From 23a5b7f946deeb5c4e5cac321bcb2e8e9cfdd800 Mon Sep 17 00:00:00 2001 From: Bernard Maltais Date: Mon, 7 Nov 2022 18:40:34 -0500 Subject: [PATCH] Adding new v7 --- .gitignore | 3 +- README.md | 14 +- train.ps | 106 --- train_db_fixed_v6-ber.py | 3 + train_db_fixed_v7-ber.py | 1617 ++++++++++++++++++++++++++++++++++++++ train_db_fixed_v7.py | 1609 +++++++++++++++++++++++++++++++++++++ 6 files changed, 3240 insertions(+), 112 deletions(-) delete mode 100644 train.ps create mode 100644 train_db_fixed_v7-ber.py create mode 100644 train_db_fixed_v7.py diff --git a/.gitignore b/.gitignore index f5e96db..24edb94 100644 --- a/.gitignore +++ b/.gitignore @@ -1 +1,2 @@ -venv \ No newline at end of file +venv +mytraining.ps diff --git a/README.md b/README.md index 847a6a8..a5b001c 100644 --- a/README.md +++ b/README.md @@ -77,7 +77,7 @@ my_sks_dog_dreambooth Edit and paste the following in a Powershell terminal: ```powershell -accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v6.py ` +accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v7.py ` --pretrained_model_name_or_path="D:\models\last.ckpt" ` --train_data_dir="D:\dreambooth\train_bernard\train_man" ` --reg_data_dir="D:\dreambooth\train_bernard\reg_man" ` @@ -99,12 +99,12 @@ accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v6.py ` If you would rather use model finetuning rather than the dreambooth method you can use a command similat to the following. The advantage of fine tuning is that you do not need to worry about regularization images... but you need to provide captions for every images. The caption will be used to train the model. You can use auto1111 to preprocess your training images and add either BLIP or danbooru captions to them. You then need to edit those to add the name of the model and correct any wrong description. ``` -accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v6-ber.py ` - --pretrained_model_name_or_path="D:\models\v1-5-pruned-mse-vae.ckpt" ` +accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v7-ber.py ` + --pretrained_model_name_or_path="D:\models\alexandrine_teissier_and_bernard_maltais-400-kohya-sd15-v1.ckpt" ` --train_data_dir="D:\dreambooth\source\alet_et_bernard\landscape-pp" ` --output_dir="D:\dreambooth\train_alex_and_bernard" ` --resolution="640,448" ` - --train_batch_size=8 ` + --train_batch_size=1 ` --learning_rate=1e-6 ` --max_train_steps=550 ` --use_8bit_adam ` @@ -113,9 +113,13 @@ accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v6-ber.py ` --cache_latents ` --save_every_n_epochs=1 ` --fine_tuning ` - --fine_tuning_repeat=200 ` + --dataset_repeats=200 ` --seed=23 ` --save_half ``` Refer to this url for more details about finetuning: https://note.com/kohya_ss/n/n1269f1e1a54e + +## Change history + +* 11/7 (v7): Text Encoder supports checkpoint files in different storage formats (it is converted at the time of import, so export will be in normal format). Changed the average value of EPOCH loss to output to the screen. Added a function to save epoch and global step in checkpoint in SD format (add values if there is existing data). The reg_data_dir option is enabled during fine tuning (fine tuning while mixing regularized images). Added dataset_repeats option that is valid for fine tuning (specified when the number of teacher images is small and the epoch is extremely short). \ No newline at end of file diff --git a/train.ps b/train.ps deleted file mode 100644 index e17d46a..0000000 --- a/train.ps +++ /dev/null @@ -1,106 +0,0 @@ -accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v6.py ` - --pretrained_model_name_or_path="D:\models\v1-5-pruned.ckpt" ` - --train_data_dir="D:\dreambooth\train_bernard\train_man" ` - --reg_data_dir="D:\dreambooth\train_bernard\reg_man" ` - --output_dir="D:\dreambooth\train_bernard" ` - --prior_loss_weight=1.0 ` - --resolution="512,512" ` - --train_batch_size=1 ` - --learning_rate=1e-6 ` - --max_train_steps=3000 ` - --use_8bit_adam ` - --xformers ` - --mixed_precision="fp16" ` - --cache_latents ` - --gradient_checkpointing ` - --save_every_n_epochs=1 - -accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v6.py ` - --pretrained_model_name_or_path="D:\models\bernard\asd man-3000-remgb-sd15.ckpt" ` - --train_data_dir="D:\dreambooth\train_bernard\train_man" ` - --reg_data_dir="D:\dreambooth\train_bernard\reg_man" ` - --output_dir="D:\dreambooth\train_bernard" ` - --prior_loss_weight=1.0 ` - --resolution="512,512" ` - --train_batch_size=1 ` - --learning_rate=1e-6 ` - --max_train_steps=1500 ` - --use_8bit_adam ` - --xformers ` - --mixed_precision="fp16" ` - --cache_latents ` - --gradient_checkpointing ` - --save_every_n_epochs=1 - -accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v6.py ` - --pretrained_model_name_or_path="D:\models\v1-5-pruned-mse-vae.ckpt" ` - --train_data_dir="D:\dreambooth\train_bernard\train_man" ` - --reg_data_dir="D:\dreambooth\train_bernard\reg_man" ` - --output_dir="D:\dreambooth\train_bernard" ` - --prior_loss_weight=1.0 ` - --resolution="512,512" ` - --train_batch_size=1 ` - --learning_rate=1e-6 ` - --max_train_steps=4500 ` - --use_8bit_adam ` - --xformers ` - --mixed_precision="fp16" ` - --cache_latents ` - --gradient_checkpointing ` - --no_token_padding ` - --save_every_n_epochs=1 - -accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v6.py ` - --pretrained_model_name_or_path="D:\models\v1-5-pruned-mse-vae.ckpt" ` - --train_data_dir="D:\dreambooth\source\alex\train" ` - --output_dir="D:\dreambooth\train_alex" ` - --prior_loss_weight=1.0 ` - --resolution="448,640" ` - --train_batch_size=8 ` - --learning_rate=1e-6 ` - --max_train_steps=4500 ` - --use_8bit_adam ` - --xformers ` - --mixed_precision="fp16" ` - --cache_latents ` - --save_every_n_epochs=1 ` - --shuffle_caption - -# -fine_tuning - -accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v6.py ` - --pretrained_model_name_or_path="D:\models\v1-5-pruned-mse-vae.ckpt" ` - --train_data_dir="D:\dreambooth\source\alex\train\50_portrait-pp" ` - --output_dir="D:\dreambooth\train_alex" ` - --resolution="448,640" ` - --train_batch_size=8 ` - --learning_rate=1e-6 ` - --max_train_steps=4500 ` - --use_8bit_adam ` - --xformers ` - --mixed_precision="fp16" ` - --cache_latents ` - --save_every_n_epochs=1 ` - --fine_tuning ` - --shuffle_caption - -Resume: - -accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v6-ber.py ` - --pretrained_model_name_or_path="D:\models\v1-5-pruned-mse-vae.ckpt" ` - --train_data_dir="D:\dreambooth\source\alet_et_bernard\landscape-pp" ` - --output_dir="D:\dreambooth\train_alex_and_bernard" ` - --resolution="640,448" ` - --train_batch_size=8 ` - --learning_rate=1e-6 ` - --max_train_steps=550 ` - --use_8bit_adam ` - --xformers ` - --mixed_precision="fp16" ` - --cache_latents ` - --save_every_n_epochs=1 ` - --fine_tuning ` - --fine_tuning_repeat=200 ` - --seed=23 ` - --save_half - \ No newline at end of file diff --git a/train_db_fixed_v6-ber.py b/train_db_fixed_v6-ber.py index af904f9..80696fc 100644 --- a/train_db_fixed_v6-ber.py +++ b/train_db_fixed_v6-ber.py @@ -2,6 +2,9 @@ # The license of this script, like train_dreambooth.py, is Apache License 2.0 # (c) 2022 Kohya S. @kohya_ss +# v7: another text encoder ckpt format, average loss, save epochs/global steps, show num of train/reg images, +# enable reg images in fine-tuning, add dataset_repeats option + from torch.autograd.function import Function import argparse import glob diff --git a/train_db_fixed_v7-ber.py b/train_db_fixed_v7-ber.py new file mode 100644 index 0000000..a37c204 --- /dev/null +++ b/train_db_fixed_v7-ber.py @@ -0,0 +1,1617 @@ +# このスクリプトのライセンスは、train_dreambooth.pyと同じくApache License 2.0とします +# (c) 2022 Kohya S. @kohya_ss + +# v7: another text encoder ckpt format, average loss, save epochs/global steps, show num of train/reg images, +# enable reg images in fine-tuning, add dataset_repeats option + +from torch.autograd.function import Function +import argparse +import glob +import itertools +import math +import os +import random + +from tqdm import tqdm +import torch +from torchvision import transforms +from accelerate import Accelerator +from accelerate.utils import set_seed +from transformers import CLIPTextModel, CLIPTokenizer +import diffusers +from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel +import albumentations as albu +import numpy as np +from PIL import Image +import cv2 +from einops import rearrange +from torch import einsum + +# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う +TOKENIZER_PATH = "openai/clip-vit-large-patch14" + +# StableDiffusionのモデルパラメータ +NUM_TRAIN_TIMESTEPS = 1000 +BETA_START = 0.00085 +BETA_END = 0.0120 + +UNET_PARAMS_MODEL_CHANNELS = 320 +UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4] +UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1] +UNET_PARAMS_IMAGE_SIZE = 32 # unused +UNET_PARAMS_IN_CHANNELS = 4 +UNET_PARAMS_OUT_CHANNELS = 4 +UNET_PARAMS_NUM_RES_BLOCKS = 2 +UNET_PARAMS_CONTEXT_DIM = 768 +UNET_PARAMS_NUM_HEADS = 8 + +VAE_PARAMS_Z_CHANNELS = 4 +VAE_PARAMS_RESOLUTION = 256 +VAE_PARAMS_IN_CHANNELS = 3 +VAE_PARAMS_OUT_CH = 3 +VAE_PARAMS_CH = 128 +VAE_PARAMS_CH_MULT = [1, 2, 4, 4] +VAE_PARAMS_NUM_RES_BLOCKS = 2 + +# checkpointファイル名 +LAST_CHECKPOINT_NAME = "last.ckpt" +EPOCH_CHECKPOINT_NAME = "epoch-{:06d}.ckpt" + + +class DreamBoothOrFineTuningDataset(torch.utils.data.Dataset): + def __init__(self, fine_tuning, train_img_path_captions, reg_img_path_captions, tokenizer, resolution, prior_loss_weight, flip_aug, color_aug, face_crop_aug_range, random_crop, shuffle_caption, disable_padding, debug_dataset) -> None: + super().__init__() + + self.fine_tuning = fine_tuning + self.train_img_path_captions = train_img_path_captions + self.reg_img_path_captions = reg_img_path_captions + self.tokenizer = tokenizer + self.width, self.height = resolution + self.size = min(self.width, self.height) # 短いほう + self.prior_loss_weight = prior_loss_weight + self.face_crop_aug_range = face_crop_aug_range + self.random_crop = random_crop + self.debug_dataset = debug_dataset + self.shuffle_caption = shuffle_caption + self.disable_padding = disable_padding + self.latents_cache = None + + # augmentation + flip_p = 0.5 if flip_aug else 0.0 + if color_aug: + # わりと弱めの色合いaugmentation:brightness/contrastあたりは画像のpixel valueの最大値・最小値を変えてしまうのでよくないのではという想定でgamma/hue/saturationあたりを触る + self.aug = albu.Compose([ + albu.OneOf([ + # albu.RandomBrightnessContrast(0.05, 0.05, p=.2), + albu.HueSaturationValue(5, 8, 0, p=.2), + # albu.RGBShift(5, 5, 5, p=.1), + albu.RandomGamma((95, 105), p=.5), + ], p=.33), + albu.HorizontalFlip(p=flip_p) + ], p=1.) + elif flip_aug: + self.aug = albu.Compose([ + albu.HorizontalFlip(p=flip_p) + ], p=1.) + else: + self.aug = None + + self.num_train_images = len(self.train_img_path_captions) + self.num_reg_images = len(self.reg_img_path_captions) + + self.enable_reg_images = self.num_reg_images > 0 + + if not self.enable_reg_images: + self._length = self.num_train_images + else: + # 学習データの倍として、奇数ならtrain + self._length = self.num_train_images * 2 + if self._length // 2 < self.num_reg_images: + print("some of reg images are not used / 正則化画像の数が多いので、一部使用されない正則化画像があります") + + self.image_transforms = transforms.Compose( + [ + transforms.ToTensor(), + transforms.Normalize([0.5], [0.5]), + ] + ) + + def load_image(self, image_path): + image = Image.open(image_path) + if not image.mode == "RGB": + image = image.convert("RGB") + img = np.array(image, np.uint8) + + face_cx = face_cy = face_w = face_h = 0 + if self.face_crop_aug_range is not None: + tokens = os.path.splitext(os.path.basename(image_path))[0].split('_') + if len(tokens) >= 5: + face_cx = int(tokens[-4]) + face_cy = int(tokens[-3]) + face_w = int(tokens[-2]) + face_h = int(tokens[-1]) + + return img, face_cx, face_cy, face_w, face_h + + # いい感じに切り出す + def crop_target(self, image, face_cx, face_cy, face_w, face_h): + height, width = image.shape[0:2] + if height == self.height and width == self.width: + return image + + # 画像サイズはsizeより大きいのでリサイズする + face_size = max(face_w, face_h) + min_scale = max(self.height / height, self.width / width) # 画像がモデル入力サイズぴったりになる倍率(最小の倍率) + min_scale = min(1.0, max(min_scale, self.size / (face_size * self.face_crop_aug_range[1]))) # 指定した顔最小サイズ + max_scale = min(1.0, max(min_scale, self.size / (face_size * self.face_crop_aug_range[0]))) # 指定した顔最大サイズ + if min_scale >= max_scale: # range指定がmin==max + scale = min_scale + else: + scale = random.uniform(min_scale, max_scale) + + nh = int(height * scale + .5) + nw = int(width * scale + .5) + assert nh >= self.height and nw >= self.width, f"internal error. small scale {scale}, {width}*{height}" + image = cv2.resize(image, (nw, nh), interpolation=cv2.INTER_AREA) + face_cx = int(face_cx * scale + .5) + face_cy = int(face_cy * scale + .5) + height, width = nh, nw + + # 顔を中心として448*640とかへを切り出す + for axis, (target_size, length, face_p) in enumerate(zip((self.height, self.width), (height, width), (face_cy, face_cx))): + p1 = face_p - target_size // 2 # 顔を中心に持ってくるための切り出し位置 + + if self.random_crop: + # 背景も含めるために顔を中心に置く確率を高めつつずらす + range = max(length - face_p, face_p) # 画像の端から顔中心までの距離の長いほう + p1 = p1 + (random.randint(0, range) + random.randint(0, range)) - range # -range ~ +range までのいい感じの乱数 + else: + # range指定があるときのみ、すこしだけランダムに(わりと適当) + if self.face_crop_aug_range[0] != self.face_crop_aug_range[1]: + if face_size > self.size // 10 and face_size >= 40: + p1 = p1 + random.randint(-face_size // 20, +face_size // 20) + + p1 = max(0, min(p1, length - target_size)) + + if axis == 0: + image = image[p1:p1 + target_size, :] + else: + image = image[:, p1:p1 + target_size] + + return image + + def __len__(self): + return self._length + + def set_cached_latents(self, image_path, latents): + if self.latents_cache is None: + self.latents_cache = {} + self.latents_cache[image_path] = latents + + def __getitem__(self, index_arg): + example = {} + + if not self.enable_reg_images: + index = index_arg + img_path_captions = self.train_img_path_captions + reg = False + else: + # 偶数ならtrain、奇数ならregを返す + if index_arg % 2 == 0: + img_path_captions = self.train_img_path_captions + reg = False + else: + img_path_captions = self.reg_img_path_captions + reg = True + index = index_arg // 2 + example['loss_weight'] = 1.0 if (not reg or self.fine_tuning) else self.prior_loss_weight + + index = index % len(img_path_captions) + image_path, caption = img_path_captions[index] + example['image_path'] = image_path + + # image/latentsを処理する + if self.latents_cache is not None and image_path in self.latents_cache: + # latentsはキャッシュ済み + example['latents'] = self.latents_cache[image_path] + else: + # 画像を読み込み必要ならcropする + img, face_cx, face_cy, face_w, face_h = self.load_image(image_path) + im_h, im_w = img.shape[0:2] + if face_cx > 0: # 顔位置情報あり + img = self.crop_target(img, face_cx, face_cy, face_w, face_h) + elif im_h > self.height or im_w > self.width: + assert self.random_crop, f"image too large, and face_crop_aug_range and random_crop are disabled / 画像サイズが大きいのでface_crop_aug_rangeかrandom_cropを有効にしてください" + if im_h > self.height: + p = random.randint(0, im_h - self.height) + img = img[p:p + self.height] + if im_w > self.width: + p = random.randint(0, im_w - self.width) + img = img[:, p:p + self.width] + + im_h, im_w = img.shape[0:2] + assert im_h == self.height and im_w == self.width, f"image too small / 画像サイズが小さいようです: {image_path}" + + # augmentation + if self.aug is not None: + img = self.aug(image=img)['image'] + + example['image'] = self.image_transforms(img) # -1.0~1.0のtorch.Tensorになる + + # captionを処理する + if self.fine_tuning and self.shuffle_caption: # fine tuning時にcaptionのshuffleをする + tokens = caption.strip().split(",") + random.shuffle(tokens) + caption = ",".join(tokens).strip() + + input_ids = self.tokenizer(caption, padding="do_not_pad", truncation=True, + max_length=self.tokenizer.model_max_length).input_ids + + # padしてTensor変換 + if self.disable_padding: + # paddingしない:padding==Trueはバッチの中の最大長に合わせるだけ(やはりバグでは……?) + input_ids = self.tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids + else: + # paddingする + input_ids = self.tokenizer.pad({"input_ids": input_ids}, padding='max_length', max_length=self.tokenizer.model_max_length, + return_tensors='pt').input_ids + + example['input_ids'] = input_ids + + if self.debug_dataset: + example['caption'] = caption + return example + + +# region checkpoint変換、読み込み、書き込み ############################### + +# region StableDiffusion->Diffusersの変換コード +# convert_original_stable_diffusion_to_diffusers をコピーしている(ASL 2.0) + +def shave_segments(path, n_shave_prefix_segments=1): + """ + Removes segments. Positive values shave the first segments, negative shave the last segments. + """ + if n_shave_prefix_segments >= 0: + return ".".join(path.split(".")