Reformat code with blue

This commit is contained in:
bmaltais 2022-12-16 20:26:26 -05:00
parent 90dad5471c
commit 42a0732e0d
4 changed files with 455 additions and 368 deletions

View File

@ -10,12 +10,17 @@ import os
import subprocess
import pathlib
import shutil
from dreambooth_gui.dreambooth_folder_creation import gradio_dreambooth_folder_creation_tab
from dreambooth_gui.dreambooth_folder_creation import (
gradio_dreambooth_folder_creation_tab,
)
from dreambooth_gui.caption_gui import gradio_caption_gui_tab
from dreambooth_gui.common_gui import get_folder_path, remove_doublequote, get_file_path
from dreambooth_gui.common_gui import (
get_folder_path,
remove_doublequote,
get_file_path,
)
from easygui import filesavebox, msgbox
# sys.path.insert(0, './dreambooth_gui')
def save_configuration(
save_as,
@ -53,22 +58,22 @@ def save_configuration(
):
original_file_path = file_path
save_as_bool = True if save_as.get("label") == "True" else False
save_as_bool = True if save_as.get('label') == 'True' else False
if save_as_bool:
print("Save as...")
print('Save as...')
file_path = filesavebox(
"Select the config file to save",
default="finetune.json",
filetypes="*.json",
'Select the config file to save',
default='finetune.json',
filetypes='*.json',
)
else:
print("Save...")
if file_path == None or file_path == "":
print('Save...')
if file_path == None or file_path == '':
file_path = filesavebox(
"Select the config file to save",
default="finetune.json",
filetypes="*.json",
'Select the config file to save',
default='finetune.json',
filetypes='*.json',
)
if file_path == None:
@ -76,40 +81,40 @@ def save_configuration(
# Return the values of the variables as a dictionary
variables = {
"pretrained_model_name_or_path": pretrained_model_name_or_path,
"v2": v2,
"v_parameterization": v_parameterization,
"logging_dir": logging_dir,
"train_data_dir": train_data_dir,
"reg_data_dir": reg_data_dir,
"output_dir": output_dir,
"max_resolution": max_resolution,
"learning_rate": learning_rate,
"lr_scheduler": lr_scheduler,
"lr_warmup": lr_warmup,
"train_batch_size": train_batch_size,
"epoch": epoch,
"save_every_n_epochs": save_every_n_epochs,
"mixed_precision": mixed_precision,
"save_precision": save_precision,
"seed": seed,
"num_cpu_threads_per_process": num_cpu_threads_per_process,
"convert_to_safetensors": convert_to_safetensors,
"convert_to_ckpt": convert_to_ckpt,
"cache_latent": cache_latent,
"caption_extention": caption_extention,
"use_safetensors": use_safetensors,
"enable_bucket": enable_bucket,
"gradient_checkpointing": gradient_checkpointing,
"full_fp16": full_fp16,
"no_token_padding": no_token_padding,
"stop_text_encoder_training": stop_text_encoder_training,
"use_8bit_adam": use_8bit_adam,
"xformers": xformers,
'pretrained_model_name_or_path': pretrained_model_name_or_path,
'v2': v2,
'v_parameterization': v_parameterization,
'logging_dir': logging_dir,
'train_data_dir': train_data_dir,
'reg_data_dir': reg_data_dir,
'output_dir': output_dir,
'max_resolution': max_resolution,
'learning_rate': learning_rate,
'lr_scheduler': lr_scheduler,
'lr_warmup': lr_warmup,
'train_batch_size': train_batch_size,
'epoch': epoch,
'save_every_n_epochs': save_every_n_epochs,
'mixed_precision': mixed_precision,
'save_precision': save_precision,
'seed': seed,
'num_cpu_threads_per_process': num_cpu_threads_per_process,
'convert_to_safetensors': convert_to_safetensors,
'convert_to_ckpt': convert_to_ckpt,
'cache_latent': cache_latent,
'caption_extention': caption_extention,
'use_safetensors': use_safetensors,
'enable_bucket': enable_bucket,
'gradient_checkpointing': gradient_checkpointing,
'full_fp16': full_fp16,
'no_token_padding': no_token_padding,
'stop_text_encoder_training': stop_text_encoder_training,
'use_8bit_adam': use_8bit_adam,
'xformers': xformers,
}
# Save the data to the selected file
with open(file_path, "w") as file:
with open(file_path, 'w') as file:
json.dump(variables, file)
return file_path
@ -152,10 +157,10 @@ def open_configuration(
original_file_path = file_path
file_path = get_file_path(file_path)
if file_path != "" and file_path != None:
if file_path != '' and file_path != None:
print(file_path)
# load variables from JSON file
with open(file_path, "r") as f:
with open(file_path, 'r') as f:
my_data = json.load(f)
else:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
@ -164,36 +169,40 @@ def open_configuration(
# Return the values of the variables as a dictionary
return (
file_path,
my_data.get("pretrained_model_name_or_path", pretrained_model_name_or_path),
my_data.get("v2", v2),
my_data.get("v_parameterization", v_parameterization),
my_data.get("logging_dir", logging_dir),
my_data.get("train_data_dir", train_data_dir),
my_data.get("reg_data_dir", reg_data_dir),
my_data.get("output_dir", output_dir),
my_data.get("max_resolution", max_resolution),
my_data.get("learning_rate", learning_rate),
my_data.get("lr_scheduler", lr_scheduler),
my_data.get("lr_warmup", lr_warmup),
my_data.get("train_batch_size", train_batch_size),
my_data.get("epoch", epoch),
