Add LoRA support from sd_script repo

This commit is contained in:
Bernard Maltais 2022-12-26 08:47:33 -05:00
parent 2cdf4cf741
commit 39baddf805
6 changed files with 4324 additions and 3 deletions

1
.gitignore vendored
View File

@ -6,3 +6,4 @@ cudnn_windows
*.egg-info *.egg-info
build build
wd14_tagger_model wd14_tagger_model
.DS_Store

View File

@ -130,14 +130,16 @@ def main(args):
latents = get_latents(vae, [img for _, _, img in bucket], weight_dtype) latents = get_latents(vae, [img for _, _, img in bucket], weight_dtype)
for (image_key, reso, _), latent in zip(bucket, latents): for (image_key, reso, _), latent in zip(bucket, latents):
np.savez(os.path.join(args.train_data_dir, os.path.splitext(os.path.basename(image_key))[0]), latent) npz_file_name = os.path.splitext(os.path.basename(image_key))[0] if args.full_path else image_key
np.savez(os.path.join(args.train_data_dir, npz_file_name), latent)
# flip # flip
if args.flip_aug: if args.flip_aug:
latents = get_latents(vae, [img[:, ::-1].copy() for _, _, img in bucket], weight_dtype) # copyがないとTensor変換できない latents = get_latents(vae, [img[:, ::-1].copy() for _, _, img in bucket], weight_dtype) # copyがないとTensor変換できない
for (image_key, reso, _), latent in zip(bucket, latents): for (image_key, reso, _), latent in zip(bucket, latents):
np.savez(os.path.join(args.train_data_dir, os.path.splitext(os.path.basename(image_key))[0] + '_flip'), latent) npz_file_name = os.path.splitext(os.path.basename(image_key))[0] if args.full_path else image_key
np.savez(os.path.join(args.train_data_dir, npz_file_name + '_flip'), latent)
bucket.clear() bucket.clear()