[n_shave_prefix_segments:]) + else: + return ".".join(path.split(".")[:n_shave_prefix_segments]) + + +def renew_resnet_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside resnets to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item.replace("in_layers.0", "norm1") + new_item = new_item.replace("in_layers.2", "conv1") + + new_item = new_item.replace("out_layers.0", "norm2") + new_item = new_item.replace("out_layers.3", "conv2") + + new_item = new_item.replace("emb_layers.1", "time_emb_proj") + new_item = new_item.replace("skip_connection", "conv_shortcut") + + new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside resnets to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item + + new_item = new_item.replace("nin_shortcut", "conv_shortcut") + new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def renew_attention_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside attentions to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item + + # new_item = new_item.replace('norm.weight', 'group_norm.weight') + # new_item = new_item.replace('norm.bias', 'group_norm.bias') + + # new_item = new_item.replace('proj_out.weight', 'proj_attn.weight') + # new_item = new_item.replace('proj_out.bias', 'proj_attn.bias') + + # new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside attentions to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item + + new_item = new_item.replace("norm.weight", "group_norm.weight") + new_item = new_item.replace("norm.bias", "group_norm.bias") + + new_item = new_item.replace("q.weight", "query.weight") + new_item = new_item.replace("q.bias", "query.bias") + + new_item = new_item.replace("k.weight", "key.weight") + new_item = new_item.replace("k.bias", "key.bias") + + new_item = new_item.replace("v.weight", "value.weight") + new_item = new_item.replace("v.bias", "value.bias") + + new_item = new_item.replace("proj_out.weight", "proj_attn.weight") + new_item = new_item.replace("proj_out.bias", "proj_attn.bias") + + new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def assign_to_checkpoint( + paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None +): + """ + This does the final conversion step: take locally converted weights and apply a global renaming + to them. It splits attention layers, and takes into account additional replacements + that may arise. + + Assigns the weights to the new checkpoint. + """ + assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." + + # Splits the attention layers into three variables. + if attention_paths_to_split is not None: + for path, path_map in attention_paths_to_split.items(): + old_tensor = old_checkpoint[path] + channels = old_tensor.shape[0] // 3 + + target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) + + num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 + + old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) + query, key, value = old_tensor.split(channels // num_heads, dim=1) + + checkpoint[path_map["query"]] = query.reshape(target_shape) + checkpoint[path_map["key"]] = key.reshape(target_shape) + checkpoint[path_map["value"]] = value.reshape(target_shape) + + for path in paths: + new_path = path["new"] + + # These have already been assigned + if attention_paths_to_split is not None and new_path in attention_paths_to_split: + continue + + # Global renaming happens here + new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") + new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") + new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") + + if additional_replacements is not None: + for replacement in additional_replacements: + new_path = new_path.replace(replacement["old"], replacement["new"]) + + # proj_attn.weight has to be converted from conv 1D to linear + if "proj_attn.weight" in new_path: + checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] + else: + checkpoint[new_path] = old_checkpoint[path["old"]] + + +def conv_attn_to_linear(checkpoint): + keys = list(checkpoint.keys()) + attn_keys = ["query.weight", "key.weight", "value.weight"] + for key in keys: + if ".".join(key.split(".")[-2:]) in attn_keys: + if checkpoint[key].ndim > 2: + checkpoint[key] = checkpoint[key][:, :, 0, 0] + elif "proj_attn.weight" in key: + if checkpoint[key].ndim > 2: + checkpoint[key] = checkpoint[key][:, :, 0] + + +def convert_ldm_unet_checkpoint(checkpoint, config): + """ + Takes a state dict and a config, and returns a converted checkpoint. + """ + + # extract state_dict for UNet + unet_state_dict = {} + unet_key = "model.diffusion_model." + keys = list(checkpoint.keys()) + for key in keys: + if key.startswith(unet_key): + unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) + + new_checkpoint = {} + + new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] + new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] + new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] + new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] + + new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] + new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] + + new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] + new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] + new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] + new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] + + # Retrieves the keys for the input blocks only + num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) + input_blocks = { + layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] + for layer_id in range(num_input_blocks) + } + + # Retrieves the keys for the middle blocks only + num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) + middle_blocks = { + layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] + for layer_id in range(num_middle_blocks) + } + + # Retrieves the keys for the output blocks only + num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) + output_blocks = { + layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] + for layer_id in range(num_output_blocks) + } + + for i in range(1, num_input_blocks): + block_id = (i - 1) // (config["layers_per_block"] + 1) + layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) + + resnets = [ + key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key + ] + attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] + + if f"input_blocks.{i}.0.op.weight" in unet_state_dict: + new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( + f"input_blocks.{i}.0.op.weight" + ) + new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( + f"input_blocks.{i}.0.op.bias" + ) + + paths = renew_resnet_paths(resnets) + meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} + assign_to_checkpoint( + paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + + if len(attentions): + paths = renew_attention_paths(attentions) + meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} + assign_to_checkpoint( + paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + + resnet_0 = middle_blocks[0] + attentions = middle_blocks[1] + resnet_1 = middle_blocks[2] + + resnet_0_paths = renew_resnet_paths(resnet_0) + assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) + + resnet_1_paths = renew_resnet_paths(resnet_1) + assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) + + attentions_paths = renew_attention_paths(attentions) + meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} + assign_to_checkpoint( + attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + + for i in range(num_output_blocks): + block_id = i // (config["layers_per_block"] + 1) + layer_in_block_id = i % (config["layers_per_block"] + 1) + output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] + output_block_list = {} + + for layer in output_block_layers: + layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) + if layer_id in output_block_list: + output_block_list[layer_id].append(layer_name) + else: + output_block_list[layer_id] = [layer_name] + + if len(output_block_list) > 1: + resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] + attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] + + resnet_0_paths = renew_resnet_paths(resnets) + paths = renew_resnet_paths(resnets) + + meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} + assign_to_checkpoint( + paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + + if ["conv.weight", "conv.bias"] in output_block_list.values(): + index = list(output_block_list.values()).index(["conv.weight", "conv.bias"]) + new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ + f"output_blocks.{i}.{index}.conv.weight" + ] + new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ + f"output_blocks.{i}.{index}.conv.bias" + ] + + # Clear attentions as they have been attributed above. + if len(attentions) == 2: + attentions = [] + + if len(attentions): + paths = renew_attention_paths(attentions) + meta_path = { + "old": f"output_blocks.{i}.1", + "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", + } + assign_to_checkpoint( + paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + else: + resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) + for path in resnet_0_paths: + old_path = ".".join(["output_blocks", str(i), path["old"]]) + new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) + + new_checkpoint[new_path] = unet_state_dict[old_path] + + return new_checkpoint + + +def convert_ldm_vae_checkpoint(checkpoint, config): + # extract state dict for VAE + vae_state_dict = {} + vae_key = "first_stage_model." + keys = list(checkpoint.keys()) + for key in keys: + if key.startswith(vae_key): + vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) + + new_checkpoint = {} + + new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] + new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] + new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] + new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] + new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] + new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] + + new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] + new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] + new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] + new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] + new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] + new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] + + new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] + new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] + new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] + new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] + + # Retrieves the keys for the encoder down blocks only + num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) + down_blocks = { + layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) + } + + # Retrieves the keys for the decoder up blocks only + num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) + up_blocks = { + layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) + } + + for i in range(num_down_blocks): + resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] + + if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: + new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( + f"encoder.down.{i}.downsample.conv.weight" + ) + new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( + f"encoder.down.{i}.downsample.conv.bias" + ) + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + + mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] + num_mid_res_blocks = 2 + for i in range(1, num_mid_res_blocks + 1): + resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + + mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] + paths = renew_vae_attention_paths(mid_attentions) + meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + conv_attn_to_linear(new_checkpoint) + + for i in range(num_up_blocks): + block_id = num_up_blocks - 1 - i + resnets = [ + key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key + ] + + if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: + new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ + f"decoder.up.{block_id}.upsample.conv.weight" + ] + new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ + f"decoder.up.