- Fix for conversion tool issue when the source was an sd1.x diffuser model
- Other minor code and GUI fix
This commit is contained in:
parent
5e3f32f69c
commit
2cdf4cf741
@ -14,6 +14,9 @@ You can find the finetune solution spercific [Finetune README](README_finetune.m
|
|||||||
|
|
||||||
## Change history
|
## Change history
|
||||||
|
|
||||||
|
* 12/23 (v18.8) update:
|
||||||
|
- Fix for conversion tool issue when the source was an sd1.x diffuser model
|
||||||
|
- Other minor code and GUI fix
|
||||||
* 12/22 (v18.7) update:
|
* 12/22 (v18.7) update:
|
||||||
- Merge dreambooth and finetune is a common GUI
|
- Merge dreambooth and finetune is a common GUI
|
||||||
- General bug fixes and code improvements
|
- General bug fixes and code improvements
|
||||||
|
@ -67,12 +67,6 @@ python .\tools\cudann_1.8_install.py
|
|||||||
|
|
||||||
When a new release comes out you can upgrade your repo with the following command:
|
When a new release comes out you can upgrade your repo with the following command:
|
||||||
|
|
||||||
```
|
|
||||||
.\upgrade.bat
|
|
||||||
```
|
|
||||||
|
|
||||||
alternatively you can do it manually with
|
|
||||||
|
|
||||||
```powershell
|
```powershell
|
||||||
cd kohya_ss
|
cd kohya_ss
|
||||||
git pull
|
git pull
|
||||||
@ -87,15 +81,8 @@ Once the commands have completed successfully you should be ready to use the new
|
|||||||
There is now support for GUI based training using gradio. You can start the complete kohya training GUI interface by running:
|
There is now support for GUI based training using gradio. You can start the complete kohya training GUI interface by running:
|
||||||
|
|
||||||
```powershell
|
```powershell
|
||||||
.\kohya.cmd
|
.\venv\Scripts\activate
|
||||||
```
|
.\kohya_gui.cmd
|
||||||
|
|
||||||
and select the Dreambooth tab.
|
|
||||||
|
|
||||||
Alternativelly you can use the Dreambooth focus GUI with
|
|
||||||
|
|
||||||
```powershell
|
|
||||||
.\dreambooth.cmd
|
|
||||||
```
|
```
|
||||||
|
|
||||||
## CLI
|
## CLI
|
||||||
|
@ -67,12 +67,6 @@ python .\tools\cudann_1.8_install.py
|
|||||||
|
|
||||||
When a new release comes out you can upgrade your repo with the following command:
|
When a new release comes out you can upgrade your repo with the following command:
|
||||||
|
|
||||||
```
|
|
||||||
.\upgrade.bat
|
|
||||||
```
|
|
||||||
|
|
||||||
or you can do it manually with
|
|
||||||
|
|
||||||
```powershell
|
```powershell
|
||||||
cd kohya_ss
|
cd kohya_ss
|
||||||
git pull
|
git pull
|
||||||
@ -110,15 +104,8 @@ You can also use the `Captioning` tool found under the `Utilities` tab in the GU
|
|||||||
There is now support for GUI based training using gradio. You can start the complete kohya training GUI interface by running:
|
There is now support for GUI based training using gradio. You can start the complete kohya training GUI interface by running:
|
||||||
|
|
||||||
```powershell
|
```powershell
|
||||||
.\kohya.cmd
|
.\venv\Scripts\activate
|
||||||
```
|
.\kohya_gui.cmd
|
||||||
|
|
||||||
and select the Finetune tab.
|
|
||||||
|
|
||||||
Alternativelly you can use the Finetune focus GUI with
|
|
||||||
|
|
||||||
```powershell
|
|
||||||
.\finetune.cmd
|
|
||||||
```
|
```
|
||||||
|
|
||||||
## CLI
|
## CLI
|
||||||
|
@ -1 +0,0 @@
|
|||||||
.\venv\Scripts\python.exe .\dreambooth_gui.py
|
|
@ -1 +0,0 @@
|
|||||||
.\venv\Scripts\python.exe .\finetune_gui.py
|
|
@ -24,10 +24,13 @@ def main(args):
|
|||||||
random.seed(seed)
|
random.seed(seed)
|
||||||
|
|
||||||
if not os.path.exists("blip"):
|
if not os.path.exists("blip"):
|
||||||
|
args.train_data_dir = os.path.abspath(args.train_data_dir) # convert to absolute path
|
||||||
|
|
||||||
cwd = os.getcwd()
|
cwd = os.getcwd()
|
||||||
print('Current Working Directory is: ', cwd)
|
print('Current Working Directory is: ', cwd)
|
||||||
os.chdir('finetune')
|
os.chdir('finetune')
|
||||||
|
|
||||||
|
print(f"load images from {args.train_data_dir}")
|
||||||
image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + \
|
image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + \
|
||||||
glob.glob(os.path.join(args.train_data_dir, "*.png")) + glob.glob(os.path.join(args.train_data_dir, "*.webp"))
|
glob.glob(os.path.join(args.train_data_dir, "*.png")) + glob.glob(os.path.join(args.train_data_dir, "*.webp"))
|
||||||
print(f"found {len(image_paths)} images.")
|
print(f"found {len(image_paths)} images.")
|
||||||
|
@ -9,7 +9,7 @@ import os
|
|||||||
import torch
|
import torch
|
||||||
from diffusers import StableDiffusionPipeline
|
from diffusers import StableDiffusionPipeline
|
||||||
|
|
||||||
from library import model_util as model_util
|
import library.model_util as model_util
|
||||||
|
|
||||||
|
|
||||||
def convert(args):
|
def convert(args):
|
||||||
@ -48,7 +48,7 @@ def convert(args):
|
|||||||
v2_model = unet.config.cross_attention_dim == 1024
|
v2_model = unet.config.cross_attention_dim == 1024
|
||||||
print("checking model version: model is " + ('v2' if v2_model else 'v1'))
|
print("checking model version: model is " + ('v2' if v2_model else 'v1'))
|
||||||
else:
|
else:
|
||||||
v2_model = args.v1
|
v2_model = not args.v1
|
||||||
|
|
||||||
# 変換して保存する
|
# 変換して保存する
|
||||||
msg = ("checkpoint" + ("" if save_dtype is None else f" in {save_dtype}")) if is_save_ckpt else "Diffusers"
|
msg = ("checkpoint" + ("" if save_dtype is None else f" in {save_dtype}")) if is_save_ckpt else "Diffusers"
|
||||||
|
@ -1011,6 +1011,7 @@ def train(args):
|
|||||||
if stop_text_encoder_training:
|
if stop_text_encoder_training:
|
||||||
print(f"stop text encoder training at step {global_step}")
|
print(f"stop text encoder training at step {global_step}")
|
||||||
text_encoder.train(False)
|
text_encoder.train(False)
|
||||||
|
text_encoder.requires_grad_(False)
|
||||||
|
|
||||||
with accelerator.accumulate(unet):
|
with accelerator.accumulate(unet):
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
|
@ -1,2 +0,0 @@
|
|||||||
git pull
|
|
||||||
.\venv\Scripts\python.exe -m pip install -U -r .\requirements.txt
|
|
Loading…
Reference in New Issue
Block a user