Add option to print LoRA trainer command without executing it
This commit is contained in:
parent
25d6e252d3
commit
3a5d491ff2
@ -177,7 +177,9 @@ This will store your a backup file with your current locally installed pip packa
|
|||||||
## Change History
|
## Change History
|
||||||
|
|
||||||
* 2023/03/05 (v21.2.0):
|
* 2023/03/05 (v21.2.0):
|
||||||
- Added new `Additional parameters` under the `Advanced Configuration` section of the `Training parameters` tab.to allow for the specifications of parameters not handles by the GUI.
|
- Add option to print LoRA trainer command without executing it
|
||||||
|
- Add support for samples during trainin via a new `Sample images config` accordion in the `Training parameters` tab.
|
||||||
|
- Added new `Additional parameters` under the `Advanced Configuration` section of the `Training parameters` tab to allow for the specifications of parameters not handles by the GUI.
|
||||||
- Added support for sample as a new Accordion under the `Training parameters` tab. More info about the prompt options can be found here: https://github.com/kohya-ss/sd-scripts/issues/256#issuecomment-1455005709
|
- Added support for sample as a new Accordion under the `Training parameters` tab. More info about the prompt options can be found here: https://github.com/kohya-ss/sd-scripts/issues/256#issuecomment-1455005709
|
||||||
- There may be problems due to major changes. If you cannot revert back to a previous version when problems occur (`git checkout <release name>`).
|
- There may be problems due to major changes. If you cannot revert back to a previous version when problems occur (`git checkout <release name>`).
|
||||||
- Dependencies are updated, Please [upgrade](#upgrade) the repo.
|
- Dependencies are updated, Please [upgrade](#upgrade) the repo.
|
||||||
|
38
lora_gui.py
38
lora_gui.py
@ -269,6 +269,7 @@ def open_configuration(
|
|||||||
|
|
||||||
|
|
||||||
def train_model(
|
def train_model(
|
||||||
|
print_only,
|
||||||
pretrained_model_name_or_path,
|
pretrained_model_name_or_path,
|
||||||
v2,
|
v2,
|
||||||
v_parameterization,
|
v_parameterization,
|
||||||
@ -337,6 +338,8 @@ def train_model(
|
|||||||
sample_sampler,
|
sample_sampler,
|
||||||
sample_prompts,additional_parameters,
|
sample_prompts,additional_parameters,
|
||||||
):
|
):
|
||||||
|
print_only_bool = True if print_only.get('label') == 'True' else False
|
||||||
|
|
||||||
if pretrained_model_name_or_path == '':
|
if pretrained_model_name_or_path == '':
|
||||||
msgbox('Source model information is missing')
|
msgbox('Source model information is missing')
|
||||||
return
|
return
|
||||||
@ -571,20 +574,23 @@ def train_model(
|
|||||||
output_dir,
|
output_dir,
|
||||||
)
|
)
|
||||||
|
|
||||||
print(run_cmd)
|
if print_only_bool:
|
||||||
|
print('Here is the trainer command as a reference. It will not be executed:')
|
||||||
# Run the command
|
print(run_cmd)
|
||||||
if os.name == 'posix':
|
|
||||||
os.system(run_cmd)
|
|
||||||
else:
|
else:
|
||||||
subprocess.run(run_cmd)
|
print(run_cmd)
|
||||||
|
# Run the command
|
||||||
|
if os.name == 'posix':
|
||||||
|
os.system(run_cmd)
|
||||||
|
else:
|
||||||
|
subprocess.run(run_cmd)
|
||||||
|
|
||||||
# check if output_dir/last is a folder... therefore it is a diffuser model
|
# check if output_dir/last is a folder... therefore it is a diffuser model
|
||||||
last_dir = pathlib.Path(f'{output_dir}/{output_name}')
|
last_dir = pathlib.Path(f'{output_dir}/{output_name}')
|
||||||
|
|
||||||
if not last_dir.is_dir():
|
if not last_dir.is_dir():
|
||||||
# Copy inference model for v2 if required
|
# Copy inference model for v2 if required
|
||||||
save_inference_file(output_dir, v2, v_parameterization, output_name)
|
save_inference_file(output_dir, v2, v_parameterization, output_name)
|
||||||
|
|
||||||
|
|
||||||
def lora_tab(
|
def lora_tab(
|
||||||
@ -878,6 +884,8 @@ def lora_tab(
|
|||||||
|
|
||||||
button_run = gr.Button('Train model', variant='primary')
|
button_run = gr.Button('Train model', variant='primary')
|
||||||
|
|
||||||
|
button_print = gr.Button('Print training command')
|
||||||
|
|
||||||
# Setup gradio tensorboard buttons
|
# Setup gradio tensorboard buttons
|
||||||
button_start_tensorboard, button_stop_tensorboard = gradio_tensorboard()
|
button_start_tensorboard, button_stop_tensorboard = gradio_tensorboard()
|
||||||
|
|
||||||
@ -985,7 +993,13 @@ def lora_tab(
|
|||||||
|
|
||||||
button_run.click(
|
button_run.click(
|
||||||
train_model,
|
train_model,
|
||||||
inputs=settings_list,
|
inputs=[dummy_db_false] + settings_list,
|
||||||
|
show_progress=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
button_print.click(
|
||||||
|
train_model,
|
||||||
|
inputs=[dummy_db_true] + settings_list,
|
||||||
show_progress=False,
|
show_progress=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user