my_data.get("save_every_n_epochs", save_every_n_epochs),
my_data.get("mixed_precision", mixed_precision),
my_data.get("save_precision", save_precision),
my_data.get("seed", seed),
my_data.get("num_cpu_threads_per_process", num_cpu_threads_per_process),
my_data.get("convert_to_safetensors", convert_to_safetensors),
my_data.get("convert_to_ckpt", convert_to_ckpt),
my_data.get("cache_latent", cache_latent),
my_data.get("caption_extention", caption_extention),
my_data.get("use_safetensors", use_safetensors),
my_data.get("enable_bucket", enable_bucket),
my_data.get("gradient_checkpointing", gradient_checkpointing),
my_data.get("full_fp16", full_fp16),
my_data.get("no_token_padding", no_token_padding),
my_data.get("stop_text_encoder_training", stop_text_encoder_training),
my_data.get("use_8bit_adam", use_8bit_adam),
my_data.get("xformers", xformers),
my_data.get(
'pretrained_model_name_or_path', pretrained_model_name_or_path
),
my_data.get('v2', v2),
my_data.get('v_parameterization', v_parameterization),
my_data.get('logging_dir', logging_dir),
my_data.get('train_data_dir', train_data_dir),
my_data.get('reg_data_dir', reg_data_dir),
my_data.get('output_dir', output_dir),
my_data.get('max_resolution', max_resolution),
my_data.get('learning_rate', learning_rate),
my_data.get('lr_scheduler', lr_scheduler),
my_data.get('lr_warmup', lr_warmup),
my_data.get('train_batch_size', train_batch_size),
my_data.get('epoch', epoch),
my_data.get('save_every_n_epochs', save_every_n_epochs),
my_data.get('mixed_precision', mixed_precision),
my_data.get('save_precision', save_precision),
my_data.get('seed', seed),
my_data.get(
'num_cpu_threads_per_process', num_cpu_threads_per_process
),
my_data.get('convert_to_safetensors', convert_to_safetensors),
my_data.get('convert_to_ckpt', convert_to_ckpt),
my_data.get('cache_latent', cache_latent),
my_data.get('caption_extention', caption_extention),
my_data.get('use_safetensors', use_safetensors),
my_data.get('enable_bucket', enable_bucket),
my_data.get('gradient_checkpointing', gradient_checkpointing),
my_data.get('full_fp16', full_fp16),
my_data.get('no_token_padding', no_token_padding),
my_data.get('stop_text_encoder_training', stop_text_encoder_training),
my_data.get('use_8bit_adam', use_8bit_adam),
my_data.get('xformers', xformers),
)
@ -229,46 +238,46 @@ def train_model(
use_8bit_adam,
xformers,
):
def save_inference_file(output_dir, v2, v_parameterization):
# Copy inference model for v2 if required
if v2 and v_parameterization:
print(f"Saving v2-inference-v.yaml as {output_dir}/last.yaml")
print(f'Saving v2-inference-v.yaml as {output_dir}/last.yaml')
shutil.copy(
f"./v2_inference/v2-inference-v.yaml",
f"{output_dir}/last.yaml",
f'./v2_inference/v2-inference-v.yaml',
f'{output_dir}/last.yaml',
)
elif v2:
print(f"Saving v2-inference.yaml as {output_dir}/last.yaml")
print(f'Saving v2-inference.yaml as {output_dir}/last.yaml')
shutil.copy(
f"./v2_inference/v2-inference.yaml",
f"{output_dir}/last.yaml",
f'./v2_inference/v2-inference.yaml',
f'{output_dir}/last.yaml',
)
if pretrained_model_name_or_path == "":
msgbox("Source model information is missing")
if pretrained_model_name_or_path == '':
msgbox('Source model information is missing')
return
if train_data_dir == "":
msgbox("Image folder path is missing")
if train_data_dir == '':
msgbox('Image folder path is missing')
return
if not os.path.exists(train_data_dir):
msgbox("Image folder does not exist")
msgbox('Image folder does not exist')
return
if reg_data_dir != "":
if reg_data_dir != '':
if not os.path.exists(reg_data_dir):
msgbox("Regularisation folder does not exist")
msgbox('Regularisation folder does not exist')
return
if output_dir == "":
msgbox("Output folder path is missing")
if output_dir == '':
msgbox('Output folder path is missing')
return
# Get a list of all subfolders in train_data_dir
subfolders = [
f for f in os.listdir(train_data_dir)
f
for f in os.listdir(train_data_dir)
if os.path.isdir(os.path.join(train_data_dir, f))
]
@ -277,115 +286,127 @@ def train_model(
# Loop through each subfolder and extract the number of repeats
for folder in subfolders:
# Extract the number of repeats from the folder name
repeats = int(folder.split("_")[0])
repeats = int(folder.split('_')[0])
# Count the number of images in the folder
num_images = len([
f for f in os.listdir(os.path.join(train_data_dir, folder))
if f.endswith(".jpg") or f.endswith(".jpeg") or f.endswith(".png")
or f.endswith(".webp")
])
num_images = len(
[
f
for f in os.listdir(os.path.join(train_data_dir, folder))
if f.endswith('.jpg')
or f.endswith('.jpeg')
or f.endswith('.png')
or f.endswith('.webp')
]
)
# Calculate the total number of steps for this folder
steps = repeats * num_images
total_steps += steps
# Print the result
print(f"Folder {folder}: {steps} steps")
print(f'Folder {folder}: {steps} steps')
# Print the result
# print(f"{total_steps} total steps")
if reg_data_dir == "":
if reg_data_dir == '':
reg_factor = 1
else:
print(
"Regularisation images are used... Will double the number of steps required..."