{block_id}.upsample.conv.bias" + ] + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + + mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] + num_mid_res_blocks = 2 + for i in range(1, num_mid_res_blocks + 1): + resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + + mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] + paths = renew_vae_attention_paths(mid_attentions) + meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + conv_attn_to_linear(new_checkpoint) + return new_checkpoint + + +def create_unet_diffusers_config(): + """ + Creates a config for the diffusers based on the config of the LDM model. + """ + # unet_params = original_config.model.params.unet_config.params + + block_out_channels = [UNET_PARAMS_MODEL_CHANNELS * mult for mult in UNET_PARAMS_CHANNEL_MULT] + + down_block_types = [] + resolution = 1 + for i in range(len(block_out_channels)): + block_type = "CrossAttnDownBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "DownBlock2D" + down_block_types.append(block_type) + if i != len(block_out_channels) - 1: + resolution *= 2 + + up_block_types = [] + for i in range(len(block_out_channels)): + block_type = "CrossAttnUpBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "UpBlock2D" + up_block_types.append(block_type) + resolution //= 2 + + config = dict( + sample_size=UNET_PARAMS_IMAGE_SIZE, + in_channels=UNET_PARAMS_IN_CHANNELS, + out_channels=UNET_PARAMS_OUT_CHANNELS, + down_block_types=tuple(down_block_types), + up_block_types=tuple(up_block_types), + block_out_channels=tuple(block_out_channels), + layers_per_block=UNET_PARAMS_NUM_RES_BLOCKS, + cross_attention_dim=UNET_PARAMS_CONTEXT_DIM, + attention_head_dim=UNET_PARAMS_NUM_HEADS, + ) + + return config + + +def create_vae_diffusers_config(): + """ + Creates a config for the diffusers based on the config of the LDM model. + """ + # vae_params = original_config.model.params.first_stage_config.params.ddconfig + # _ = original_config.model.params.first_stage_config.params.embed_dim + block_out_channels = [VAE_PARAMS_CH * mult for mult in VAE_PARAMS_CH_MULT] + down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) + up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) + + config = dict( + sample_size=VAE_PARAMS_RESOLUTION, + in_channels=VAE_PARAMS_IN_CHANNELS, + out_channels=VAE_PARAMS_OUT_CH, + down_block_types=tuple(down_block_types), + up_block_types=tuple(up_block_types), + block_out_channels=tuple(block_out_channels), + latent_channels=VAE_PARAMS_Z_CHANNELS, + layers_per_block=VAE_PARAMS_NUM_RES_BLOCKS, + ) + return config + + +def convert_ldm_clip_checkpoint(checkpoint): + text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") + + keys = list(checkpoint.keys()) + + text_model_dict = {} + + for key in keys: + if key.startswith("cond_stage_model.transformer"): + text_model_dict[key[len("cond_stage_model.transformer."):]] = checkpoint[key] + + text_model.load_state_dict(text_model_dict) + + return text_model + +# endregion + + +# region Diffusers->StableDiffusion の変換コード +# convert_diffusers_to_original_stable_diffusion をコピーしている(ASL 2.0) + +def convert_unet_state_dict(unet_state_dict): + unet_conversion_map = [ + # (stable-diffusion, HF Diffusers) + ("time_embed.0.weight", "time_embedding.linear_1.weight"), + ("time_embed.0.bias", "time_embedding.linear_1.bias"), + ("time_embed.2.weight", "time_embedding.linear_2.weight"), + ("time_embed.2.bias", "time_embedding.linear_2.bias"), + ("input_blocks.0.0.weight", "conv_in.weight"), + ("input_blocks.0.0.bias", "conv_in.bias"), + ("out.0.weight", "conv_norm_out.weight"), + ("out.0.bias", "conv_norm_out.bias"), + ("out.2.weight", "conv_out.weight"), + ("out.2.bias", "conv_out.bias"), + ] + + unet_conversion_map_resnet = [ + # (stable-diffusion, HF Diffusers) + ("in_layers.0", "norm1"), + ("in_layers.2", "conv1"), + ("out_layers.0", "norm2"), + ("out_layers.3", "conv2"), + ("emb_layers.1", "time_emb_proj"), + ("skip_connection", "conv_shortcut"), + ] + + unet_conversion_map_layer = [] + for i in range(4): + # loop over downblocks/upblocks + + for j in range(2): + # loop over resnets/attentions for downblocks + hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." + sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." + unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) + + if i < 3: + # no attention layers in down_blocks.3 + hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." + sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1." + unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) + + for j in range(3): + # loop over resnets/attentions for upblocks + hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." + sd_up_res_prefix = f"output_blocks.{3*i + j}.0." + unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) + + if i > 0: + # no attention layers in up_blocks.0 + hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." + sd_up_atn_prefix = f"output_blocks.{3*i + j}.1." + unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) + + if i < 3: + # no downsample in down_blocks.3 + hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." + sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op." + unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) + + # no upsample in up_blocks.3 + hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." + sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." + unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) + + hf_mid_atn_prefix = "mid_block.attentions.0." + sd_mid_atn_prefix = "middle_block.1." + unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) + + for j in range(2): + hf_mid_res_prefix = f"mid_block.resnets.{j}." + sd_mid_res_prefix = f"middle_block.{2*j}." + unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) + + # buyer beware: this is a *brittle* function, + # and correct output requires that all of these pieces interact in + # the exact order in which I have arranged them. + mapping = {k: k for k in unet_state_dict.keys()} + for sd_name, hf_name in unet_conversion_map: + mapping[hf_name] = sd_name + for k, v in mapping.items(): + if "resnets" in k: + for sd_part, hf_part in unet_conversion_map_resnet: + v = v.replace(hf_part, sd_part) + mapping[k] = v + for k, v in mapping.items(): + for sd_part, hf_part in unet_conversion_map_layer: + v = v.replace(hf_part, sd_part) + mapping[k] = v + new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} + return new_state_dict + +# endregion + + +def load_checkpoint_with_conversion(ckpt_path): + # text encoderの格納形式が違うモデルに対応する ('text_model'がない) + TEXT_ENCODER_KEY_REPLACEMENTS = [ + ('cond_stage_model.transformer.embeddings.', 'cond_stage_model.transformer.text_model.embeddings.'), + ('cond_stage_model.transformer.encoder.', 'cond_stage_model.transformer.text_model.encoder.'), + ('cond_stage_model.transformer.final_layer_norm.', 'cond_stage_model.transformer.text_model.final_layer_norm.') + ] + + checkpoint = torch.load(ckpt_path, map_location="cpu") + state_dict = checkpoint["state_dict"] + + key_reps = [] + for rep_from, rep_to in TEXT_ENCODER_KEY_REPLACEMENTS: + for key in state_dict.keys(): + if key.startswith(rep_from): + new_key = rep_to + key[len(rep_from):] + key_reps.append((key, new_key)) + + for key, new_key in key_reps: + state_dict[new_key] = state_dict[key] + del state_dict[key] + + return checkpoint + + +def load_models_from_stable_diffusion_checkpoint(ckpt_path): + checkpoint = load_checkpoint_with_conversion(ckpt_path) + state_dict = checkpoint["state_dict"] + + # Convert the UNet2DConditionModel model. + unet_config = create_unet_diffusers_config() + converted_unet_checkpoint = convert_ldm_unet_checkpoint(state_dict, unet_config) + + unet = UNet2DConditionModel(**unet_config) + unet.load_state_dict(converted_unet_checkpoint) + + # Convert the VAE model. + vae_config = create_vae_diffusers_config() + converted_vae_checkpoint = convert_ldm_vae_checkpoint(state_dict, vae_config) + + vae = AutoencoderKL(**vae_config) + vae.load_state_dict(converted_vae_checkpoint) + + # convert text_model + text_model = convert_ldm_clip_checkpoint(state_dict) + + return text_model, vae, unet + + +def save_stable_diffusion_checkpoint(output_file, text_encoder, unet, ckpt_path, epochs, steps): + # VAEがメモリ上にないので、もう一度VAEを含めて読み込む + checkpoint = load_checkpoint_with_conversion(ckpt_path) + state_dict = checkpoint["state_dict"] + + # Convert the UNet model + unet_state_dict = convert_unet_state_dict(unet.state_dict()) + for k, v in unet_state_dict.items(): + key = "model.diffusion_model." + k + assert key in state_dict, f"Illegal key in save SD: {key}" + if args.save_half: + state_dict[key] = v.half() # save to fp16 + else: + state_dict[key] = v + + # Convert the text encoder model + text_enc_dict = text_encoder.state_dict() # 変換不要 + for k, v in text_enc_dict.items(): + key = "cond_stage_model.transformer." + k + assert key in state_dict, f"Illegal key in save SD: {key}" + if args.save_half: + state_dict[key] = v.half() # save to fp16 + else: + state_dict[key] = v + + # Put together new checkpoint + new_ckpt = {'state_dict': state_dict} + + if 'epoch' in checkpoint: + epochs += checkpoint['epoch'] + if 'global_step' in checkpoint: + steps += checkpoint['global_step'] + + new_ckpt['epoch'] = epochs + new_ckpt['global_step'] = steps + + torch.save(new_ckpt, output_file) +# endregion + + +def collate_fn(examples): + input_ids = [e['input_ids'] for e in examples] + input_ids = torch.stack(input_ids) + + if 'latents' in examples[0]: + pixel_values = None + latents = [e['latents'] for e in examples] + latents = torch.stack(latents) + else: + pixel_values = [e['image'] for e in examples] + pixel_values = torch.stack(pixel_values) + pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() + latents = None + + loss_weights = [e['loss_weight'] for e in examples] + loss_weights = torch.FloatTensor(loss_weights) + + batch = {"input_ids": input_ids, "pixel_values": pixel_values, "latents": latents, "loss_weights": loss_weights} + return batch + + +def train(args): + fine_tuning = args.fine_tuning + cache_latents = args.cache_latents + + # latentsをキャッシュする場合のオプション設定を確認する + if cache_latents: + # assert args.face_crop_aug_range is None and not args.random_crop, "when caching latents, crop aug cannot be used / latentをキャッシュするときは切り出しは使えません" + # →使えるようにしておく(初期イメージの切り出しになる) + assert not args.flip_aug and not args.color_aug, "when caching latents, augmentation cannot be used / latentをキャッシュするときはaugmentationは使えません" + + # モデル形式のオプション設定を確認する + use_stable_diffusion_format = os.path.isfile(args.pretrained_model_name_or_path) + if not use_stable_diffusion_format: + assert os.path.exists( + args.pretrained_model_name_or_path), f"no pretrained model / 学習元モデルがありません : {args.pretrained_model_name_or_path}" + + assert args.save_every_n_epochs is None or use_stable_diffusion_format, "when loading Diffusers model, save_every_n_epochs does not work / Diffusersのモデルを読み込むときにはsave_every_n_epochsオプションは無効になります" + + if args.seed is not None: + set_seed(args.seed) + + # 学習データを用意する + def load_dreambooth_dir(dir): + tokens = os.path.basename(dir).split('_') + try: + n_repeats = int(tokens[0]) + except ValueError as e: + print(f"no 'n_repeats' in directory name / DreamBoothのディレクトリ名に繰り返し回数がないようです: {dir}") + raise e + + caption = '_'.join(tokens[1:]) + + img_paths = glob.glob(os.path.join(dir, "*.png")) + glob.glob(os.path.join(dir, "*.jpg")) + return n_repeats, [(ip, caption) for ip in img_paths] + + print("prepare train images.") + train_img_path_captions = [] + + if fine_tuning: + img_paths = glob.glob(os.path.join(args.train_data_dir, "*.png")) + glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + for img_path in tqdm(img_paths): + # captionの候補ファイル名を作る + base_name = os.path.splitext(img_path)[0] + base_name_face_det = base_name + tokens = base_name.split("_") + if len(tokens) >= 5: + base_name_face_det = "_".join(tokens[:-4]) + cap_paths = [base_name + '.txt', base_name + '.caption', base_name_face_det+'.txt', base_name_face_det+'.caption'] + + caption = None + for cap_path in cap_paths: + if os.path.isfile(cap_path): + with open(cap_path, "rt", encoding='utf-8') as f: + caption = f.readlines()[0].strip() + break + + assert caption is not None and len(caption) > 0, f"no caption / キャプションファイルが見つからないか、captionが空です: {cap_paths}" + + train_img_path_captions.append((img_path, caption)) + + if args.dataset_repeats is not None: + l = [] + for _ in range(args.dataset_repeats): + l.extend(train_img_path_captions) + train_img_path_captions = l + else: + train_dirs = os.listdir(args.train_data_dir) + for dir in train_dirs: + n_repeats, img_caps = load_dreambooth_dir(os.path.join(args.train_data_dir, dir)) + for _ in range(n_repeats): + train_img_path_captions.extend(img_caps) + print(f"{len(train_img_path_captions)} train images.") + + reg_img_path_captions = [] + if args.reg_data_dir: + print("prepare reg images.") + reg_dirs = os.listdir(args.reg_data_dir) + for dir in reg_dirs: + n_repeats, img_caps = load_dreambooth_dir(os.path.join(args.reg_data_dir, dir)) + for _ in range(n_repeats): + reg_img_path_captions.extend(img_caps) + print(f"{len(reg_img_path_captions)} reg images.") + + if args.debug_dataset: + # デバッグ時はshuffleして実際のデータセット使用時に近づける(学習時はdata loaderでshuffleする) + random.shuffle(train_img_path_captions) + random.shuffle(reg_img_path_captions) + + # データセットを準備する + resolution = tuple([int(r) for r in args.resolution.split(',')]) + if len(resolution) == 1: + resolution = (resolution[0], resolution[0]) + assert len( + resolution) == 2, f"resolution must be 'size' or 'width,height' / resolutionは'サイズ'または'幅','高さ'で指定してください: {args.resolution}" + + if args.face_crop_aug_range is not None: + face_crop_aug_range = tuple([float(r) for r in args.face_crop_aug_range.split(',')]) + assert len( + face_crop_aug_range) == 2, f"face_crop_aug_range must be two floats / face_crop_aug_rangeは'下限,上限'で指定してください: {args.face_crop_aug_range}" + else: + face_crop_aug_range = None + + # tokenizerを読み込む + print("prepare tokenizer") + tokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH) + + print("prepare dataset") + train_dataset = DreamBoothOrFineTuningDataset(fine_tuning, train_img_path_captions, + reg_img_path_captions, tokenizer, resolution, args.prior_loss_weight, args.flip_aug, args.color_aug, face_crop_aug_range, args.random_crop, args.shuffle_caption, args.no_token_padding, args.debug_dataset) + + if args.debug_dataset: + print(f"Total dataset length / データセットの長さ: {len(train_dataset)}") + print("Escape for exit. / Escキーで中断、終了します") + for example in train_dataset: + im = example['image'] + im = ((im.numpy() + 1.0) * 127.5).astype(np.uint8) + im = np.transpose(im, (1, 2, 0)) # c,H,W -> H,W,c + im = im[:, :, ::-1] # RGB -> BGR (OpenCV) + print(f'caption: "{example["caption"]}", loss weight: {example["loss_weight"]}') + cv2.imshow("img", im) + k = cv2.waitKey() + cv2.destroyAllWindows() + if k == 27: + break + return + + # acceleratorを準備する + # gradient accumulationは複数モデルを学習する場合には対応していないとのことなので、1固定にする + print("prepare accelerator") + accelerator = Accelerator(gradient_accumulation_steps=1, mixed_precision=args.mixed_precision) + + # モデルを読み込む + if use_stable_diffusion_format: + print("load StableDiffusion checkpoint") + text_encoder, vae, unet = load_models_from_stable_diffusion_checkpoint(args.pretrained_model_name_or_path) + else: + print("load Diffusers pretrained models") + text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") + vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") + unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") + + # モデルに xformers とか memory efficient attention を組み込む + replace_unet_modules(unet, args.mem_eff_attn, args.xformers) + + # mixed precisionに対応した型を用意しておき適宜castする + weight_dtype = torch.float32 + if args.mixed_precision == "fp16": + weight_dtype = torch.float16 + elif args.mixed_precision == "bf16": + weight_dtype = torch.bfloat16 + + # 学習を準備する + if cache_latents: + # latentをcacheする→新しいDatasetを作るとcaptionのshuffleが効かないので元のDatasetにcacheを持つ(cascadeする手もあるが) + print("caching latents.") + vae.to(accelerator.device, dtype=weight_dtype) + + for i in tqdm(range(len(train_dataset))): + example = train_dataset[i] + if 'latents' not in example: + image_path = example['image_path'] + with torch.no_grad(): + pixel_values = example["image"].unsqueeze(0).to(device=accelerator.device, dtype=weight_dtype) + latents = vae.encode(pixel_values).latent_dist.sample().squeeze(0).to("cpu") + train_dataset.set_cached_latents(image_path, latents) + # assertion + for i in range(len(train_dataset)): + assert 'latents' in train_dataset[i], "internal error: latents not cached" + + del vae + if torch.cuda.is_available(): + torch.cuda.empty_cache() + else: + vae.requires_grad_(False) + + if args.gradient_checkpointing: + unet.enable_gradient_checkpointing() + text_encoder.gradient_checkpointing_enable() + + # 学習に必要なクラスを準備する + print("prepare optimizer, data loader etc.") + + # 8-bit Adamを使う + if args.use_8bit_adam: + try: + import bitsandbytes as bnb + except ImportError: + raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです") + print("use 8-bit Adam optimizer") + optimizer_class = bnb.optim.AdamW8bit + else: + optimizer_class = torch.optim.AdamW + + trainable_params = (itertools.chain(unet.parameters(), text_encoder.parameters())) + + # betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略 + optimizer = optimizer_class(trainable_params, lr=args.learning_rate) + + # dataloaderを準備する + # DataLoaderのプロセス数:0はメインプロセスになる + n_workers = min(8, os.cpu_count() - 1) # cpu_count-1 ただし最大8 + train_dataloader = torch.utils.data.DataLoader( + train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn, num_workers=n_workers) + + # lr schedulerを用意する + lr_scheduler = diffusers.optimization.get_scheduler("constant", optimizer, num_training_steps=args.max_train_steps) + + # acceleratorがなんかよろしくやってくれるらしい + unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( + unet, text_encoder, optimizer, train_dataloader, lr_scheduler) + + if not cache_latents: + vae.to(accelerator.device, dtype=weight_dtype) + + # epoch数を計算する + num_train_epochs = math.ceil(args.max_train_steps / len(train_dataloader)) + + # 学習する + total_batch_size = args.train_batch_size # * accelerator.num_processes + print("running training / 学習開始") + print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset.num_train_images}") + print(f" num reg images / 正則化画像の数: {train_dataset.num_reg_images}") + print(f" num examples / サンプル数: {len(train_dataset)}") + print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") + print(f" num epochs / epoch数: {num_train_epochs}") + print(f" batch size per device / バッチサイズ: {args.train_batch_size}") + print(f" total train batch size (with parallel & distributed) / 総バッチサイズ(並列学習含む): {total_batch_size}") + print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") + + progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process, desc="steps") + global_step = 0 + + noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) + + if accelerator.is_main_process: + accelerator.init_trackers("dreambooth") + + # 以下 train_dreambooth.py からほぼコピペ + for epoch in range(num_train_epochs): + print(f"epoch {epoch+1}/{num_train_epochs}") + unet.train() + text_encoder.train() # なんかunetだけでいいらしい?→最新版で修正されてた(;´Д`) いろいろ雑だな + + loss_total = 0 + for step, batch in enumerate(train_dataloader): + with accelerator.accumulate(unet): + with torch.no_grad(): + # latentに変換 + if cache_latents: + latents = batch["latents"].to(accelerator.device) + else: + latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() + latents = latents * 0.18215 + + # Sample noise that we'll add to the latents + noise = torch.randn_like(latents, device=latents.device) + b_size = latents.shape[0] + + # Sample a random timestep for each image + timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device) + timesteps = timesteps.long() + + # Add noise to the latents according to the noise magnitude at each timestep + # (this is the forward diffusion process) + noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) + + # Get the text embedding for conditioning + if args.clip_skip is None: + encoder_hidden_states = text_encoder(batch["input_ids"])[0] + else: + enc_out = text_encoder(batch["input_ids"], output_hidden_states=True, return_dict=True) + encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip] + encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states) + + # Predict the noise residual + noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample + + loss = torch.nn.functional.mse_loss(noise_pred.float(), noise.float(), reduction="none") + loss = loss.mean([1, 2, 3]) + + loss_weights = batch["loss_weights"] # 各sampleごとのweight + loss = loss * loss_weights + + loss = loss.mean() + + accelerator.backward(loss) + if accelerator.sync_gradients: + params_to_clip = (itertools.chain(unet.parameters(), text_encoder.parameters())) + accelerator.clip_grad_norm_(params_to_clip, 1.0) # args.max_grad_norm) + + optimizer.step() + lr_scheduler.step() + optimizer.zero_grad(set_to_none=True) + + # Checks if the accelerator has performed an optimization step behind the scenes + if accelerator.sync_gradients: + progress_bar.update(1) + global_step += 1 + + current_loss = loss.detach().item() + loss_total += current_loss + avr_loss = loss_total / (step+1) + logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]} + progress_bar.set_postfix(**logs) + # accelerator.log(logs, step=global_step) + + if global_step >= args.max_train_steps: + break + + accelerator.wait_for_everyone() + + if use_stable_diffusion_format and args.save_every_n_epochs is not None: + if (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs: + print("saving check point.") + os.makedirs(args.output_dir, exist_ok=True) + ckpt_file = os.path.join(args.output_dir, EPOCH_CHECKPOINT_NAME.format(epoch + 1)) + save_stable_diffusion_checkpoint(ckpt_file, accelerator.unwrap_model(text_encoder), accelerator.unwrap_model(unet), + args.pretrained_model_name_or_path, epoch + 1, global_step) + + is_main_process = accelerator.is_main_process + if is_main_process: + unet = accelerator.unwrap_model(unet) + text_encoder = accelerator.unwrap_model(text_encoder) + + accelerator.end_training() + del accelerator # この後メモリを使うのでこれは消す + + if is_main_process: + os.makedirs(args.output_dir, exist_ok=True) + if use_stable_diffusion_format: + ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME) + print(f"save trained model as StableDiffusion checkpoint to {ckpt_file}") + save_stable_diffusion_checkpoint(ckpt_file, text_encoder, unet, args.pretrained_model_name_or_path, epoch, global_step) + else: + # Create the pipeline using using the trained modules and save it. + print(f"save trained model as Diffusers to {args.output_dir}") + pipeline = StableDiffusionPipeline.from_pretrained( + args.pretrained_model_name_or_path, + unet=unet, + text_encoder=text_encoder, + ) + pipeline.save_pretrained(args.output_dir) + print("model saved.") + + +# region モジュール入れ替え部 +""" +高速化のためのモジュール入れ替え +""" + +# FlashAttentionを使うCrossAttention +# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py +# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE + +# constants + +EPSILON = 1e-6 + +# helper functions + + +def exists(val): + return val is not None + + +def default(val, d): + return val if exists(val) else d + +# flash attention forwards and backwards + +# https://arxiv.org/abs/2205.14135 + + +class FlashAttentionFunction(Function): + @ staticmethod + @ torch.no_grad() + def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size): + """ Algorithm 2 in the paper """ + + device = q.device + dtype = q.dtype + max_neg_value = -torch.finfo(q.dtype).max + qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) + + o = torch.zeros_like(q) + all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device) + all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device) + + scale = (q.shape[-1] ** -0.5) + + if not exists(mask): + mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size) + else: + mask = rearrange(mask, 'b n -> b 1 1 n') + mask = mask.split(q_bucket_size, dim=-1) + + row_splits = zip( + q.split(q_bucket_size, dim=-2), + o.split(q_bucket_size, dim=-2), + mask, + all_row_sums.split(q_bucket_size, dim=-2), + all_row_maxes.split(q_bucket_size, dim=-2), + ) + + for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits): + q_start_index = ind * q_bucket_size - qk_len_diff + + col_splits = zip( + k.split(k_bucket_size, dim=-2), + v.split(k_bucket_size, dim=-2), + ) + + for k_ind, (kc, vc) in enumerate(col_splits): + k_start_index = k_ind * k_bucket_size + + attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale + + if exists(row_mask): + attn_weights.masked_fill_(~row_mask, max_neg_value) + + if causal and q_start_index < (k_start_index + k_bucket_size - 1): + causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, + device=device).triu(q_start_index - k_start_index + 1) + attn_weights.masked_fill_(causal_mask, max_neg_value) + + block_row_maxes = attn_weights.amax(dim=-1, keepdims=True) + attn_weights -= block_row_maxes + exp_weights = torch.exp(attn_weights) + + if exists(row_mask): + exp_weights.masked_fill_(~row_mask, 0.) + + block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON) + + new_row_maxes = torch.maximum(block_row_maxes, row_maxes) + + exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc) + + exp_row_max_diff = torch.exp(row_maxes - new_row_maxes) + exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes) + + new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums + + oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values) + + row_maxes.copy_(new_row_maxes) + row_sums.copy_(new_row_sums) + + ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size) + ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes) + + return o + + @ staticmethod + @ torch.no_grad() + def backward(ctx, do): + """ Algorithm 4 in the paper """ + + causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args + q, k, v, o, l, m = ctx.saved_tensors + + device = q.device + + max_neg_value = -torch.finfo(q.dtype).max + qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) + + dq = torch.zeros_like(q) + dk = torch.zeros_like(k) + dv = torch.zeros_like(v) + + row_splits = zip( + q.split(q_bucket_size, dim=-2), + o.split(q_bucket_size, dim=-2), + do.split(q_bucket_size, dim=-2), + mask, + l.split(q_bucket_size, dim=-2), + m.split(q_bucket_size, dim=-2), + dq.split(q_bucket_size, dim=-2) + ) + + for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits): + q_start_index = ind * q_bucket_size - qk_len_diff + + col_splits = zip( + k.split(k_bucket_size, dim=-2), + v.split(k_bucket_size, dim=-2), + dk.split(k_bucket_size, dim=-2), + dv.split(k_bucket_size, dim=-2), + ) + + for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits): + k_start_index = k_ind * k_bucket_size + + attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale + + if causal and q_start_index < (k_start_index + k_bucket_size - 1): + causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, + device=device).triu(q_start_index - k_start_index + 1) + attn_weights.masked_fill_(causal_mask, max_neg_value) + + exp_attn_weights = torch.exp(attn_weights - mc) + + if exists(row_mask): + exp_attn_weights.masked_fill_(~row_mask, 0.) + + p = exp_attn_weights / lc + + dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc) + dp = einsum('... i d, ... j d -> ... i j', doc, vc) + + D = (doc * oc).sum(dim=-1, keepdims=True) + ds = p * scale * (dp - D) + + dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc) + dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc) + + dqc.add_(dq_chunk) + dkc.add_(dk_chunk) + dvc.add_(dv_chunk) + + return dq, dk, dv, None, None, None, None + + +def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers): + if mem_eff_attn: + replace_unet_cross_attn_to_memory_efficient() + elif xformers: + replace_unet_cross_attn_to_xformers() + + +def replace_unet_cross_attn_to_memory_efficient(): + print("Replace CrossAttention.forward to use FlashAttention") + flash_func = FlashAttentionFunction + + def forward_flash_attn(self, x, context=None, mask=None): + q_bucket_size = 512 + k_bucket_size = 1024 + + h = self.heads + q = self.to_q(x) + + context = context if context is not None else x + context = context.to(x.dtype) + k = self.to_k(context) + v = self.to_v(context) + del context, x + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v)) + + out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size) + + out = rearrange(out, 'b h n d -> b n (h d)') + return self.to_out(out) + + diffusers.models.attention.CrossAttention.forward = forward_flash_attn + + +def replace_unet_cross_attn_to_xformers(): + print("Replace CrossAttention.forward to use xformers") + try: + import xformers.ops + except ImportError: + raise ImportError("No xformers / xformersがインストールされていないようです") + + def forward_xformers(self, x, context=None, mask=None): + h = self.heads + q_in = self.to_q(x) + + context = default(context, x) + context = context.to(x.dtype) + + k_in = self.to_k(context) + v_in = self.to_v(context) + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in)) + del q_in, k_in, v_in + out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる + + out = rearrange(out, 'b n h d -> b n (h d)', h=h) + return self.to_out(out) + + diffusers.models.attention.CrossAttention.forward = forward_xformers +# endregion + + +if __name__ == '__main__': + # torch.cuda.set_per_process_memory_fraction(0.48) + parser = argparse.ArgumentParser() + parser.add_argument("--pretrained_model_name_or_path", type=str, default=None, + help="pretrained model to train, directory to Diffusers model or StableDiffusion checkpoint / 