Adding new v7

This commit is contained in:
Bernard Maltais 2022-11-07 18:40:34 -05:00
parent 4eae58fd0e
commit 23a5b7f946
6 changed files with 3240 additions and 112 deletions

1
.gitignore vendored
View File

@ -1 +1,2 @@
venv venv
mytraining.ps

View File

@ -77,7 +77,7 @@ my_sks_dog_dreambooth
Edit and paste the following in a Powershell terminal: Edit and paste the following in a Powershell terminal:
```powershell ```powershell
accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v6.py ` accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v7.py `
--pretrained_model_name_or_path="D:\models\last.ckpt" ` --pretrained_model_name_or_path="D:\models\last.ckpt" `
--train_data_dir="D:\dreambooth\train_bernard\train_man" ` --train_data_dir="D:\dreambooth\train_bernard\train_man" `
--reg_data_dir="D:\dreambooth\train_bernard\reg_man" ` --reg_data_dir="D:\dreambooth\train_bernard\reg_man" `
@ -99,12 +99,12 @@ accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v6.py `
If you would rather use model finetuning rather than the dreambooth method you can use a command similat to the following. The advantage of fine tuning is that you do not need to worry about regularization images... but you need to provide captions for every images. The caption will be used to train the model. You can use auto1111 to preprocess your training images and add either BLIP or danbooru captions to them. You then need to edit those to add the name of the model and correct any wrong description. If you would rather use model finetuning rather than the dreambooth method you can use a command similat to the following. The advantage of fine tuning is that you do not need to worry about regularization images... but you need to provide captions for every images. The caption will be used to train the model. You can use auto1111 to preprocess your training images and add either BLIP or danbooru captions to them. You then need to edit those to add the name of the model and correct any wrong description.
``` ```
accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v6-ber.py ` accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v7-ber.py `
--pretrained_model_name_or_path="D:\models\v1-5-pruned-mse-vae.ckpt" ` --pretrained_model_name_or_path="D:\models\alexandrine_teissier_and_bernard_maltais-400-kohya-sd15-v1.ckpt" `
--train_data_dir="D:\dreambooth\source\alet_et_bernard\landscape-pp" ` --train_data_dir="D:\dreambooth\source\alet_et_bernard\landscape-pp" `
--output_dir="D:\dreambooth\train_alex_and_bernard" ` --output_dir="D:\dreambooth\train_alex_and_bernard" `
--resolution="640,448" ` --resolution="640,448" `
--train_batch_size=8 ` --train_batch_size=1 `
--learning_rate=1e-6 ` --learning_rate=1e-6 `
--max_train_steps=550 ` --max_train_steps=550 `
--use_8bit_adam ` --use_8bit_adam `
@ -113,9 +113,13 @@ accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v6-ber.py `
--cache_latents ` --cache_latents `
--save_every_n_epochs=1 ` --save_every_n_epochs=1 `
--fine_tuning ` --fine_tuning `
--fine_tuning_repeat=200 ` --dataset_repeats=200 `
--seed=23 ` --seed=23 `
--save_half --save_half
``` ```
Refer to this url for more details about finetuning: https://note.com/kohya_ss/n/n1269f1e1a54e Refer to this url for more details about finetuning: https://note.com/kohya_ss/n/n1269f1e1a54e
## Change history
* 11/7 (v7): Text Encoder supports checkpoint files in different storage formats (it is converted at the time of import, so export will be in normal format). Changed the average value of EPOCH loss to output to the screen. Added a function to save epoch and global step in checkpoint in SD format (add values if there is existing data). The reg_data_dir option is enabled during fine tuning (fine tuning while mixing regularized images). Added dataset_repeats option that is valid for fine tuning (specified when the number of teacher images is small and the epoch is extremely short).

106
train.ps
View File