'Regularisation images are used... Will double the number of steps required...'
)
reg_factor = 2
# calculate max_train_steps
max_train_steps = int(
math.ceil(
float(total_steps) / int(train_batch_size) * int(epoch) *
int(reg_factor)))
print(f"max_train_steps = {max_train_steps}")
float(total_steps)
/ int(train_batch_size)
* int(epoch)
* int(reg_factor)
)
)
print(f'max_train_steps = {max_train_steps}')
# calculate stop encoder training
if stop_text_encoder_training_pct == None:
stop_text_encoder_training = 0
else:
stop_text_encoder_training = math.ceil(
float(max_train_steps) / 100 * int(stop_text_encoder_training_pct))
print(f"stop_text_encoder_training = {stop_text_encoder_training}")
float(max_train_steps) / 100 * int(stop_text_encoder_training_pct)
)
print(f'stop_text_encoder_training = {stop_text_encoder_training}')
lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100))
print(f"lr_warmup_steps = {lr_warmup_steps}")
print(f'lr_warmup_steps = {lr_warmup_steps}')
run_cmd = f'accelerate launch --num_cpu_threads_per_process={num_cpu_threads_per_process} "train_db_fixed.py"'
if v2:
run_cmd += " --v2"
run_cmd += ' --v2'
if v_parameterization:
run_cmd += " --v_parameterization"
run_cmd += ' --v_parameterization'
if cache_latent:
run_cmd += " --cache_latents"
run_cmd += ' --cache_latents'
if use_safetensors:
run_cmd += " --use_safetensors"
run_cmd += ' --use_safetensors'
if enable_bucket:
run_cmd += " --enable_bucket"
run_cmd += ' --enable_bucket'
if gradient_checkpointing:
run_cmd += " --gradient_checkpointing"
run_cmd += ' --gradient_checkpointing'
if full_fp16:
run_cmd += " --full_fp16"
run_cmd += ' --full_fp16'
if no_token_padding:
run_cmd += " --no_token_padding"
run_cmd += ' --no_token_padding'
if use_8bit_adam:
run_cmd += " --use_8bit_adam"
run_cmd += ' --use_8bit_adam'
if xformers:
run_cmd += " --xformers"
run_cmd += f" --pretrained_model_name_or_path={pretrained_model_name_or_path}"
run_cmd += ' --xformers'
run_cmd += (
f' --pretrained_model_name_or_path={pretrained_model_name_or_path}'
)
run_cmd += f' --train_data_dir="{train_data_dir}"'
if len(reg_data_dir):
run_cmd += f' --reg_data_dir="{reg_data_dir}"'
run_cmd += f" --resolution={max_resolution}"
run_cmd += f" --output_dir={output_dir}"
run_cmd += f" --train_batch_size={train_batch_size}"
run_cmd += f" --learning_rate={learning_rate}"
run_cmd += f" --lr_scheduler={lr_scheduler}"
run_cmd += f" --lr_warmup_steps={lr_warmup_steps}"
run_cmd += f" --max_train_steps={max_train_steps}"
run_cmd += f" --use_8bit_adam"
run_cmd += f" --xformers"
run_cmd += f" --mixed_precision={mixed_precision}"
run_cmd += f" --save_every_n_epochs={save_every_n_epochs}"
run_cmd += f" --seed={seed}"
run_cmd += f" --save_precision={save_precision}"
run_cmd += f" --logging_dir={logging_dir}"
run_cmd += f" --caption_extention={caption_extention}"
run_cmd += f" --stop_text_encoder_training={stop_text_encoder_training}"
run_cmd += f' --resolution={max_resolution}'
run_cmd += f' --output_dir={output_dir}'
run_cmd += f' --train_batch_size={train_batch_size}'
run_cmd += f' --learning_rate={learning_rate}'
run_cmd += f' --lr_scheduler={lr_scheduler}'
run_cmd += f' --lr_warmup_steps={lr_warmup_steps}'
run_cmd += f' --max_train_steps={max_train_steps}'
run_cmd += f' --use_8bit_adam'
run_cmd += f' --xformers'
run_cmd += f' --mixed_precision={mixed_precision}'
run_cmd += f' --save_every_n_epochs={save_every_n_epochs}'
run_cmd += f' --seed={seed}'
run_cmd += f' --save_precision={save_precision}'
run_cmd += f' --logging_dir={logging_dir}'
run_cmd += f' --caption_extention={caption_extention}'
run_cmd += f' --stop_text_encoder_training={stop_text_encoder_training}'
print(run_cmd)
# Run the command
subprocess.run(run_cmd)
# check if output_dir/last is a directory... therefore it is a diffuser model
last_dir = pathlib.Path(f"{output_dir}/last")
