- Fix for conversion tool issue when the source was an sd1.x diffuser model

- Other minor code and GUI fix
This commit is contained in:
bmaltais 2022-12-23 07:56:35 -05:00
parent 5e3f32f69c
commit 2cdf4cf741
10 changed files with 16 additions and 40 deletions

View File

@ -14,6 +14,9 @@ You can find the finetune solution spercific [Finetune README](README_finetune.m
## Change history ## Change history
* 12/23 (v18.8) update:
- Fix for conversion tool issue when the source was an sd1.x diffuser model
- Other minor code and GUI fix
* 12/22 (v18.7) update: * 12/22 (v18.7) update:
- Merge dreambooth and finetune is a common GUI - Merge dreambooth and finetune is a common GUI
- General bug fixes and code improvements - General bug fixes and code improvements

View File

@ -67,12 +67,6 @@ python .\tools\cudann_1.8_install.py
When a new release comes out you can upgrade your repo with the following command: When a new release comes out you can upgrade your repo with the following command:
```
.\upgrade.bat
```
alternatively you can do it manually with
```powershell ```powershell
cd kohya_ss cd kohya_ss
git pull git pull
@ -87,15 +81,8 @@ Once the commands have completed successfully you should be ready to use the new
There is now support for GUI based training using gradio. You can start the complete kohya training GUI interface by running: There is now support for GUI based training using gradio. You can start the complete kohya training GUI interface by running:
```powershell ```powershell
.\kohya.cmd .\venv\Scripts\activate
``` .\kohya_gui.cmd
and select the Dreambooth tab.
Alternativelly you can use the Dreambooth focus GUI with
```powershell
.\dreambooth.cmd
``` ```
## CLI ## CLI

View File

@ -67,12 +67,6 @@ python .\tools\cudann_1.8_install.py
When a new release comes out you can upgrade your repo with the following command: When a new release comes out you can upgrade your repo with the following command:
```
.\upgrade.bat
```
or you can do it manually with
```powershell ```powershell
cd kohya_ss cd kohya_ss
git pull git pull
@ -110,15 +104,8 @@ You can also use the `Captioning` tool found under the `Utilities` tab in the GU
There is now support for GUI based training using gradio. You can start the complete kohya training GUI interface by running: There is now support for GUI based training using gradio. You can start the complete kohya training GUI interface by running:
```powershell ```powershell
.\kohya.cmd .\venv\Scripts\activate
``` .\kohya_gui.cmd
and select the Finetune tab.
Alternativelly you can use the Finetune focus GUI with
```powershell
.\finetune.cmd
``` ```
## CLI ## CLI

View File

@ -1 +0,0 @@
.\venv\Scripts\python.exe .\dreambooth_gui.py

View File

@ -1 +0,0 @@
.\venv\Scripts\python.exe .\finetune_gui.py

View File

@ -24,10 +24,13 @@ def main(args):
random.seed(seed) random.seed(seed)
if not os.path.exists("blip"): if not os.path.exists("blip"):
args.train_data_dir = os.path.abspath(args.train_data_dir) # convert to absolute path
cwd = os.getcwd() cwd = os.getcwd()
print('Current Working Directory is: ', cwd) print('Current Working Directory is: ', cwd)
os.chdir('finetune') os.chdir('finetune')
print(f"load images from {args.train_data_dir}")
image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + \ image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + \
glob.glob(os.path.join(args.train_data_dir, "*.png")) + glob.glob(os.path.join(args.train_data_dir, "*.webp")) glob.glob(os.path.join(args.train_data_dir, "*.png")) + glob.glob(os.path.join(args.train_data_dir, "*.webp"))
print(f"found {len(image_paths)} images.") print(f"found {len(image_paths)} images.")

View File

@ -1 +0,0 @@
.\venv\Scripts\python.exe .\kohya_gui.py

View File

@ -9,7 +9,7 @@ import os
import torch import torch
from diffusers import StableDiffusionPipeline from diffusers import StableDiffusionPipeline
from library import model_util as model_util import library.model_util as model_util
def convert(args): def convert(args):
@ -48,7 +48,7 @@ def convert(args):
v2_model = unet.config.cross_attention_dim == 1024 v2_model = unet.config.cross_attention_dim == 1024
print("checking model version: model is " + ('v2' if v2_model else 'v1')) print("checking model version: model is " + ('v2' if v2_model else 'v1'))
else: else:
v2_model = args.v1 v2_model = not args.v1
# 変換して保存する # 変換して保存する
msg = ("checkpoint" + ("" if save_dtype is None else f" in {save_dtype}")) if is_save_ckpt else "Diffusers" msg = ("checkpoint" + ("" if save_dtype is None else f" in {save_dtype}")) if is_save_ckpt else "Diffusers"

View File

@ -1011,6 +1011,7 @@ def train(args):
if stop_text_encoder_training: if stop_text_encoder_training:
print(f"stop text encoder training at step {global_step}") print(f"stop text encoder training at step {global_step}")
text_encoder.train(False) text_encoder.train(False)
text_encoder.requires_grad_(False)
with accelerator.accumulate(unet): with accelerator.accumulate(unet):
with torch.no_grad(): with torch.no_grad():

View File

@ -1,2 +0,0 @@
git pull
.\venv\Scripts\python.exe -m pip install -U -r .\requirements.txt