学習元モデル、Diffusers形式モデルのディレクトリまたはStableDiffusionのckptファイル") + parser.add_argument("--fine_tuning", action="store_true", + help="fine tune the model instead of DreamBooth / DreamBoothではなくfine tuningする") + parser.add_argument("--shuffle_caption", action="store_true", + help="shuffle comma-separated caption when fine tuning / fine tuning時にコンマで区切られたcaptionの各要素をshuffleする") + parser.add_argument("--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ") + parser.add_argument("--reg_data_dir", type=str, default=None, help="directory for regularization images / 正則化画像データのディレクトリ") + parser.add_argument("--dataset_repeats", type=int, default=None, + help="repeat dataset in fine tuning / fine tuning時にデータセットを繰り返す回数") + parser.add_argument("--output_dir", type=str, default=None, + help="directory to output trained model, save as same format as input / 学習後のモデル出力先ディレクトリ(入力と同じ形式で保存)") + parser.add_argument("--save_every_n_epochs", type=int, default=None, + help="save checkpoint every N epochs (only supports in StableDiffusion checkpoint) / 学習中のモデルを指定エポックごとに保存します(StableDiffusion形式のモデルを読み込んだ場合のみ有効)") + parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="loss weight for regularization images / 正則化画像のlossの重み") + parser.add_argument("--no_token_padding", action="store_true", + help="disable token padding (same as Diffuser's DreamBooth) / トークンのpaddingを無効にする(Diffusers版DreamBoothと同じ動作)") + parser.add_argument("--color_aug", action="store_true", help="enable weak color augmentation / 学習時に色合いのaugmentationを有効にする") + parser.add_argument("--flip_aug", action="store_true", help="enable horizontal flip augmentation / 学習時に左右反転のaugmentationを有効にする") + parser.add_argument("--face_crop_aug_range", type=str, default=None, + help="enable face-centered crop augmentation and its range (e.g. 2.0,4.0) / 学習時に顔を中心とした切り出しaugmentationを有効にするときは倍率を指定する(例:2.0,4.0)") + parser.add_argument("--random_crop", action="store_true", + help="enable random crop (for style training in face-centered crop augmentation) / ランダムな切り出しを有効にする(顔を中心としたaugmentationを行うときに画風の学習用に指定する)") + parser.add_argument("--debug_dataset", action="store_true", + help="show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)") + parser.add_argument("--resolution", type=str, default=None, + help="resolution in training ('size' or 'width,height') / 学習時の画像解像度('サイズ'指定、または'幅,高さ'指定)") + parser.add_argument("--train_batch_size", type=int, default=1, + help="batch size for training (1 means one train or reg data, not train/reg pair) / 学習時のバッチサイズ(1でtrain/regをそれぞれ1件ずつ学習)") + parser.add_argument("--use_8bit_adam", action="store_true", + help="use 8bit Adam optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使う(bitsandbytesのインストールが必要)") + parser.add_argument("--mem_eff_attn", action="store_true", + help="use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う") + parser.add_argument("--xformers", action="store_true", + help="use xformers for CrossAttention / CrossAttentionにxformersを使う") + parser.add_argument("--cache_latents", action="store_true", + help="cache latents to reduce memory (augmentations must be disabled) / メモリ削減のためにlatentをcacheする(augmentationは使用不可)") + parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率") + parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数") + parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed") + parser.add_argument("--gradient_checkpointing", action="store_true", + help="enable gradient checkpointing / grandient checkpointingを有効にする") + parser.add_argument("--mixed_precision", type=str, default="no", + choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度") + parser.add_argument("--clip_skip", type=int, default=None, + help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いる(nは1以上)") + parser.add_argument("--save_half", action="store_true", + help="save ckpt model with fp16 precision") + + args = parser.parse_args() + train(args) diff --git a/train_db_fixed_v7.py b/train_db_fixed_v7.py new file mode 100644 index 0000000..b19b6ab --- /dev/null +++ b/train_db_fixed_v7.py @@ -0,0 +1,1609 @@ +# このスクリプトのライセンスは、train_dreambooth.pyと同じくApache License 2.0とします +# (c) 2022 Kohya S. @kohya_ss + +# v7: another text encoder ckpt format, average loss, save epochs/global steps, show num of train/reg images, +# enable reg images in fine-tuning, add dataset_repeats option + +from torch.autograd.function import Function +import argparse +import glob +import itertools +import math +import os +import random + +from tqdm import tqdm +import torch +from torchvision import transforms +from accelerate import Accelerator +from accelerate.utils import set_seed +from transformers import CLIPTextModel, CLIPTokenizer +import diffusers +from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel +import albumentations as albu +import numpy as np +from PIL import Image +import cv2 +from einops import rearrange +from torch import einsum + +# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う +TOKENIZER_PATH = "openai/clip-vit-large-patch14" + +# StableDiffusionのモデルパラメータ +NUM_TRAIN_TIMESTEPS = 1000 +BETA_START = 0.00085 +BETA_END = 0.0120 + +UNET_PARAMS_MODEL_CHANNELS = 320 +UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4] +UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1] +UNET_PARAMS_IMAGE_SIZE = 32 # unused +UNET_PARAMS_IN_CHANNELS = 4 +UNET_PARAMS_OUT_CHANNELS = 4 +UNET_PARAMS_NUM_RES_BLOCKS = 2 +UNET_PARAMS_CONTEXT_DIM = 768 +UNET_PARAMS_NUM_HEADS = 8 + +VAE_PARAMS_Z_CHANNELS = 4 +VAE_PARAMS_RESOLUTION = 256 +VAE_PARAMS_IN_CHANNELS = 3 +VAE_PARAMS_OUT_CH = 3 +VAE_PARAMS_CH = 128 +VAE_PARAMS_CH_MULT = [1, 2, 4, 4] +VAE_PARAMS_NUM_RES_BLOCKS = 2 + +# checkpointファイル名 +LAST_CHECKPOINT_NAME = "last.ckpt" +EPOCH_CHECKPOINT_NAME = "epoch-{:06d}.ckpt" + + +class DreamBoothOrFineTuningDataset(torch.utils.data.Dataset): + def __init__(self, fine_tuning, train_img_path_captions, reg_img_path_captions, tokenizer, resolution, prior_loss_weight, flip_aug, color_aug, face_crop_aug_range, random_crop, shuffle_caption, disable_padding, debug_dataset) -> None: + super().__init__() + + self.fine_tuning = fine_tuning + self.train_img_path_captions = train_img_path_captions + self.reg_img_path_captions = reg_img_path_captions + self.tokenizer = tokenizer + self.width, self.height = resolution + self.size = min(self.width, self.height) # 短いほう + self.prior_loss_weight = prior_loss_weight + self.face_crop_aug_range = face_crop_aug_range + self.random_crop = random_crop + self.debug_dataset = debug_dataset + self.shuffle_caption = shuffle_caption + self.disable_padding = disable_padding + self.latents_cache = None + + # augmentation + flip_p = 0.5 if flip_aug else 0.0 + if color_aug: + # わりと弱めの色合いaugmentation:brightness/contrastあたりは画像のpixel valueの最大値・最小値を変えてしまうのでよくないのではという想定でgamma/hue/saturationあたりを触る + self.aug = albu.Compose([ + albu.OneOf([ + # albu.RandomBrightnessContrast(0.05, 0.05, p=.2), + albu.HueSaturationValue(5, 8, 0, p=.2), + # albu.RGBShift(5, 5, 5, p=.1), + albu.RandomGamma((95, 105), p=.5), + ], p=.33), + albu.HorizontalFlip(p=flip_p) + ], p=1.) + elif flip_aug: + self.aug = albu.Compose([ + albu.HorizontalFlip(p=flip_p) + ], p=1.) + else: + self.aug = None + + self.num_train_images = len(self.train_img_path_captions) + self.num_reg_images = len(self.reg_img_path_captions) + + self.enable_reg_images = self.num_reg_images > 0 + + if not self.enable_reg_images: + self._length = self.num_train_images + else: + # 学習データの倍として、奇数ならtrain + self._length = self.num_train_images * 2 + if self._length // 2 < self.num_reg_images: + print("some of reg images are not used / 正則化画像の数が多いので、一部使用されない正則化画像があります") + + self.image_transforms = transforms.Compose( + [ + transforms.ToTensor(), + transforms.Normalize([0.5], [0.5]), + ] + ) + + def load_image(self, image_path): + image = Image.open(image_path) + if not image.mode == "RGB": + image = image.convert("RGB") + img = np.array(image, np.uint8) + + face_cx = face_cy = face_w = face_h = 0 + if self.face_crop_aug_range is not None: + tokens = os.path.splitext(os.path.basename(image_path))[0].split('_') + if len(tokens) >= 5: + face_cx = int(tokens[-4]) + face_cy = int(tokens[-3]) + face_w = int(tokens[-2]) + face_h = int(tokens[-1]) + + return img, face_cx, face_cy, face_w, face_h + + # いい感じに切り出す + def crop_target(self, image, face_cx, face_cy, face_w, face_h): + height, width = image.shape[0:2] + if height == self.height and width == self.width: + return image + + # 画像サイズはsizeより大きいのでリサイズする + face_size = max(face_w, face_h) + min_scale = max(self.height / height, self.width / width) # 画像がモデル入力サイズぴったりになる倍率(最小の倍率) + min_scale = min(1.0, max(min_scale, self.size / (face_size * self.face_crop_aug_range[1]))) # 指定した顔最小サイズ + max_scale = min(1.0, max(min_scale, self.size / (face_size * self.face_crop_aug_range[0]))) # 指定した顔最大サイズ + if min_scale >= max_scale: # range指定がmin==max + scale = min_scale + else: + scale = random.uniform(min_scale, max_scale) + + nh = int(height * scale + .5) + nw = int(width * scale + .5) + assert nh >= self.height and nw >= self.width, f"internal error. small scale {scale}, {width}*{height}" + image = cv2.resize(image, (nw, nh), interpolation=cv2.INTER_AREA) + face_cx = int(face_cx * scale + .5) + face_cy = int(face_cy * scale + .5) + height, width = nh, nw + + # 顔を中心として448*640とかへを切り出す + for axis, (target_size, length, face_p) in enumerate(zip((self.height, self.width), (height, width), (face_cy, face_cx))): + p1 = face_p - target_size // 2 # 顔を中心に持ってくるための切り出し位置 + + if self.random_crop: + # 背景も含めるために顔を中心に置く確率を高めつつずらす + range = max(length - face_p, face_p) # 画像の端から顔中心までの距離の長いほう + p1 = p1 + (random.randint(0, range) + random.randint(0, range)) - range # -range ~ +range までのいい感じの乱数 + else: + # range指定があるときのみ、すこしだけランダムに(わりと適当) + if self.face_crop_aug_range[0] != self.face_crop_aug_range[1]: + if face_size > self.size // 10 and face_size >= 40: + p1 = p1 + random.randint(-face_size // 20, +face_size // 20) + + p1 = max(0, min(p1, length - target_size)) + + if axis == 0: + image = image[p1:p1 + target_size, :] + else: + image = image[:, p1:p1 + target_size] + + return image + + def __len__(self): + return self._length + + def set_cached_latents(self, image_path, latents): + if self.latents_cache is None: + self.latents_cache = {} + self.latents_cache[image_path] = latents + + def __getitem__(self, index_arg): + example = {} + + if not self.enable_reg_images: + index = index_arg + img_path_captions = self.train_img_path_captions + reg = False + else: + # 偶数ならtrain、奇数ならregを返す + if index_arg % 2 == 0: + img_path_captions = self.train_img_path_captions + reg = False + else: + img_path_captions = self.reg_img_path_captions + reg = True + index = index_arg // 2 + example['loss_weight'] = 1.0 if (not reg or self.fine_tuning) else self.prior_loss_weight + + index = index % len(img_path_captions) + image_path, caption = img_path_captions[index] + example['image_path'] = image_path + + # image/latentsを処理する + if self.latents_cache is not None and image_path in self.latents_cache: + # latentsはキャッシュ済み + example['latents'] = self.latents_cache[image_path] + else: + # 画像を読み込み必要ならcropする + img, face_cx, face_cy, face_w, face_h = self.load_image(image_path) + im_h, im_w = img.shape[0:2] + if face_cx > 0: # 顔位置情報あり + img = self.crop_target(img, face_cx, face_cy, face_w, face_h) + elif im_h > self.height or im_w > self.width: + assert self.random_crop, f"image too large, and face_crop_aug_range and random_crop are disabled / 画像サイズが大きいのでface_crop_aug_rangeかrandom_cropを有効にしてください" + if im_h > self.height: + p = random.randint(0, im_h - self.height) + img = img[p:p + self.height] + if im_w > self.width: + p = random.randint(0, im_w - self.width) + img = img[:, p:p + self.width] + + im_h, im_w = img.shape[0:2] + assert im_h == self.height and im_w == self.width, f"image too small / 画像サイズが小さいようです: {image_path}" + + # augmentation + if self.aug is not None: + img = self.aug(image=img)['image'] + + example['image'] = self.image_transforms(img) # -1.0~1.0のtorch.Tensorになる + + # captionを処理する + if self.fine_tuning and self.shuffle_caption: # fine tuning時にcaptionのshuffleをする + tokens = caption.strip().split(",") + random.shuffle(tokens) + caption = ",".join(tokens).strip() + + input_ids = self.tokenizer(caption, padding="do_not_pad", truncation=True, + max_length=self.tokenizer.model_max_length).input_ids + + # padしてTensor変換 + if self.disable_padding: + # paddingしない:padding==Trueはバッチの中の最大長に合わせるだけ(やはりバグでは……?) + input_ids = self.tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids + else: + # paddingする + input_ids = self.tokenizer.pad({"input_ids": input_ids}, padding='max_length', max_length=self.tokenizer.model_max_length, + return_tensors='pt').input_ids + + example['input_ids'] = input_ids + + if self.debug_dataset: + example['caption'] = caption + return example + + +# region checkpoint変換、読み込み、書き込み ############################### + +# region StableDiffusion->Diffusersの変換コード +# convert_original_stable_diffusion_to_diffusers をコピーしている(ASL 2.0) + +def shave_segments(path, n_shave_prefix_segments=1): + """ + Removes segments. Positive values shave the first segments, negative shave the last segments. + """ + if n_shave_prefix_segments >= 0: + return ".".join(path.split(".")[n_shave_prefix_segments:]) + else: + return ".".join(path.split(".")