2517
gen_img_diffusers.py Normal file

File diff suppressed because it is too large Load Diff

190
networks/lora.py Normal file
View File

@ -0,0 +1,190 @@
# LoRA network module
# reference:
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
import math
import os
import torch
class LoRAModule(torch.nn.Module):
"""
replaces forward method of the original Linear, instead of replacing the original Linear module.
"""
def __init__(self, lora_name, org_module: torch.nn.Module, multiplier=1.0, lora_dim=4):
super().__init__()
self.lora_name = lora_name
if org_module.__class__.__name__ == 'Conv2d':
in_dim = org_module.in_channels
out_dim = org_module.out_channels
self.lora_down = torch.nn.Conv2d(in_dim, lora_dim, (1, 1), bias=False)
self.lora_up = torch.nn.Conv2d(lora_dim, out_dim, (1, 1), bias=False)
else:
in_dim = org_module.in_features
out_dim = org_module.out_features
self.lora_down = torch.nn.Linear(in_dim, lora_dim, bias=False)
self.lora_up = torch.nn.Linear(lora_dim, out_dim, bias=False)
# same as microsoft's
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
torch.nn.init.zeros_(self.lora_up.weight)
self.multiplier = multiplier
self.org_module = org_module # remove in applying
def apply_to(self):
self.org_forward = self.org_module.forward
self.org_module.forward = self.forward
del self.org_module
def forward(self, x):
return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier
def create_network(multiplier, network_dim, vae, text_encoder, unet, **kwargs):
if network_dim is None:
network_dim = 4 # default
network = LoRANetwork(text_encoder, unet, multiplier=multiplier, lora_dim=network_dim)
return network
class LoRANetwork(torch.nn.Module):
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "Attention"]
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
LORA_PREFIX_UNET = 'lora_unet'
LORA_PREFIX_TEXT_ENCODER = 'lora_te'
def __init__(self, text_encoder, unet, multiplier=1.0, lora_dim=4) -> None:
super().__init__()
self.multiplier = multiplier
self.lora_dim = lora_dim
# create module instances
def create_modules(prefix, root_module: torch.nn.Module, target_replace_modules) -> list[LoRAModule]:
loras = []
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
for child_name, child_module in module.named_modules():
if child_module.__class__.__name__ == "Linear" or (child_module.__class__.__name__ == "Conv2d" and child_module.kernel_size == (1, 1)):
lora_name = prefix + '.' + name + '.' + child_name
lora_name = lora_name.replace('.', '_')
lora = LoRAModule(lora_name, child_module, self.multiplier, self.lora_dim)
loras.append(lora)
return loras
self.text_encoder_loras = create_modules(LoRANetwork.LORA_PREFIX_TEXT_ENCODER,
text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
self.unet_loras = create_modules(LoRANetwork.LORA_PREFIX_UNET, unet, LoRANetwork.UNET_TARGET_REPLACE_MODULE)
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
self.weights_sd = None
# assertion
names = set()
for lora in self.text_encoder_loras + self.unet_loras:
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
def load_weights(self, file):
if os.path.splitext(file)[1] == '.safetensors':
from safetensors.torch import load_file
self.weights_sd = load_file(file)
else:
self.weights_sd = torch.load(file, map_location='cpu')
def apply_to(self, text_encoder, unet, apply_text_encoder=None, apply_unet=None):
if self.weights_sd:
weights_has_text_encoder = weights_has_unet = False
for key in self.weights_sd.keys():
if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER):
weights_has_text_encoder = True
elif key.startswith(LoRANetwork.LORA_PREFIX_UNET):
weights_has_unet = True
if apply_text_encoder is None:
apply_text_encoder = weights_has_text_encoder
else:
assert apply_text_encoder == weights_has_text_encoder, f"text encoder weights: {weights_has_text_encoder} but text encoder flag: {apply_text_encoder} / 重みとText Encoderのフラグが矛盾しています"
if apply_unet is None:
apply_unet = weights_has_unet
else:
assert apply_unet == weights_has_unet, f"u-net weights: {weights_has_unet} but u-net flag: {apply_unet} / 重みとU-Netのフラグが矛盾しています"
else:
assert apply_text_encoder is not None and apply_unet is not None, f"internal error: flag not set"
if apply_text_encoder:
print("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
print("enable LoRA for U-Net")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
lora.apply_to()
self.add_module(lora.lora_name, lora)
if self.weights_sd:
# if some weights are not in state dict, it is ok because initial LoRA does nothing (lora_up is initialized by zeros)
info = self.load_state_dict(self.weights_sd, False)
print(f"weights are loaded: {info}")
def enable_gradient_checkpointing(self):
# not supported
pass
def prepare_optimizer_params(self, text_encoder_lr, unet_lr):
def enumerate_params(loras):
params = []
for lora in loras:
params.extend(lora.parameters())
return params
self.requires_grad_(True)
params = []
if self.text_encoder_loras:
param_data = {'params': enumerate_params(self.text_encoder_loras)}
if text_encoder_lr is not None:
param_data['lr'] = text_encoder_lr
params.append(param_data)
if self.unet_loras:
param_data = {'params': enumerate_params(self.unet_loras)}
if unet_lr is not None:
param_data['lr'] = unet_lr
params.append(param_data)
return params
def prepare_grad_etc(self, text_encoder, unet):
self.requires_grad_(True)
def on_epoch_start(self, text_encoder, unet):
self.train()
def get_trainable_params(self):
return self.parameters()
def save_weights(self, file, dtype):
state_dict = self.state_dict()
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == '.safetensors':
from safetensors.torch import save_file
save_file(state_dict, file)
else:
torch.save(state_dict, file)

