing_tab():
label='Training steps per concept per epoch', label='Training steps per concept per epoch',
) )
with gr.Accordion('Advanced options', open=False): with gr.Accordion('Advanced options', open=False):
insecure = gr.Checkbox(value=False, label="DANGER!!! -- Insecure folder renaming -- DANGER!!!") insecure = gr.Checkbox(
value=False,
label='DANGER!!! -- Insecure folder renaming -- DANGER!!!',
)
insecure.change(warning, inputs=insecure, outputs=insecure) insecure.change(warning, inputs=insecure, outputs=insecure)
balance_button = gr.Button('Balance dataset') balance_button = gr.Button('Balance dataset')
balance_button.click( balance_button.click(
dataset_balancing, dataset_balancing,
inputs=[total_repeats_number, select_dataset_folder_input, insecure], inputs=[
total_repeats_number,
select_dataset_folder_input,
insecure,
],
) )

File diff suppressed because it is too large Load Diff