last_dir = pathlib.Path(f'{output_dir}/last')
print(last_dir)
if last_dir.is_dir():
if convert_to_ckpt:
print(f"Converting diffuser model {last_dir} to {last_dir}.ckpt")
print(f'Converting diffuser model {last_dir} to {last_dir}.ckpt')
os.system(
f"python ./tools/convert_diffusers20_original_sd.py {last_dir} {last_dir}.ckpt --{save_precision}"
f'python ./tools/convert_diffusers20_original_sd.py {last_dir} {last_dir}.ckpt --{save_precision}'
)
save_inference_file(output_dir, v2, v_parameterization)
if convert_to_safetensors:
print(
f"Converting diffuser model {last_dir} to {last_dir}.safetensors"
f'Converting diffuser model {last_dir} to {last_dir}.safetensors'
)
os.system(
f"python ./tools/convert_diffusers20_original_sd.py {last_dir} {last_dir}.safetensors --{save_precision}"
f'python ./tools/convert_diffusers20_original_sd.py {last_dir} {last_dir}.safetensors --{save_precision}'
)
save_inference_file(output_dir, v2, v_parameterization)
@ -400,13 +421,13 @@ def train_model(
def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
# define a list of substrings to search for
substrings_v2 = [
"stabilityai/stable-diffusion-2-1-base",
"stabilityai/stable-diffusion-2-base",
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
if str(value) in substrings_v2:
print("SD v2 model detected. Setting --v2 parameter")
print('SD v2 model detected. Setting --v2 parameter')
v2 = True
v_parameterization = False
@ -414,14 +435,14 @@ def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
# define a list of substrings to search for v-objective
substrings_v_parameterization = [
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-2",
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list
if str(value) in substrings_v_parameterization:
print(
"SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization"
'SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization'
)
v2 = True
v_parameterization = True
@ -430,8 +451,8 @@ def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
# define a list of substrings to v1.x
substrings_v1_model = [
"CompVis/stable-diffusion-v1-4",
"runwayml/stable-diffusion-v1-5",
'CompVis/stable-diffusion-v1-4',
'runwayml/stable-diffusion-v1-5',
]
if str(value) in substrings_v1_model:
@ -440,62 +461,67 @@ def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
return value, v2, v_parameterization
if value == "custom":
value = ""
if value == 'custom':
value = ''
v2 = False
v_parameterization = False
return value, v2, v_parameterization
css = ""
css = ''
if os.path.exists("./style.css"):
with open(os.path.join("./style.css"), "r", encoding="utf8") as file:
print("Load CSS...")
css += file.read() + "\n"
if os.path.exists('./style.css'):
with open(os.path.join('./style.css'), 'r', encoding='utf8') as file:
print('Load CSS...')
css += file.read() + '\n'
interface = gr.Blocks(css=css)
with interface:
dummy_true = gr.Label(value=True, visible=False)
dummy_false = gr.Label(value=False, visible=False)
gr.Markdown("Enter kohya finetuner parameter using this interface.")
with gr.Accordion("Configuration File Load/Save", open=False):
gr.Markdown('Enter kohya finetuner parameter using this interface.')
with gr.Accordion('Configuration File Load/Save', open=False):
with gr.Row():
button_open_config = gr.Button("Open 📂", elem_id="open_folder")
button_save_config = gr.Button("Save 💾", elem_id="open_folder")
button_save_as_config = gr.Button("Save as... 💾",
elem_id="open_folder")
button_open_config = gr.Button('Open 📂', elem_id='open_folder')
button_save_config = gr.Button('Save 💾', elem_id='open_folder')
button_save_as_config = gr.Button(
'Save as... 💾', elem_id='open_folder'
)
config_file_name = gr.Textbox(
label="", placeholder="type the configuration file path or use the 'Open' button above to select it...")