159
networks/merge_lora.py Normal file
View File

@ -0,0 +1,159 @@
import argparse
import os
import torch
from safetensors.torch import load_file, save_file
import library.model_util as model_util
import lora
def load_state_dict(file_name, dtype):
if os.path.splitext(file_name)[1] == '.safetensors':
sd = load_file(file_name)
else:
sd = torch.load(file_name, map_location='cpu')
for key in list(sd.keys()):
if type(sd[key]) == torch.Tensor:
sd[key] = sd[key].to(dtype)
return sd
def save_to_file(file_name, model, state_dict, dtype):
if dtype is not None:
for key in list(state_dict.keys()):
if type(state_dict[key]) == torch.Tensor:
state_dict[key] = state_dict[key].to(dtype)
if os.path.splitext(file_name)[1] == '.safetensors':
save_file(model, file_name)
else:
torch.save(model, file_name)
def merge_to_sd_model(text_encoder, unet, models, ratios, merge_dtype):
text_encoder.to(merge_dtype)
unet.to(merge_dtype)
# create module map
name_to_module = {}
for i, root_module in enumerate([text_encoder, unet]):
if i == 0:
prefix = lora.LoRANetwork.LORA_PREFIX_TEXT_ENCODER
target_replace_modules = lora.LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE
else:
prefix = lora.LoRANetwork.LORA_PREFIX_UNET
target_replace_modules = lora.LoRANetwork.UNET_TARGET_REPLACE_MODULE
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
for child_name, child_module in module.named_modules():
if child_module.__class__.__name__ == "Linear" or (child_module.__class__.__name__ == "Conv2d" and child_module.kernel_size == (1, 1)):
lora_name = prefix + '.' + name + '.' + child_name
lora_name = lora_name.replace('.', '_')
name_to_module[lora_name] = child_module
for model, ratio in zip(models, ratios):
print(f"loading: {model}")
lora_sd = load_state_dict(model, merge_dtype)
print(f"merging...")
for key in lora_sd.keys():
if "lora_down" in key:
up_key = key.replace("lora_down", "lora_up")
# find original module for this lora
module_name = '.'.join(key.split('.')[:-2]) # remove trailing ".lora_down.weight"
if module_name not in name_to_module:
print(f"no module found for LoRA weight: {key}")
continue
module = name_to_module[module_name]
# print(f"apply {key} to {module}")
down_weight = lora_sd[key]
up_weight = lora_sd[up_key]
# W <- W + U * D
weight = module.weight
if len(weight.size()) == 2:
# linear
weight = weight + ratio * (up_weight @ down_weight)
else:
# conv2d
weight = weight + ratio * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
module.weight = torch.nn.Parameter(weight)
def merge_lora_models(models, ratios, merge_dtype):
merged_sd = {}
for model, ratio in zip(models, ratios):
print(f"loading: {model}")
lora_sd = load_state_dict(model, merge_dtype)
print(f"merging...")
for key in lora_sd.keys():
if key in merged_sd:
assert merged_sd[key].size() == lora_sd[key].size(
), f"weights shape mismatch merging v1 and v2, different dims? / 重みのサイズが合いません。v1とv2、または次元数の異なるモデルはマージできません"
merged_sd[key] = merged_sd[key] + lora_sd[key] * ratio
else:
merged_sd[key] = lora_sd[key] * ratio
return merged_sd
def merge(args):
assert len(args.models) == len(args.ratios), f"number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください"
def str_to_dtype(p):
if p == 'float':
return torch.float
if p == 'fp16':
return torch.float16
if p == 'bf16':
return torch.bfloat16
return None
merge_dtype = str_to_dtype(args.precision)
save_dtype = str_to_dtype(args.save_precision)
if save_dtype is None:
save_dtype = merge_dtype
if args.sd_model is not None:
print(f"loading SD model: {args.sd_model}")
text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.sd_model)
merge_to_sd_model(text_encoder, unet, args.models, args.ratios, merge_dtype)
print(f"saving SD model to: {args.save_to}")
model_util.save_stable_diffusion_checkpoint(args.v2, args.save_to, text_encoder, unet,
args.sd_model, 0, 0, save_dtype, vae)
else:
state_dict = merge_lora_models(args.models, args.ratios, merge_dtype)
print(f"saving model to: {args.save_to}")
save_to_file(args.save_to, state_dict, state_dict, save_dtype)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--v2", action='store_true',
help='load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む')
parser.add_argument("--save_precision", type=str, default=None,
choices=[None, "float", "fp16", "bf16"], help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ")
parser.add_argument("--precision", type=str, default="float",
choices=["float", "fp16", "bf16"], help="precision in merging / マージの計算時の精度")
parser.add_argument("--sd_model", type=str, default=None,
help="Stable Diffusion model to load: ckpt or safetensors file, merge LoRA models if omitted / 読み込むモデル、ckptまたはsafetensors。省略時はLoRAモデル同士をマージする")
parser.add_argument("--save_to", type=str, default=None,
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors")
parser.add_argument("--models", type=str, nargs='*',
help="LoRA models to merge: ckpt or safetensors file / マージするLoRAモデル、ckptまたはsafetensors")
parser.add_argument("--ratios", type=float, nargs='*',
help="ratios for each model / それぞれのLoRAモデルの比率")
args = parser.parse_args()
merge(args)

1452
train_network.py Normal file

File diff suppressed because it is too large Load Diff