[:n_shave_prefix_segments]) + + +def renew_resnet_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside resnets to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item.replace("in_layers.0", "norm1") + new_item = new_item.replace("in_layers.2", "conv1") + + new_item = new_item.replace("out_layers.0", "norm2") + new_item = new_item.replace("out_layers.3", "conv2") + + new_item = new_item.replace("emb_layers.1", "time_emb_proj") + new_item = new_item.replace("skip_connection", "conv_shortcut") + + new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside resnets to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item + + new_item = new_item.replace("nin_shortcut", "conv_shortcut") + new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def renew_attention_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside attentions to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item + + # new_item = new_item.replace('norm.weight', 'group_norm.weight') + # new_item = new_item.replace('norm.bias', 'group_norm.bias') + + # new_item = new_item.replace('proj_out.weight', 'proj_attn.weight') + # new_item = new_item.replace('proj_out.bias', 'proj_attn.bias') + + # new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside attentions to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item + + new_item = new_item.replace("norm.weight", "group_norm.weight") + new_item = new_item.replace("norm.bias", "group_norm.bias") + + new_item = new_item.replace("q.weight", "query.weight") + new_item = new_item.replace("q.bias", "query.bias") + + new_item = new_item.replace("k.weight", "key.weight") + new_item = new_item.replace("k.bias", "key.bias") + + new_item = new_item.replace("v.weight", "value.weight") + new_item = new_item.replace("v.bias", "value.bias") + + new_item = new_item.replace("proj_out.weight", "proj_attn.weight") + new_item = new_item.replace("proj_out.bias", "proj_attn.bias") + + new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def assign_to_checkpoint( + paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None +): + """ + This does the final conversion step: take locally converted weights and apply a global renaming + to them. It splits attention layers, and takes into account additional replacements + that may arise. + + Assigns the weights to the new checkpoint. + """ + assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." + + # Splits the attention layers into three variables. + if attention_paths_to_split is not None: + for path, path_map in attention_paths_to_split.items(): + old_tensor = old_checkpoint[path] + channels = old_tensor.shape[0] // 3 + + target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) + + num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 + + old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) + query, key, value = old_tensor.split(channels // num_heads, dim=1) + + checkpoint[path_map["query"]] = query.reshape(target_shape) + checkpoint[path_map["key"]] = key.reshape(target_shape) + checkpoint[path_map["value"]] = value.reshape(target_shape) + + for path in paths: + new_path = path["new"] + + # These have already been assigned + if attention_paths_to_split is not None and new_path in attention_paths_to_split: + continue + + # Global renaming happens here + new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") + new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") + new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") + + if additional_replacements is not None: + for replacement in additional_replacements: + new_path = new_path.replace(replacement["old"], replacement["new"]) + + # proj_attn.weight has to be converted from conv 1D to linear + if "proj_attn.weight" in new_path: + checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] + else: + checkpoint[new_path] = old_checkpoint[path["old"]] + + +def conv_attn_to_linear(checkpoint): + keys = list(checkpoint.keys()) + attn_keys = ["query.weight", "key.weight", "value.weight"] + for key in keys: + if ".".join(key.split(".")[-2:]) in attn_keys: + if checkpoint[key].ndim > 2: + checkpoint[key] = checkpoint[key][:, :, 0, 0] + elif "proj_attn.weight" in key: + if checkpoint[key].ndim > 2: + checkpoint[key] = checkpoint[key][:, :, 0] + + +def convert_ldm_unet_checkpoint(checkpoint, config): + """ + Takes a state dict and a config, and returns a converted checkpoint. + """ + + # extract state_dict for UNet + unet_state_dict = {} + unet_key = "model.diffusion_model." + keys = list(checkpoint.keys()) + for key in keys: + if key.startswith(unet_key): + unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) + + new_checkpoint = {} + + new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] + new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] + new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] + new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] + + new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] + new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] + + new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] + new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] + new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] + new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] + + # Retrieves the keys for the input blocks only + num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) + input_blocks = { + layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] + for layer_id in range(num_input_blocks) + } + + # Retrieves the keys for the middle blocks only + num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) + middle_blocks = { + layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] + for layer_id in range(num_middle_blocks) + } + + # Retrieves the keys for the output blocks only + num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) + output_blocks = { + layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] + for layer_id in range(num_output_blocks) + } + + for i in range(1, num_input_blocks): + block_id = (i - 1) // (config["layers_per_block"] + 1) + layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) + + resnets = [ + key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key + ] + attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] + + if f"input_blocks.{i}.0.op.weight" in unet_state_dict: + new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( + f"input_blocks.{i}.0.op.weight" + ) + new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( + f"input_blocks.{i}.0.op.bias" + ) + + paths = renew_resnet_paths(resnets) + meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} + assign_to_checkpoint( + paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + + if len(attentions): + paths = renew_attention_paths(attentions) + meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} + assign_to_checkpoint( + paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + + resnet_0 = middle_blocks[0] + attentions = middle_blocks[1] + resnet_1 = middle_blocks[2] + + resnet_0_paths = renew_resnet_paths(resnet_0) + assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) + + resnet_1_paths = renew_resnet_paths(resnet_1) + assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) + + attentions_paths = renew_attention_paths(attentions) + meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} + assign_to_checkpoint( + attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + + for i in range(num_output_blocks): + block_id = i // (config["layers_per_block"] + 1) + layer_in_block_id = i % (config["layers_per_block"] + 1) + output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] + output_block_list = {} + + for layer in output_block_layers: + layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) + if layer_id in output_block_list: + output_block_list[layer_id].append(layer_name) + else: + output_block_list[layer_id] = [layer_name] + + if len(output_block_list) > 1: + resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] + attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] + + resnet_0_paths = renew_resnet_paths(resnets) + paths = renew_resnet_paths(resnets) + + meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} + assign_to_checkpoint( + paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + + if ["conv.weight", "conv.bias"] in output_block_list.values(): + index = list(output_block_list.values()).index(["conv.weight", "conv.bias"]) + new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ + f"output_blocks.{i}.{index}.conv.weight" + ] + new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ + f"output_blocks.{i}.{index}.conv.bias" + ] + + # Clear attentions as they have been attributed above. + if len(attentions) == 2: + attentions = [] + + if len(attentions): + paths = renew_attention_paths(attentions) + meta_path = { + "old": f"output_blocks.{i}.1", + "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", + } + assign_to_checkpoint( + paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + else: + resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) + for path in resnet_0_paths: + old_path = ".".join(["output_blocks", str(i), path["old"]]) + new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) + + new_checkpoint[new_path] = unet_state_dict[old_path] + + return new_checkpoint + + +def convert_ldm_vae_checkpoint(checkpoint, config): + # extract state dict for VAE + vae_state_dict = {} + vae_key = "first_stage_model." + keys = list(checkpoint.keys()) + for key in keys: + if key.startswith(vae_key): + vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) + + new_checkpoint = {} + + new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] + new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] + new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] + new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] + new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] + new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] + + new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] + new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] + new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] + new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] + new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] + new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] + + new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] + new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] + new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] + new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] + + # Retrieves the keys for the encoder down blocks only + num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) + down_blocks = { + layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) + } + + # Retrieves the keys for the decoder up blocks only + num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) + up_blocks = { + layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) + } + + for i in range(num_down_blocks): + resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] + + if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: + new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( + f"encoder.down.{i}.downsample.conv.weight" + ) + new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( + f"encoder.down.{i}.downsample.conv.bias" + ) + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + + mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] + num_mid_res_blocks = 2 + for i in range(1, num_mid_res_blocks + 1): + resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + + mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] + paths = renew_vae_attention_paths(mid_attentions) + meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + conv_attn_to_linear(new_checkpoint) + + for i in range(num_up_blocks): + block_id = num_up_blocks - 1 - i + resnets = [ + key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key + ] + + if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: + new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ + f"decoder.up.{block_id}.upsample.conv.weight" + ] + new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ + f"decoder.up.{block_id}.upsample.conv.bias" + ] + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + + mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] + num_mid_res_blocks = 2 + for i in range(1, num_mid_res_blocks + 1): + resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + + mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] + paths = renew_vae_attention_paths(mid_attentions) + meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + conv_attn_to_linear(new_checkpoint) + return new_checkpoint + + +def create_unet_diffusers_config(): + """ + Creates a config for the diffusers based on the config of the LDM model. + """ + # unet_params = original_config.model.params.unet_config.params + + block_out_channels = [UNET_PARAMS_MODEL_CHANNELS * mult for mult in UNET_PARAMS_CHANNEL_MULT] + + down_block_types = [] + resolution = 1 + for i in range(len(block_out_channels)): + block_type = "CrossAttnDownBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "DownBlock2D" + down_block_types.append(block_type) + if i != len(block_out_channels) - 1: + resolution *= 2 + + up_block_types = [] + for i in range(len(block_out_channels)): + block_type = "CrossAttnUpBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "UpBlock2D" + up_block_types.append(block_type) + resolution //= 2 + + config = dict( + sample_size=UNET_PARAMS_IMAGE_SIZE, + in_channels=UNET_PARAMS_IN_CHANNELS, + out_channels=UNET_PARAMS_OUT_CHANNELS, + down_block_types=tuple(down_block_types), + up_block_types=tuple(up_block_types), + block_out_channels=tuple(block_out_channels), + layers_per_block=UNET_PARAMS_NUM_RES_BLOCKS, + cross_attention_dim=UNET_PARAMS_CONTEXT_DIM, + attention_head_dim=UNET_PARAMS_NUM_HEADS, + ) + + return config + + +def create_vae_diffusers_config(): + """ + Creates a config for the diffusers based on the config of the LDM model. + """ + # vae_params = original_config.model.params.first_stage_config.params.ddconfig + # _ = original_config.model.params.first_stage_config.params.embed_dim + block_out_channels = [VAE_PARAMS_CH * mult for mult in VAE_PARAMS_CH_MULT] + down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) + up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) + + config = dict( + sample_size=VAE_PARAMS_RESOLUTION, + in_channels=VAE_PARAMS_IN_CHANNELS, + out_channels=VAE_PARAMS_OUT_CH, + down_block_types=tuple(down_block_types), + up_block_types=tuple(up_block_types), + block_out_channels=tuple(block_out_channels), + latent_channels=VAE_PARAMS_Z_CHANNELS, + layers_per_block=VAE_PARAMS_NUM_RES_BLOCKS, + ) + return config + + +def convert_ldm_clip_checkpoint(checkpoint): + text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") + + keys = list(checkpoint.keys()) + + text_model_dict = {} + + for key in keys: + if key.startswith("cond_stage_model.transformer"): + text_model_dict[key[len("cond_stage_model.transformer."):]] = checkpoint[key] + + text_model.load_state_dict(text_model_dict) + + return text_model + +# endregion + + +# region Diffusers->StableDiffusion の変換コード +# convert_diffusers_to_original_stable_diffusion をコピーしている(ASL 2.0) + +def convert_unet_state_dict(unet_state_dict): + unet_conversion_map = [ + # (stable-diffusion, HF Diffusers) + ("time_embed.0.weight", "time_embedding.linear_1.weight"), + ("time_embed.0.bias", "time_embedding.linear_1.bias"), + ("time_embed.2.weight", "time_embedding.linear_2.weight"), + ("time_embed.2.bias", "time_embedding.linear_2.bias"), + ("input_blocks.0.0.weight", "conv_in.weight"), + ("input_blocks.0.0.bias", "conv_in.bias"), + ("out.0.weight", "conv_norm_out.weight"), + ("out.0.bias", "conv_norm_out.bias"), + ("out.2.weight", "conv_out.weight"), + ("out.2.bias", "conv_out.bias"), + ] + + unet_conversion_map_resnet = [ + # (stable-diffusion, HF Diffusers) + ("in_layers.0", "norm1"), + ("in_layers.2", "conv1"), + ("out_layers.0", "norm2"), + ("out_layers.3", "conv2"), + ("emb_layers.1", "time_emb_proj"), + ("skip_connection", "conv_shortcut"), + ] + + unet_conversion_map_layer = [] + for i in range(4): + # loop over downblocks/upblocks + + for j in range(2): + # loop over resnets/attentions for downblocks + hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." + sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." + unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) + + if i < 3: + # no attention layers in down_blocks.3 + hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." + sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1." + unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) + + for j in range(3): + # loop over resnets/attentions for upblocks + hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." + sd_up_res_prefix = f"output_blocks.