config_file_name.change(remove_doublequote,
inputs=[config_file_name],
outputs=[config_file_name])
with gr.Tab("Source model"):
label='',
placeholder="type the configuration file path or use the 'Open' button above to select it...",
)
config_file_name.change(
remove_doublequote,
inputs=[config_file_name],
outputs=[config_file_name],
)
with gr.Tab('Source model'):
# Define the input elements
with gr.Row():
pretrained_model_name_or_path_input = gr.Textbox(
label="Pretrained model name or path",
placeholder=
"enter the path to custom model or name of pretrained model",
label='Pretrained model name or path',
placeholder='enter the path to custom model or name of pretrained model',
)
model_list = gr.Dropdown(
label="(Optional) Model Quick Pick",
label='(Optional) Model Quick Pick',
choices=[
"custom",
"stabilityai/stable-diffusion-2-1-base",
"stabilityai/stable-diffusion-2-base",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-2",
"runwayml/stable-diffusion-v1-5",
"CompVis/stable-diffusion-v1-4",
'custom',
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
'runwayml/stable-diffusion-v1-5',
'CompVis/stable-diffusion-v1-4',
],
)
with gr.Row():
v2_input = gr.Checkbox(label="v2", value=True)
v_parameterization_input = gr.Checkbox(label="v_parameterization",
value=False)
v2_input = gr.Checkbox(label='v2', value=True)
v_parameterization_input = gr.Checkbox(
label='v_parameterization', value=False
)
pretrained_model_name_or_path_input.change(
remove_doublequote,
inputs=[pretrained_model_name_or_path_input],
@ -511,44 +537,49 @@ with interface:
],
)
with gr.Tab("Directories"):
with gr.Tab('Directories'):
with gr.Row():
train_data_dir_input = gr.Textbox(
label="Image folder",
placeholder=
"Directory where the training folders containing the images are located",
label='Image folder',
placeholder='Directory where the training folders containing the images are located',
)
train_data_dir_input_folder = gr.Button(
"📂", elem_id="open_folder_small")
train_data_dir_input_folder.click(get_folder_path,
outputs=train_data_dir_input)
reg_data_dir_input = gr.Textbox(
label="Regularisation folder",
placeholder=
"(Optional) Directory where where the regularization folders containing the images are located",
'📂', elem_id='open_folder_small'
)
train_data_dir_input_folder.click(
get_folder_path, outputs=train_data_dir_input
)
reg_data_dir_input = gr.Textbox(
label='Regularisation folder',
placeholder='(Optional) Directory where where the regularization folders containing the images are located',
)
reg_data_dir_input_folder = gr.Button(
'📂', elem_id='open_folder_small'
)
reg_data_dir_input_folder.click(
get_folder_path, outputs=reg_data_dir_input
)
reg_data_dir_input_folder = gr.Button("📂",
elem_id="open_folder_small")
reg_data_dir_input_folder.click(get_folder_path,
outputs=reg_data_dir_input)
with gr.Row():
output_dir_input = gr.Textbox(
label="Output directory",
placeholder="Directory to output trained model",
label='Output directory',
placeholder='Directory to output trained model',
)
output_dir_input_folder = gr.Button(
'📂', elem_id='open_folder_small'
)
output_dir_input_folder.click(
get_folder_path, outputs=output_dir_input
)
output_dir_input_folder = gr.Button("📂",
elem_id="open_folder_small")
output_dir_input_folder.click(get_folder_path,
outputs=output_dir_input)
logging_dir_input = gr.Textbox(
label="Logging directory",
placeholder=
"Optional: enable logging and output TensorBoard log to this directory",
label='Logging directory',
placeholder='Optional: enable logging and output TensorBoard log to this directory',
)
logging_dir_input_folder = gr.Button(
'📂', elem_id='open_folder_small'
)
logging_dir_input_folder.click(
get_folder_path, outputs=logging_dir_input
)
logging_dir_input_folder = gr.Button("📂",
elem_id="open_folder_small")
logging_dir_input_folder.click(get_folder_path,
outputs=logging_dir_input)
train_data_dir_input.change(
remove_doublequote,
inputs=[train_data_dir_input],
@ -559,111 +590,130 @@ with interface:
inputs=[reg_data_dir_input],
outputs=[reg_data_dir_input],
)
output_dir_input.change(remove_doublequote,
inputs=[output_dir_input],
outputs=[output_dir_input])
logging_dir_input.change(remove_doublequote,
inputs=[logging_dir_input],
outputs=[logging_dir_input])
with gr.Tab("Training parameters"):
output_dir_input.change(
remove_doublequote,
inputs=[output_dir_input],
outputs=[output_dir_input],
)
logging_dir_input.change(
remove_doublequote,
inputs=[logging_dir_input],
outputs=[logging_dir_input],
)
with gr.Tab('Training parameters'):
with gr.Row():
learning_rate_input = gr.Textbox(label="Learning rate", value=1e-6)
learning_rate_input = gr.Textbox(label='Learning rate', value=1e-6)
lr_scheduler_input = gr.Dropdown(
label="LR Scheduler",
label='LR Scheduler',
choices=[
"constant",
"constant_with_warmup",
"cosine",