@ -1,106 +0,0 @@
accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v6.py `
--pretrained_model_name_or_path="D:\models\v1-5-pruned.ckpt" `
--train_data_dir="D:\dreambooth\train_bernard\train_man" `
--reg_data_dir="D:\dreambooth\train_bernard\reg_man" `
--output_dir="D:\dreambooth\train_bernard" `
--prior_loss_weight=1.0 `
--resolution="512,512" `
--train_batch_size=1 `
--learning_rate=1e-6 `
--max_train_steps=3000 `
--use_8bit_adam `
--xformers `
--mixed_precision="fp16" `
--cache_latents `
--gradient_checkpointing `
--save_every_n_epochs=1
accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v6.py `
--pretrained_model_name_or_path="D:\models\bernard\asd man-3000-remgb-sd15.ckpt" `
--train_data_dir="D:\dreambooth\train_bernard\train_man" `
--reg_data_dir="D:\dreambooth\train_bernard\reg_man" `
--output_dir="D:\dreambooth\train_bernard" `
--prior_loss_weight=1.0 `
--resolution="512,512" `
--train_batch_size=1 `
--learning_rate=1e-6 `
--max_train_steps=1500 `
--use_8bit_adam `
--xformers `
--mixed_precision="fp16" `
--cache_latents `
--gradient_checkpointing `
--save_every_n_epochs=1
accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v6.py `
--pretrained_model_name_or_path="D:\models\v1-5-pruned-mse-vae.ckpt" `
--train_data_dir="D:\dreambooth\train_bernard\train_man" `
--reg_data_dir="D:\dreambooth\train_bernard\reg_man" `
--output_dir="D:\dreambooth\train_bernard" `
--prior_loss_weight=1.0 `
--resolution="512,512" `
--train_batch_size=1 `
--learning_rate=1e-6 `
--max_train_steps=4500 `
--use_8bit_adam `
--xformers `
--mixed_precision="fp16" `
--cache_latents `
--gradient_checkpointing `
--no_token_padding `
--save_every_n_epochs=1
accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v6.py `
--pretrained_model_name_or_path="D:\models\v1-5-pruned-mse-vae.ckpt" `
--train_data_dir="D:\dreambooth\source\alex\train" `
--output_dir="D:\dreambooth\train_alex" `
--prior_loss_weight=1.0 `
--resolution="448,640" `
--train_batch_size=8 `
--learning_rate=1e-6 `
--max_train_steps=4500 `
--use_8bit_adam `
--xformers `
--mixed_precision="fp16" `
--cache_latents `
--save_every_n_epochs=1 `
--shuffle_caption
# -fine_tuning
accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v6.py `
--pretrained_model_name_or_path="D:\models\v1-5-pruned-mse-vae.ckpt" `
--train_data_dir="D:\dreambooth\source\alex\train\50_portrait-pp" `
--output_dir="D:\dreambooth\train_alex" `
--resolution="448,640" `
--train_batch_size=8 `
--learning_rate=1e-6 `
--max_train_steps=4500 `
--use_8bit_adam `
--xformers `
--mixed_precision="fp16" `
--cache_latents `
--save_every_n_epochs=1 `
--fine_tuning `
--shuffle_caption
Resume:
accelerate launch --num_cpu_threads_per_process 6 train_db_fixed_v6-ber.py `
--pretrained_model_name_or_path="D:\models\v1-5-pruned-mse-vae.ckpt" `
--train_data_dir="D:\dreambooth\source\alet_et_bernard\landscape-pp" `
--output_dir="D:\dreambooth\train_alex_and_bernard" `
--resolution="640,448" `
--train_batch_size=8 `
--learning_rate=1e-6 `
--max_train_steps=550 `
--use_8bit_adam `
--xformers `
--mixed_precision="fp16" `
--cache_latents `
--save_every_n_epochs=1 `
--fine_tuning `
--fine_tuning_repeat=200 `
--seed=23 `
--save_half

View File

@ -2,6 +2,9 @@
# The license of this script, like train_dreambooth.py, is Apache License 2.0 # The license of this script, like train_dreambooth.py, is Apache License 2.0
# (c) 2022 Kohya S. @kohya_ss # (c) 2022 Kohya S. @kohya_ss
# v7: another text encoder ckpt format, average loss, save epochs/global steps, show num of train/reg images,
# enable reg images in fine-tuning, add dataset_repeats option
from torch.autograd.function import Function from torch.autograd.function import Function
import argparse import argparse
import glob import glob

1617
train_db_fixed_v7-ber.py Normal file

File diff suppressed because it is too large Load Diff

1609
train_db_fixed_v7.py Normal file

File diff suppressed because it is too large Load Diff