{3*i + j}.0." + unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) + + if i > 0: + # no attention layers in up_blocks.0 + hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." + sd_up_atn_prefix = f"output_blocks.{3*i + j}.1." + unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) + + if i < 3: + # no downsample in down_blocks.3 + hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." + sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op." + unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) + + # no upsample in up_blocks.3 + hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." + sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." + unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) + + hf_mid_atn_prefix = "mid_block.attentions.0." + sd_mid_atn_prefix = "middle_block.1." + unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) + + for j in range(2): + hf_mid_res_prefix = f"mid_block.resnets.{j}." + sd_mid_res_prefix = f"middle_block.{2*j}." + unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) + + # buyer beware: this is a *brittle* function, + # and correct output requires that all of these pieces interact in + # the exact order in which I have arranged them. + mapping = {k: k for k in unet_state_dict.keys()} + for sd_name, hf_name in unet_conversion_map: + mapping[hf_name] = sd_name + for k, v in mapping.items(): + if "resnets" in k: + for sd_part, hf_part in unet_conversion_map_resnet: + v = v.replace(hf_part, sd_part) + mapping[k] = v + for k, v in mapping.items(): + for sd_part, hf_part in unet_conversion_map_layer: + v = v.replace(hf_part, sd_part) + mapping[k] = v + new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} + return new_state_dict + +# endregion + + +def load_checkpoint_with_conversion(ckpt_path): + # text encoderの格納形式が違うモデルに対応する ('text_model'がない) + TEXT_ENCODER_KEY_REPLACEMENTS = [ + ('cond_stage_model.transformer.embeddings.', 'cond_stage_model.transformer.text_model.embeddings.'), + ('cond_stage_model.transformer.encoder.', 'cond_stage_model.transformer.text_model.encoder.'), + ('cond_stage_model.transformer.final_layer_norm.', 'cond_stage_model.transformer.text_model.final_layer_norm.') + ] + + checkpoint = torch.load(ckpt_path, map_location="cpu") + state_dict = checkpoint["state_dict"] + + key_reps = [] + for rep_from, rep_to in TEXT_ENCODER_KEY_REPLACEMENTS: + for key in state_dict.keys(): + if key.startswith(rep_from): + new_key = rep_to + key[len(rep_from):] + key_reps.append((key, new_key)) + + for key, new_key in key_reps: + state_dict[new_key] = state_dict[key] + del state_dict[key] + + return checkpoint + + +def load_models_from_stable_diffusion_checkpoint(ckpt_path): + checkpoint = load_checkpoint_with_conversion(ckpt_path) + state_dict = checkpoint["state_dict"] + + # Convert the UNet2DConditionModel model. + unet_config = create_unet_diffusers_config() + converted_unet_checkpoint = convert_ldm_unet_checkpoint(state_dict, unet_config) + + unet = UNet2DConditionModel(**unet_config) + unet.load_state_dict(converted_unet_checkpoint) + + # Convert the VAE model. + vae_config = create_vae_diffusers_config() + converted_vae_checkpoint = convert_ldm_vae_checkpoint(state_dict, vae_config) + + vae = AutoencoderKL(**vae_config) + vae.load_state_dict(converted_vae_checkpoint) + + # convert text_model + text_model = convert_ldm_clip_checkpoint(state_dict) + + return text_model, vae, unet + + +def save_stable_diffusion_checkpoint(output_file, text_encoder, unet, ckpt_path, epochs, steps): + # VAEがメモリ上にないので、もう一度VAEを含めて読み込む + checkpoint = load_checkpoint_with_conversion(ckpt_path) + state_dict = checkpoint["state_dict"] + + # Convert the UNet model + unet_state_dict = convert_unet_state_dict(unet.state_dict()) + for k, v in unet_state_dict.items(): + key = "model.diffusion_model." + k + assert key in state_dict, f"Illegal key in save SD: {key}" + state_dict[key] = v + + # Convert the text encoder model + text_enc_dict = text_encoder.state_dict() # 変換不要 + for k, v in text_enc_dict.items(): + key = "cond_stage_model.transformer." + k + assert key in state_dict, f"Illegal key in save SD: {key}" + state_dict[key] = v + + # Put together new checkpoint + new_ckpt = {'state_dict': state_dict} + + if 'epoch' in checkpoint: + epochs += checkpoint['epoch'] + if 'global_step' in checkpoint: + steps += checkpoint['global_step'] + + new_ckpt['epoch'] = epochs + new_ckpt['global_step'] = steps + + torch.save(new_ckpt, output_file) +# endregion + + +def collate_fn(examples): + input_ids = [e['input_ids'] for e in examples] + input_ids = torch.stack(input_ids) + + if 'latents' in examples[0]: + pixel_values = None + latents = [e['latents'] for e in examples] + latents = torch.stack(latents) + else: + pixel_values = [e['image'] for e in examples] + pixel_values = torch.stack(pixel_values) + pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() + latents = None + + loss_weights = [e['loss_weight'] for e in examples] + loss_weights = torch.FloatTensor(loss_weights) + + batch = {"input_ids": input_ids, "pixel_values": pixel_values, "latents": latents, "loss_weights": loss_weights} + return batch + + +def train(args): + fine_tuning = args.fine_tuning + cache_latents = args.cache_latents + + # latentsをキャッシュする場合のオプション設定を確認する + if cache_latents: + # assert args.face_crop_aug_range is None and not args.random_crop, "when caching latents, crop aug cannot be used / latentをキャッシュするときは切り出しは使えません" + # →使えるようにしておく(初期イメージの切り出しになる) + assert not args.flip_aug and not args.color_aug, "when caching latents, augmentation cannot be used / latentをキャッシュするときはaugmentationは使えません" + + # モデル形式のオプション設定を確認する + use_stable_diffusion_format = os.path.isfile(args.pretrained_model_name_or_path) + if not use_stable_diffusion_format: + assert os.path.exists( + args.pretrained_model_name_or_path), f"no pretrained model / 学習元モデルがありません : {args.pretrained_model_name_or_path}" + + assert args.save_every_n_epochs is None or use_stable_diffusion_format, "when loading Diffusers model, save_every_n_epochs does not work / Diffusersのモデルを読み込むときにはsave_every_n_epochsオプションは無効になります" + + if args.seed is not None: + set_seed(args.seed) + + # 学習データを用意する + def load_dreambooth_dir(dir): + tokens = os.path.basename(dir).split('_') + try: + n_repeats = int(tokens[0]) + except ValueError as e: + print(f"no 'n_repeats' in directory name / DreamBoothのディレクトリ名に繰り返し回数がないようです: {dir}") + raise e + + caption = '_'.join(tokens[1:]) + + img_paths = glob.glob(os.path.join(dir, "*.png")) + glob.glob(os.path.join(dir, "*.jpg")) + return n_repeats, [(ip, caption) for ip in img_paths] + + print("prepare train images.") + train_img_path_captions = [] + + if fine_tuning: + img_paths = glob.glob(os.path.join(args.train_data_dir, "*.png")) + glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + for img_path in tqdm(img_paths): + # captionの候補ファイル名を作る + base_name = os.path.splitext(img_path)[0] + base_name_face_det = base_name + tokens = base_name.split("_") + if len(tokens) >= 5: + base_name_face_det = "_".join(tokens[:-4]) + cap_paths = [base_name + '.txt', base_name + '.caption', base_name_face_det+'.txt', base_name_face_det+'.caption'] + + caption = None + for cap_path in cap_paths: + if os.path.isfile(cap_path): + with open(cap_path, "rt", encoding='utf-8') as f: + caption = f.readlines()[0].strip() + break + + assert caption is not None and len(caption) > 0, f"no caption / キャプションファイルが見つからないか、captionが空です: {cap_paths}" + + train_img_path_captions.append((img_path, caption)) + + if args.dataset_repeats is not None: + l = [] + for _ in range(args.dataset_repeats): + l.extend(train_img_path_captions) + train_img_path_captions = l + else: + train_dirs = os.listdir(args.train_data_dir) + for dir in train_dirs: + n_repeats, img_caps = load_dreambooth_dir(os.path.join(args.train_data_dir, dir)) + for _ in range(n_repeats): + train_img_path_captions.extend(img_caps) + print(f"{len(train_img_path_captions)} train images.") + + reg_img_path_captions = [] + if args.reg_data_dir: + print("prepare reg images.") + reg_dirs = os.listdir(args.reg_data_dir) + for dir in reg_dirs: + n_repeats, img_caps = load_dreambooth_dir(os.path.join(args.reg_data_dir, dir)) + for _ in range(n_repeats): + reg_img_path_captions.extend(img_caps) + print(f"{len(reg_img_path_captions)} reg images.") + + if args.debug_dataset: + # デバッグ時はshuffleして実際のデータセット使用時に近づける(学習時はdata loaderでshuffleする) + random.shuffle(train_img_path_captions) + random.shuffle(reg_img_path_captions) + + # データセットを準備する + resolution = tuple([int(r) for r in args.resolution.split(',')]) + if len(resolution) == 1: + resolution = (resolution[0], resolution[0]) + assert len( + resolution) == 2, f"resolution must be 'size' or 'width,height' / resolutionは'サイズ'または'幅','高さ'で指定してください: {args.resolution}" + + if args.face_crop_aug_range is not None: + face_crop_aug_range = tuple([float(r) for r in args.face_crop_aug_range.split(',')]) + assert len( + face_crop_aug_range) == 2, f"face_crop_aug_range must be two floats / face_crop_aug_rangeは'下限,上限'で指定してください: {args.face_crop_aug_range}" + else: + face_crop_aug_range = None + + # tokenizerを読み込む + print("prepare tokenizer") + tokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH) + + print("prepare dataset") + train_dataset = DreamBoothOrFineTuningDataset(fine_tuning, train_img_path_captions, + reg_img_path_captions, tokenizer, resolution, args.prior_loss_weight, args.flip_aug, args.color_aug, face_crop_aug_range, args.random_crop, args.shuffle_caption, args.no_token_padding, args.debug_dataset) + + if args.debug_dataset: + print(f"Total dataset length / データセットの長さ: {len(train_dataset)}") + print("Escape for exit. / Escキーで中断、終了します") + for example in train_dataset: + im = example['image'] + im = ((im.numpy() + 1.0) * 127.5).astype(np.uint8) + im = np.transpose(im, (1, 2, 0)) # c,H,W -> H,W,c + im = im[:, :, ::-1] # RGB -> BGR (OpenCV) + print(f'caption: "{example["caption"]}", loss weight: {example["loss_weight"]}') + cv2.imshow("img", im) + k = cv2.waitKey() + cv2.destroyAllWindows() + if k == 27: + break + return + + # acceleratorを準備する + # gradient accumulationは複数モデルを学習する場合には対応していないとのことなので、1固定にする + print("prepare accelerator") + accelerator = Accelerator(gradient_accumulation_steps=1, mixed_precision=args.mixed_precision) + + # モデルを読み込む + if use_stable_diffusion_format: + print("load StableDiffusion checkpoint") + text_encoder, vae, unet = load_models_from_stable_diffusion_checkpoint(args.pretrained_model_name_or_path) + else: + print("load Diffusers pretrained models") + text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") + vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") + unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") + + # モデルに xformers とか memory efficient attention を組み込む + replace_unet_modules(unet, args.mem_eff_attn, args.xformers) + + # mixed precisionに対応した型を用意しておき適宜castする + weight_dtype = torch.float32 + if args.mixed_precision == "fp16": + weight_dtype = torch.float16 + elif args.mixed_precision == "bf16": + weight_dtype = torch.bfloat16 + + # 学習を準備する + if cache_latents: + # latentをcacheする→新しいDatasetを作るとcaptionのshuffleが効かないので元のDatasetにcacheを持つ(cascadeする手もあるが) + print("caching latents.") + vae.to(accelerator.device, dtype=weight_dtype) + + for i in tqdm(range(len(train_dataset))): + example = train_dataset[i] + if 'latents' not in example: + image_path = example['image_path'] + with torch.no_grad(): + pixel_values = example["image"].unsqueeze(0).to(device=accelerator.device, dtype=weight_dtype) + latents = vae.encode(pixel_values).latent_dist.sample().squeeze(0).to("cpu") + train_dataset.set_cached_latents(image_path, latents) + # assertion + for i in range(len(train_dataset)): + assert 'latents' in train_dataset[i], "internal error: latents not cached" + + del vae + if torch.cuda.is_available(): + torch.cuda.empty_cache() + else: + vae.requires_grad_(False) + + if args.gradient_checkpointing: + unet.enable_gradient_checkpointing() + text_encoder.gradient_checkpointing_enable() + + # 学習に必要なクラスを準備する + print("prepare optimizer, data loader etc.") + + # 8-bit Adamを使う + if args.use_8bit_adam: + try: + import bitsandbytes as bnb + except ImportError: + raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです") + print("use 8-bit Adam optimizer") + optimizer_class = bnb.optim.AdamW8bit + else: + optimizer_class = torch.optim.AdamW + + trainable_params = (itertools.chain(unet.parameters(), text_encoder.parameters())) + + # betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略 + optimizer = optimizer_class(trainable_params, lr=args.learning_rate) + + # dataloaderを準備する + # DataLoaderのプロセス数:0はメインプロセスになる + n_workers = min(8, os.cpu_count() - 1) # cpu_count-1 ただし最大8 + train_dataloader = torch.utils.data.DataLoader( + train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn, num_workers=n_workers) + + # lr schedulerを用意する + lr_scheduler = diffusers.optimization.get_scheduler("constant", optimizer, num_training_steps=args.max_train_steps) + + # acceleratorがなんかよろしくやってくれるらしい + unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( + unet, text_encoder, optimizer, train_dataloader, lr_scheduler) + + if not cache_latents: + vae.to(accelerator.device, dtype=weight_dtype) + + # epoch数を計算する + num_train_epochs = math.ceil(args.max_train_steps / len(train_dataloader)) + + # 学習する + total_batch_size = args.train_batch_size # * accelerator.num_processes + print("running training / 学習開始") + print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset.num_train_images}") + print(f" num reg images / 正則化画像の数: {train_dataset.num_reg_images}") + print(f" num examples / サンプル数: {len(train_dataset)}") + print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") + print(f" num epochs / epoch数: {num_train_epochs}") + print(f" batch size per device / バッチサイズ: {args.train_batch_size}") + print(f" total train batch size (with parallel & distributed) / 総バッチサイズ(並列学習含む): {total_batch_size}") + print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") + + progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process, desc="steps") + global_step = 0 + + noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) + + if accelerator.is_main_process: + accelerator.init_trackers("dreambooth") + + # 以下 train_dreambooth.py からほぼコピペ + for epoch in range(num_train_epochs): + print(f"epoch {epoch+1}/{num_train_epochs}") + unet.train() + text_encoder.train() # なんかunetだけでいいらしい?