"cosine_with_restarts",
"linear",
"polynomial",
'constant',
'constant_with_warmup',
'cosine',
'cosine_with_restarts',
'linear',
'polynomial',
],
value="constant",
value='constant',
)
lr_warmup_input = gr.Textbox(label="LR warmup", value=0)
lr_warmup_input = gr.Textbox(label='LR warmup', value=0)
with gr.Row():
train_batch_size_input = gr.Slider(minimum=1,
maximum=32,
label="Train batch size",
value=1,
step=1)
epoch_input = gr.Textbox(label="Epoch", value=1)
save_every_n_epochs_input = gr.Textbox(label="Save every N epochs",
value=1)
train_batch_size_input = gr.Slider(
minimum=1,
maximum=32,
label='Train batch size',
value=1,
step=1,
)
epoch_input = gr.Textbox(label='Epoch', value=1)
save_every_n_epochs_input = gr.Textbox(
label='Save every N epochs', value=1
)
with gr.Row():
mixed_precision_input = gr.Dropdown(
label="Mixed precision",
label='Mixed precision',
choices=[
"no",
"fp16",
"bf16",
'no',
'fp16',
'bf16',
],
value="fp16",
value='fp16',
)
save_precision_input = gr.Dropdown(
label="Save precision",
label='Save precision',
choices=[
"float",
"fp16",
"bf16",
'float',
'fp16',
'bf16',
],
value="fp16",
value='fp16',
)
num_cpu_threads_per_process_input = gr.Slider(
minimum=1,
maximum=os.cpu_count(),
step=1,
label="Number of CPU threads per process",
label='Number of CPU threads per process',
value=os.cpu_count(),
)
with gr.Row():
seed_input = gr.Textbox(label="Seed", value=1234)
max_resolution_input = gr.Textbox(label="Max resolution",
value="512,512",
placeholder="512,512")
seed_input = gr.Textbox(label='Seed', value=1234)
max_resolution_input = gr.Textbox(
label='Max resolution', value='512,512', placeholder='512,512'
)
with gr.Row():
caption_extention_input = gr.Textbox(
label="Caption Extension",
placeholder=
"(Optional) Extension for caption files. default: .caption",
label='Caption Extension',
placeholder='(Optional) Extension for caption files. default: .caption',
)
stop_text_encoder_training_input = gr.Slider(
minimum=0,
maximum=100,
value=0,
step=1,
label="Stop text encoder training",
label='Stop text encoder training',
)
with gr.Row():
full_fp16_input = gr.Checkbox(
label="Full fp16 training (experimental)", value=False)
no_token_padding_input = gr.Checkbox(label="No token padding",
value=False)
label='Full fp16 training (experimental)', value=False
)
no_token_padding_input = gr.Checkbox(
label='No token padding', value=False
)
use_safetensors_input = gr.Checkbox(
label="Use safetensor when saving", value=False)
label='Use safetensor when saving', value=False
)
gradient_checkpointing_input = gr.Checkbox(
label="Gradient checkpointing", value=False)
label='Gradient checkpointing', value=False
)
with gr.Row():
enable_bucket_input = gr.Checkbox(label="Enable buckets",
value=True)
cache_latent_input = gr.Checkbox(label="Cache latent", value=True)
use_8bit_adam_input = gr.Checkbox(label="Use 8bit adam",
value=True)
xformers_input = gr.Checkbox(label="Use xformers", value=True)
enable_bucket_input = gr.Checkbox(
label='Enable buckets', value=True
)
cache_latent_input = gr.Checkbox(label='Cache latent', value=True)
use_8bit_adam_input = gr.Checkbox(
label='Use 8bit adam', value=True
)
xformers_input = gr.Checkbox(label='Use xformers', value=True)
with gr.Tab("Model conversion"):
with gr.Tab('Model conversion'):
convert_to_safetensors_input = gr.Checkbox(
label="Convert to SafeTensors", value=True)
convert_to_ckpt_input = gr.Checkbox(label="Convert to CKPT",
value=False)
with gr.Tab("Utilities"):
label='Convert to SafeTensors', value=True
)
convert_to_ckpt_input = gr.Checkbox(
label='Convert to CKPT', value=False
)
with gr.Tab('Utilities'):
# Dreambooth folder creation tab
gradio_dreambooth_folder_creation_tab(train_data_dir_input, reg_data_dir_input, output_dir_input, logging_dir_input)
gradio_dreambooth_folder_creation_tab(
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
logging_dir_input,
)
# Captionning tab
gradio_caption_gui_tab()
button_run = gr.Button("Train model")
button_run = gr.Button('Train model')
button_open_config.click(
open_configuration,

View File

@ -3,69 +3,85 @@ from easygui import msgbox
import subprocess
from .common_gui import get_folder_path
def caption_images(caption_text_input, images_dir_input, overwrite_input, caption_file_ext):
def caption_images(
caption_text_input, images_dir_input, overwrite_input, caption_file_ext
):
# Check for caption_text_input
if caption_text_input == "":
msgbox("Caption text is missing...")
if caption_text_input == '':
msgbox('Caption text is missing...')
return
# Check for images_dir_input
if images_dir_input == "":
msgbox("Image folder is missing...")
if images_dir_input == '':
msgbox('Image folder is missing...')
return
print(f"Captionning files in {images_dir_input} with {caption_text_input}...")
print(
f'Captionning files in {images_dir_input} with {caption_text_input}...'
)
run_cmd = f'python "tools/caption.py"'
run_cmd += f' --caption_text="{caption_text_input}"'
if overwrite_input:
run_cmd += f' --overwrite'
if caption_file_ext != "":
if caption_file_ext != '':
run_cmd += f' --caption_file_ext="{caption_file_ext}"'
run_cmd += f' "{images_dir_input}"'
print(run_cmd)
# Run the command
subprocess.run(run_cmd)
print("...captionning done")
print('...captionning done')
###
# Gradio UI
###
def gradio_caption_gui_tab():
with gr.Tab("Captionning"):
with gr.Tab('Captionning'):
gr.Markdown(
"This utility will allow the creation of caption files for each images in a folder."
'This utility will allow the creation of caption files for each images in a folder.'
)
with gr.Row():
caption_text_input = gr.Textbox(
label="Caption text",
placeholder="Eg: , by some artist",
label='Caption text',
placeholder='Eg: , by some artist',
interactive=True,
)
)
overwrite_input = gr.Checkbox(
label="Overwrite existing captions in folder",
label='Overwrite existing captions in folder',
interactive=True,
value=False
value=False,
)
caption_file_ext = gr.Textbox(
label="Caption file extension",
placeholder="(Optional) Default: .caption",
label='Caption file extension',
placeholder='(Optional) Default: .caption',
interactive=True,
)
with gr.Row():
images_dir_input = gr.Textbox(
label="Image forder to caption",
placeholder="Directory containing the images to caption",
label='Image forder to caption',
placeholder='Directory containing the images to caption',
interactive=True,
)
button_images_dir_input = gr.Button(
"📂", elem_id="open_folder_small")
'📂', elem_id='open_folder_small'
)
button_images_dir_input.click(
get_folder_path, outputs=images_dir_input)
caption_button = gr.Button("Caption images")
caption_button.click(caption_images, inputs=[caption_text_input, images_dir_input, overwrite_input, caption_file_ext])
get_folder_path, outputs=images_dir_input
)
caption_button = gr.Button('Caption images')
caption_button.click(
caption_images,
inputs=[
caption_text_input,
images_dir_input,
overwrite_input,
caption_file_ext,
],
)

View File

@ -1,19 +1,22 @@
from easygui import diropenbox, fileopenbox
def get_folder_path():
folder_path = diropenbox("Select the directory to use")
folder_path = diropenbox('Select the directory to use')
return folder_path
def remove_doublequote(file_path):
if file_path != None:
file_path = file_path.replace('"', "")
file_path = file_path.replace('"', '')
return file_path
def get_file_path(file_path):
file_path = fileopenbox("Select the config file to load",
default=file_path,
filetypes="*.json")
return file_path
def get_file_path(file_path):
file_path = fileopenbox(
'Select the config file to load', default=file_path, filetypes='*.json'
)
return file_path

View File

@ -4,14 +4,15 @@ from .common_gui import get_folder_path
import shutil
import os
def copy_info_to_Directories_tab(training_folder):
img_folder = os.path.join(training_folder, "img")
if os.path.exists(os.path.join(training_folder, "reg")):
reg_folder = os.path.join(training_folder, "reg")
img_folder = os.path.join(training_folder, 'img')
if os.path.exists(os.path.join(training_folder, 'reg')):
reg_folder = os.path.join(training_folder, 'reg')
else:
reg_folder = ""
model_folder = os.path.join(training_folder, "model")
log_folder = os.path.join(training_folder, "log")
reg_folder = ''
model_folder = os.path.join(training_folder, 'model')
log_folder = os.path.join(training_folder, 'log')
return img_folder, reg_folder, model_folder, log_folder
@ -27,7 +28,7 @@ def dreambooth_folder_preparation(
):
# Check if the input variables are empty
if (not len(util_training_dir_output)):
if not len(util_training_dir_output):
print(
"Destination training directory is missing... can't perform the required task..."
)
@ -37,17 +38,17 @@ def dreambooth_folder_preparation(
os.makedirs(util_training_dir_output, exist_ok=True)
# Check for instance prompt
if util_instance_prompt_input == "":
msgbox("Instance prompt missing...")
if util_instance_prompt_input == '':
msgbox('Instance prompt missing...')
return
# Check for class prompt
if util_class_prompt_input == "":
msgbox("Class prompt missing...")
if util_class_prompt_input == '':
msgbox('Class prompt missing...')
return
# Create the training_dir path
if (util_training_images_dir_input == ""):
if util_training_images_dir_input == '':
print(
"Training images directory is missing... can't perform the required task..."
)
@ -55,106 +56,120 @@ def dreambooth_folder_preparation(
else:
training_dir = os.path.join(
util_training_dir_output,
f"img/{int(util_training_images_repeat_input)}_{util_instance_prompt_input} {util_class_prompt_input}",
f'img/{int(util_training_images_repeat_input)}_{util_instance_prompt_input} {util_class_prompt_input}',
)
# Remove folders if they exist
if os.path.exists(training_dir):
print(f"Removing existing directory {training_dir}...")
print(f'Removing existing directory {training_dir}...')
shutil.rmtree(training_dir)
# Copy the training images to their respective directories
print(f"Copy {util_training_images_dir_input} to {training_dir}...")
print(f'Copy {util_training_images_dir_input} to {training_dir}...')
shutil.copytree(util_training_images_dir_input, training_dir)
# Create the regularization_dir path
if (not (util_class_prompt_input == "")
or not util_regularization_images_repeat_input > 0):
if (
not (util_class_prompt_input == '')
or not util_regularization_images_repeat_input > 0
):
print(
"Regularization images directory or repeats is missing... not copying regularisation images..."