→最新版で修正されてた(;´Д`) いろいろ雑だな + + loss_total = 0 + for step, batch in enumerate(train_dataloader): + with accelerator.accumulate(unet): + with torch.no_grad(): + # latentに変換 + if cache_latents: + latents = batch["latents"].to(accelerator.device) + else: + latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() + latents = latents * 0.18215 + + # Sample noise that we'll add to the latents + noise = torch.randn_like(latents, device=latents.device) + b_size = latents.shape[0] + + # Sample a random timestep for each image + timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device) + timesteps = timesteps.long() + + # Add noise to the latents according to the noise magnitude at each timestep + # (this is the forward diffusion process) + noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) + + # Get the text embedding for conditioning + if args.clip_skip is None: + encoder_hidden_states = text_encoder(batch["input_ids"])[0] + else: + enc_out = text_encoder(batch["input_ids"], output_hidden_states=True, return_dict=True) + encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip] + encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states) + + # Predict the noise residual + noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample + + loss = torch.nn.functional.mse_loss(noise_pred.float(), noise.float(), reduction="none") + loss = loss.mean([1, 2, 3]) + + loss_weights = batch["loss_weights"] # 各sampleごとのweight + loss = loss * loss_weights + + loss = loss.mean() + + accelerator.backward(loss) + if accelerator.sync_gradients: + params_to_clip = (itertools.chain(unet.parameters(), text_encoder.parameters())) + accelerator.clip_grad_norm_(params_to_clip, 1.0) # args.max_grad_norm) + + optimizer.step() + lr_scheduler.step() + optimizer.zero_grad(set_to_none=True) + + # Checks if the accelerator has performed an optimization step behind the scenes + if accelerator.sync_gradients: + progress_bar.update(1) + global_step += 1 + + current_loss = loss.detach().item() + loss_total += current_loss + avr_loss = loss_total / (step+1) + logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]} + progress_bar.set_postfix(**logs) + # accelerator.log(logs, step=global_step) + + if global_step >= args.max_train_steps: + break + + accelerator.wait_for_everyone() + + if use_stable_diffusion_format and args.save_every_n_epochs is not None: + if (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs: + print("saving check point.") + os.makedirs(args.output_dir, exist_ok=True) + ckpt_file = os.path.join(args.output_dir, EPOCH_CHECKPOINT_NAME.format(epoch + 1)) + save_stable_diffusion_checkpoint(ckpt_file, accelerator.unwrap_model(text_encoder), accelerator.unwrap_model(unet), + args.pretrained_model_name_or_path, epoch + 1, global_step) + + is_main_process = accelerator.is_main_process + if is_main_process: + unet = accelerator.unwrap_model(unet) + text_encoder = accelerator.unwrap_model(text_encoder) + + accelerator.end_training() + del accelerator # この後メモリを使うのでこれは消す + + if is_main_process: + os.makedirs(args.output_dir, exist_ok=True) + if use_stable_diffusion_format: + ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME) + print(f"save trained model as StableDiffusion checkpoint to {ckpt_file}") + save_stable_diffusion_checkpoint(ckpt_file, text_encoder, unet, args.pretrained_model_name_or_path, epoch, global_step) + else: + # Create the pipeline using using the trained modules and save it. + print(f"save trained model as Diffusers to {args.output_dir}") + pipeline = StableDiffusionPipeline.from_pretrained( + args.pretrained_model_name_or_path, + unet=unet, + text_encoder=text_encoder, + ) + pipeline.save_pretrained(args.output_dir) + print("model saved.") + + +# region モジュール入れ替え部 +""" +高速化のためのモジュール入れ替え +""" + +# FlashAttentionを使うCrossAttention +# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py +# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE + +# constants + +EPSILON = 1e-6 + +# helper functions + + +def exists(val): + return val is not None + + +def default(val, d): + return val if exists(val) else d + +# flash attention forwards and backwards + +# https://arxiv.org/abs/2205.14135 + + +class FlashAttentionFunction(Function): + @ staticmethod + @ torch.no_grad() + def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size): + """ Algorithm 2 in the paper """ + + device = q.device + dtype = q.dtype + max_neg_value = -torch.finfo(q.dtype).max + qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) + + o = torch.zeros_like(q) + all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device) + all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device) + + scale = (q.shape[-1] ** -0.5) + + if not exists(mask): + mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size) + else: + mask = rearrange(mask, 'b n -> b 1 1 n') + mask = mask.split(q_bucket_size, dim=-1) + + row_splits = zip( + q.split(q_bucket_size, dim=-2), + o.split(q_bucket_size, dim=-2), + mask, + all_row_sums.split(q_bucket_size, dim=-2), + all_row_maxes.split(q_bucket_size, dim=-2), + ) + + for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits): + q_start_index = ind * q_bucket_size - qk_len_diff + + col_splits = zip( + k.split(k_bucket_size, dim=-2), + v.split(k_bucket_size, dim=-2), + ) + + for k_ind, (kc, vc) in enumerate(col_splits): + k_start_index = k_ind * k_bucket_size + + attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale + + if exists(row_mask): + attn_weights.masked_fill_(~row_mask, max_neg_value) + + if causal and q_start_index < (k_start_index + k_bucket_size - 1): + causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, + device=device).triu(q_start_index - k_start_index + 1) + attn_weights.masked_fill_(causal_mask, max_neg_value) + + block_row_maxes = attn_weights.amax(dim=-1, keepdims=True) + attn_weights -= block_row_maxes + exp_weights = torch.exp(attn_weights) + + if exists(row_mask): + exp_weights.masked_fill_(~row_mask, 0.) + + block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON) + + new_row_maxes = torch.maximum(block_row_maxes, row_maxes) + + exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc) + + exp_row_max_diff = torch.exp(row_maxes - new_row_maxes) + exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes) + + new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums + + oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values) + + row_maxes.copy_(new_row_maxes) + row_sums.copy_(new_row_sums) + + ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size) + ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes) + + return o + + @ staticmethod + @ torch.no_grad() + def backward(ctx, do): + """ Algorithm 4 in the paper """ + + causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args + q, k, v, o, l, m = ctx.saved_tensors + + device = q.device + + max_neg_value = -torch.finfo(q.dtype).max + qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) + + dq = torch.zeros_like(q) + dk = torch.zeros_like(k) + dv = torch.zeros_like(v) + + row_splits = zip( + q.split(q_bucket_size, dim=-2), + o.split(q_bucket_size, dim=-2), + do.split(q_bucket_size, dim=-2), + mask, + l.split(q_bucket_size, dim=-2), + m.split(q_bucket_size, dim=-2), + dq.split(q_bucket_size, dim=-2) + ) + + for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits): + q_start_index = ind * q_bucket_size - qk_len_diff + + col_splits = zip( + k.split(k_bucket_size, dim=-2), + v.split(k_bucket_size, dim=-2), + dk.split(k_bucket_size, dim=-2), + dv.split(k_bucket_size, dim=-2), + ) + + for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits): + k_start_index = k_ind * k_bucket_size + + attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale + + if causal and q_start_index < (k_start_index + k_bucket_size - 1): + causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, + device=device).triu(q_start_index - k_start_index + 1) + attn_weights.masked_fill_(causal_mask, max_neg_value) + + exp_attn_weights = torch.exp(attn_weights - mc) + + if exists(row_mask): + exp_attn_weights.masked_fill_(~row_mask, 0.) + + p = exp_attn_weights / lc + + dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc) + dp = einsum('... i d, ... j d -> ... i j', doc, vc) + + D = (doc * oc).sum(dim=-1, keepdims=True) + ds = p * scale * (dp - D) + + dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc) + dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc) + + dqc.add_(dq_chunk) + dkc.add_(dk_chunk) + dvc.add_(dv_chunk) + + return dq, dk, dv, None, None, None, None + + +def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers): + if mem_eff_attn: + replace_unet_cross_attn_to_memory_efficient() + elif xformers: + replace_unet_cross_attn_to_xformers() + + +def replace_unet_cross_attn_to_memory_efficient(): + print("Replace CrossAttention.forward to use FlashAttention") + flash_func = FlashAttentionFunction + + def forward_flash_attn(self, x, context=None, mask=None): + q_bucket_size = 512 + k_bucket_size = 1024 + + h = self.heads + q = self.to_q(x) + + context = context if context is not None else x + context = context.to(x.dtype) + k = self.to_k(context) + v = self.to_v(context) + del context, x + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v)) + + out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size) + + out = rearrange(out, 'b h n d -> b n (h d)') + return self.to_out(out) + + diffusers.models.attention.CrossAttention.forward = forward_flash_attn + + +def replace_unet_cross_attn_to_xformers(): + print("Replace CrossAttention.forward to use xformers") + try: + import xformers.ops + except ImportError: + raise ImportError("No xformers / xformersがインストールされていないようです") + + def forward_xformers(self, x, context=None, mask=None): + h = self.heads + q_in = self.to_q(x) + + context = default(context, x) + context = context.to(x.dtype) + + k_in = self.to_k(context) + v_in = self.to_v(context) + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in)) + del q_in, k_in, v_in + out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる + + out = rearrange(out, 'b n h d -> b n (h d)', h=h) + return self.to_out(out) + + diffusers.models.attention.CrossAttention.forward = forward_xformers +# endregion + + +if __name__ == '__main__': + # torch.cuda.set_per_process_memory_fraction(0.48) + parser = argparse.ArgumentParser() + parser.add_argument("--pretrained_model_name_or_path", type=str, default=None, + help="pretrained model to train, directory to Diffusers model or StableDiffusion checkpoint / 学習元モデル、Diffusers形式モデルのディレクトリまたはStableDiffusionのckptファイル") + parser.add_argument("--fine_tuning", action="store_true", + help="fine tune the model instead of DreamBooth / DreamBoothではなくfine tuningする") + parser.add_argument("--shuffle_caption", action="store_true", + help="shuffle comma-separated caption when fine tuning / fine tuning時にコンマで区切られたcaptionの各要素をshuffleする") + parser.add_argument("--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ") + parser.add_argument("--reg_data_dir", type=str, default=None, help="directory for regularization images / 正則化画像データのディレクトリ") + parser.add_argument("--dataset_repeats", type=int, default=None, + help="repeat dataset in fine tuning / fine tuning時にデータセットを繰り返す回数") + parser.add_argument("--output_dir", type=str, default=None, + help="directory to output trained model, save as same format as input / 学習後のモデル出力先ディレクトリ(入力と同じ形式で保存)") + parser.add_argument("--save_every_n_epochs", type=int, default=None, + help="save checkpoint every N epochs (only supports in StableDiffusion checkpoint) / 学習中のモデルを指定エポックごとに保存します(StableDiffusion形式のモデルを読み込んだ場合のみ有効)") + parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="loss weight for regularization images / 正則化画像のlossの重み") + parser.add_argument("--no_token_padding", action="store_true", + help="disable token padding (same as Diffuser's DreamBooth) / トークンのpaddingを無効にする(Diffusers版DreamBoothと同じ動作)") + parser.add_argument("--color_aug", action="store_true", help="enable weak color augmentation / 学習時に色合いのaugmentationを有効にする") + parser.add_argument("--flip_aug", action="store_true", help="enable horizontal flip augmentation / 学習時に左右反転のaugmentationを有効にする") + parser.add_argument("--face_crop_aug_range", type=str, default=None, + help="enable face-centered crop augmentation and its range (e.g. 2.0,4.0) / 学習時に顔を中心とした切り出しaugmentationを有効にするときは倍率を指定する(例:2.0,4.0)") + parser.add_argument("--random_crop", action="store_true", + help="enable random crop (for style training in face-centered crop augmentation) / ランダムな切り出しを有効にする(顔を中心としたaugmentationを行うときに画風の学習用に指定する)") + parser.add_argument("--debug_dataset", action="store_true", + help="show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)") + parser.add_argument("--resolution", type=str, default=None, + help="resolution in training ('size' or 'width,height') / 学習時の画像解像度('サイズ'指定、または'幅,高さ'指定)") + parser.add_argument("--train_batch_size", type=int, default=1, + help="batch size for training (1 means one train or reg data, not train/reg pair) / 学習時のバッチサイズ(1でtrain/regをそれぞれ1件ずつ学習)") + parser.add_argument("--use_8bit_adam", action="store_true", + help="use 8bit Adam optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使う(bitsandbytesのインストールが必要)") + parser.add_argument("--mem_eff_attn", action="store_true", + help="use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う") + parser.add_argument("--xformers", action="store_true", + help="use xformers for CrossAttention / CrossAttentionにxformersを使う") + parser.add_argument("--cache_latents", action="store_true", + help="cache latents to reduce memory (augmentations must be disabled) / メモリ削減のためにlatentをcacheする(augmentationは使用不可)") + parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率") + parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数") + parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed") + parser.add_argument("--gradient_checkpointing", action="store_true", + help="enable gradient checkpointing / grandient checkpointingを有効にする") + parser.add_argument("--mixed_precision", type=str, default="no", + choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度") + parser.add_argument("--clip_skip", type=int, default=None, + help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いる(nは1以上)") + + args = parser.parse_args() + train(args)