'Regularization images directory or repeats is missing... not copying regularisation images...'
)
else:
regularization_dir = os.path.join(
util_training_dir_output,
f"reg/{int(util_regularization_images_repeat_input)}_{util_class_prompt_input}",
f'reg/{int(util_regularization_images_repeat_input)}_{util_class_prompt_input}',
)
# Remove folders if they exist
if os.path.exists(regularization_dir):
print(f"Removing existing directory {regularization_dir}...")
print(f'Removing existing directory {regularization_dir}...')
shutil.rmtree(regularization_dir)
# Copy the regularisation images to their respective directories
print(
f"Copy {util_regularization_images_dir_input} to {regularization_dir}..."
f'Copy {util_regularization_images_dir_input} to {regularization_dir}...'
)
shutil.copytree(
util_regularization_images_dir_input, regularization_dir
)
shutil.copytree(util_regularization_images_dir_input,
regularization_dir)
print(
f"Done creating kohya_ss training folder structure at {util_training_dir_output}..."
f'Done creating kohya_ss training folder structure at {util_training_dir_output}...'
)
def gradio_dreambooth_folder_creation_tab(train_data_dir_input, reg_data_dir_input, output_dir_input, logging_dir_input):
with gr.Tab("Dreambooth folder preparation"):
def gradio_dreambooth_folder_creation_tab(
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
logging_dir_input,
):
with gr.Tab('Dreambooth folder preparation'):
gr.Markdown(
"This utility will create the necessary folder structure for the training images and optional regularization images needed for the kohys_ss Dreambooth method to function correctly."
'This utility will create the necessary folder structure for the training images and optional regularization images needed for the kohys_ss Dreambooth method to function correctly.'
)
with gr.Row():
util_instance_prompt_input = gr.Textbox(
label="Instance prompt",
placeholder="Eg: asd",
label='Instance prompt',
placeholder='Eg: asd',
interactive=True,
)
util_class_prompt_input = gr.Textbox(
label="Class prompt",
placeholder="Eg: person",
label='Class prompt',
placeholder='Eg: person',
interactive=True,
)
with gr.Row():
util_training_images_dir_input = gr.Textbox(
label="Training images",
placeholder="Directory containing the training images",
label='Training images',
placeholder='Directory containing the training images',
interactive=True,
)
button_util_training_images_dir_input = gr.Button(
"📂", elem_id="open_folder_small")
'📂', elem_id='open_folder_small'
)
button_util_training_images_dir_input.click(
get_folder_path, outputs=util_training_images_dir_input)
get_folder_path, outputs=util_training_images_dir_input
)
util_training_images_repeat_input = gr.Number(
label="Repeats",
label='Repeats',
value=40,
interactive=True,
elem_id="number_input")
elem_id='number_input',
)
with gr.Row():
util_regularization_images_dir_input = gr.Textbox(
label="Regularisation images",
placeholder=
"(Optional) Directory containing the regularisation images",
label='Regularisation images',
placeholder='(Optional) Directory containing the regularisation images',
interactive=True,
)
button_util_regularization_images_dir_input = gr.Button(
"📂", elem_id="open_folder_small")
'📂', elem_id='open_folder_small'
)
button_util_regularization_images_dir_input.click(
get_folder_path,
outputs=util_regularization_images_dir_input)
get_folder_path, outputs=util_regularization_images_dir_input
)
util_regularization_images_repeat_input = gr.Number(
label="Repeats",
label='Repeats',
value=1,
interactive=True,
elem_id="number_input")
elem_id='number_input',
)
with gr.Row():
util_training_dir_output = gr.Textbox(
label="Destination training directory",
placeholder=
"Directory where formatted training and regularisation folders will be placed",
label='Destination training directory',
placeholder='Directory where formatted training and regularisation folders will be placed',
interactive=True,
)
button_util_training_dir_output = gr.Button(
"📂", elem_id="open_folder_small")
'📂', elem_id='open_folder_small'
)
button_util_training_dir_output.click(
get_folder_path, outputs=util_training_dir_output)
button_prepare_training_data = gr.Button("Prepare training data")
get_folder_path, outputs=util_training_dir_output
)
button_prepare_training_data = gr.Button('Prepare training data')
button_prepare_training_data.click(
dreambooth_folder_preparation,
inputs=[
@ -168,12 +183,15 @@ def gradio_dreambooth_folder_creation_tab(train_data_dir_input, reg_data_dir_inp
],
)
button_copy_info_to_Directories_tab = gr.Button(
"Copy info to Directories Tab")
button_copy_info_to_Directories_tab.click(copy_info_to_Directories_tab,
inputs=[util_training_dir_output],
outputs=[
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
logging_dir_input
])
'Copy info to Directories Tab'
)
button_copy_info_to_Directories_tab.click(
copy_info_to_Directories_tab,
inputs=[util_training_dir_output],
outputs=[
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
logging_dir_input,
],
)